A gasket and sealant material, more specifically, a gasket material comprising, in one embodiment, a resilient, pliable body made up of a polyurea and having a skeletal member embedded therein.
A gasket is a sealing member for use between two mating surfaces to help prevent the movement of fluid or gas between the mating surfaces. Gaskets may be pre-cut to fit a workpiece or provided in rolls which are referred to as gasket tape and are cut to length at the time of application to the workpiece. Gaskets are often used on vehicles such as aircraft to prevent moisture from corroding the sealed off areas and the mating surfaces. For example, on the outside skin of an aircraft, antenna are often mounted to assist in communications between the aircraft and a remote location. Such antennas often consist of a generally tabular mounting plate having an inner and outer surface, the inner surface mating to the outer skin of the aircraft and having an electrical connector projecting from the inner surface. The electrical connector is intended to fit partially into the interior of the aircraft through a small opening in the aircraft skin designed for such purpose. The electrical connector element will connect to the appropriate electrical circuit in the aircraft. On the outer surface of the mounting plate, and often incorporated with the mounting plate, is the antenna transceiving member for transmitting and/or receiving radio frequencies.
Traditionally, the antenna is removably mounted to the aircraft through typical threaded fasteners. Holes in the tabular mounting plate of the antenna support the threaded fasteners which pass into the aircraft's skin, typically threading into blind nuts mounted against the inside surface of the aircraft's skin.
Gaskets typically are provided for covering a portion of the “footprint” of the antenna or other aircraft part. When the fasteners are tightened down, they compress the gasket typically with some deformation.
However, conventional gaskets often have a number of shortcomings which applicants novel gasket material overcomes. These shortcomings include allowing moisture to penetrate the area between the parts under compression. Often, for example, a site of corrosion is the junction between the antenna inner surface and the electrical connective elements of the antenna. In some cases, moisture has been found to “pool” in this area, accelerating corrosion.
Flexibility, resiliency, durability, compressibility and pliability are other favorable properties which help affect a good seal between the mating surfaces. All of these beneficial properties should have a useful life that is reasonable in view of operating conditions (multiple thermal and pressure cycling) and aircraft maintenance schedules. The gasket should be inert, that is non-reactive with the work pieces (typically aluminum) as well as non-reactive to water, including salt water.
Not surprisingly, it has proven to be a challenge to develop a gasket with these properties that will survive repeated heat and pressure cycling (as the aircraft climbs and descends), structural flexing, UV light exposure, and vibration while protecting the aircraft components and having a sufficient useful life in which its beneficial properties remain undiminished.
Applicants provide for all of the above properties in an aircraft gasket and gasket tape and a novel method of manufacturing the aircraft gasket and gasket tape. Gasket tape is gasket material that is rolled into tape rather than precut to the pattern of the mating surfaces. The tape may have a skeleton or be without a skeleton. Like the gasket, it has a body that is tacky and, in some embodiments, may be stretchable. Applicants further provide for a method of using the preformed gasket with a thin, settable polyurea gel to, in some cases, help insure a waterproof seal.
Applicants provide a gasket and gasket tape, in some embodiments, with the following beneficial properties: elasticity (with memory), low water absorption (less than 1% over its working life), low water or no water content, and leak free (especially of silicon oil).
The elasticity and pliability helps make an effective seal between the two mating surfaces as compression against such elasticity helps seal over mating surface irregularities and allows structural flexing or vibration of the two surfaces while maintaining a good seal. The maintenance of this elasticity property is important since the surfaces undergo thermal expansion and contraction during repeated altitude and temperature changes which also causes relative movement (flexing) between the mating surfaces.
Tackiness has been found beneficial since there is also vibration and flexing of the mating surfaces. Tackiness and resiliency provide a better seal should there be a slight separation between the mating surfaces.
In one embodiment, Applicant's novel gasket consists of at least two parts. The first part comprises a skeletal member—in some embodiments, an open-weave or unwoven mesh, foam or other suitable member and an open-woven mesh made of a metallic material or a non-metallic fabric such as fiberglass, carbon fiber mesh or the material set forth in published US Application No. 2015/0069722, incorporated herein by reference.
In one embodiment, the second part of applicant's novel gasket is a two-component polyurea mix curing to form a flexible, resilient gel body member typically formed around and through and about the skeletal member so that the skeletal member is substantially encapsulated within the resilient body member and gives some structure and form to the gasket.
A polyurea may be defined as:
The gasket and gasket tape may be tabular in shape and the skeletal member and resilient body share a tabular shape and plane. In one embodiment, when viewed in cross-section, Applicants skeletal member is not centered between the two opposed tabular surfaces of the gasket (or gasket tape), but instead is closer to one surface than the other. It is believed that this property provides selective retentivity to the material.
The resilient body is typically comprised of a semi-solid gelatin polyurea two-component elastomer, typically about between about 20 and 150 (cone penetration using a 37½ gram half-cone), in one embodiment, and about 90-120 in another embodiment, and having a cured surface tackiness (to the touch) and a peel strength between about 2 and 7 pounds per inch-width. Tackiness allows some adhesion to a metal mating surface, but will release easily and leave no residue upon release. The resilient body will not undergo dessication, does not leak oil, but retains memory and does not absorb more than about one percent by weight water. In a preferred embodiment, the body of the gasket or tape is a self-curing two-component polymer mix that will cure between about 1 to 11 minutes.
A gasket or tape is disclosed for sealing between two members, the two members under compression and being two parts of an aircraft, the gasket material comprising a flexible skeletal member; and a flexible, deformable, elastomeric resilient polyurea body member having a tacky outer surface, the body member for substantially enclosing the skeletal member with a self-curing mix of an isocynate component and an amine terminated component, the resilient body member having a tacky top surface and a tacky bottom surface.
The body may have a peel strength between about 2 and 7 pounds/inch width. The mix may have a pre-cured viscosity, when coming out of the nozzle of an applicator of between about 200 and 4500 Cps. The body may have a hardness after curing of between about 40 and 150 (37.5 gram half cone penetrometer). The body is typically free from volatile organic compounds (VOC's) and solvents. The self-curing mix will cure, in some embodiments, between about 3 and 11 minutes. The skeleton member may be a mesh (non-metal or metal), a metallic or non-metallic open cell foam, or a perforated or expanded sheet. The body may include electrically conductive particles. The flexible skeletal member may be encapsulated in the body such that the body is closer to one of the top or bottom surface than the other. A skin may be provided for placement on one of the top or bottom surfaces. The skin will allow some seepage of the body member therethrough, when under compression. One of the top or bottom surface may have a first peel strength and the other a second peel strength, the two peel strengths being different. The gasket can withstand multiple thermal cycles and retain its resiliency and tackiness.
An assembly is provided comprising a first aircraft part having a first surface, a second aircraft part having a second surface and a gasket or gasket tape for sealing between the two parts, the two parts under compression. The gasket or gasket tape material has a flexible skeletal member; and a flexible, deformable, elastomeric resilient polyurea body member having a tacky outer surface, the body member for substantially enclosing the skeletal member with a self-curing mix of an isocynate component and an amine terminated component. The resilient body member has a tacky top surface and a tacky bottom surface. Fasteners are used for engaging the two parts and providing compression on the gasket or gasket tape. The body typically has a hardness after curing of between about 40 and 150 (37.5 gram half, cone penetrometer). In some embodiments, the first aircraft part is a floorboard and the second aircraft part is a floorboard support surface or the first aircraft part is an outer surface of an aircraft and the second aircraft part is an aircraft antenna, which may include a coaxial cable for passing through the outer surface and connecting to the aircraft antenna, the coaxial cable may be wrapped in a stretchable foam tape substantially encapsulated by a polyurea body.
A method of making a gasket or gasket tape is shown, the method comprising the steps of laying a skeletal member on a flat, release/support surface, combining an uncured, a self-curing, two part, gas bubble-free, polyurea mix onto the skeletal member, such that the mix substantially encapsulates the skeletal member before curing, allowing the mix to cure; and shaping the encapsulated skeleton to the shape of a workpiece.
As seen in
Substantially encapsulating skeletal member 12 is a resilient body 14 typically a soft, tacky semisolid polyurea elastomer gel and more typically a resilient body formed from a two-component self-curing polyurea mix. The resilient body may include a first surface 14a and an opposed second surface 14b, the two surfaces may comprise parallel spaced apart planes. A typical thickness of Applicant's preformed gasket 10 is about 0.032 inches to 0.060 inches before compression between two parts or elongation of the tape. The preformed gasket and tape share the same resilient body 14 and both have a sticky or tacky surface. Typical peel strength is in the range of about 2.0 to 7.0 pounds/inch width, in one embodiment, between about 0.5 and 3.0, in a second embodiment.
Suitable metals for the skeleton include, for example, copper, nickel, silver, aluminum, bronze, steel, tin, or an alloy or combination thereof. The metal fibers can also be coated with one or more of the foregoing metals. The electrically conductive fibers can be non-conductive fibers having an electrically-conductive coating, metal wires, carbon fibers, graphite fibers, inherently-conductive polymer fibers, or a combination thereof. In one aspect, the non-conductive fibers of the mesh of skeleton 12a can be prepared from cotton, wool, silk, cellulose, polyester, polyamide, nylon, polyimide, or a combination thereof, and the electrically-conductive coating can be copper, nickel, silver, aluminum, tin, carbon, graphite, or an alloy or combination thereof. In another aspect, the metal wires of the mesh of the skeleton are copper, nickel, silver, aluminum, bronze, steel, tin, or an alloy or combination thereof, or one or more of copper, nickel, silver, aluminum, bronze, steel, tin, or an alloy or combination thereof coated with one or more of copper, nickel, silver, aluminum, bronze, steel, tin, or an alloy or combination thereof.
Conductive particles 19 (see
The first step is an (optional) flattening step. The purpose of this step is to flatten out a skeletal member 12. The way in which this may be done, if the skeletal member is metallic wire mesh, is to place the wire mesh 12 between two flat weighed members 20a and 20b and then placing the weighed members with the wire mesh between them in an oven 22. The wire mesh is typically 18 inches by 24 inches and the weighed members are typically ¼″ stainless steel plates. The mesh and weighed member are typically laid flat in an oven 22 and heated 60 degrees F. for about 30 minutes. This anneals the metallic wire mesh and keeps it flat. The metal plate and the wire mesh are then removed form the oven and allowed to cool. Following cooling the weighed plates are removed and the wire mesh is ready for placement onto flat table 24.
At this point it is germane to examine the nature of one embodiment of flat table 24 in more detail. With reference to
The next step in the manufacture of the preformed gasket, may be called the “mixing and pouring” step and is best illustrated with reference to
With a practice and experience, the proper amount of liquid mix for the mesh may be determined. In one embodiment, sufficient liquid mix should be applied to the mesh for it to sufficiently cover the mesh such that the resilient body contains the skeleton closer one surface than the other (see
The next step in preparing Applicant's preformed gasket is to allow the liquid mix to cure. Typical time to curing (to substantially its final hardness, no longer flows or self-levels) is about 1 to 12 minutes or less at room temperature, in another embodiment, about 3-11 minutes. Upon curing a second FEP layer here 30a (see
Further in
The mixing and pouring step is similar to that illustrated in
Following a period of curing, in one embodiment, in the fast time of about 3-11 minutes, the resulting product as illustrated in
This tape may be then used in lining aluminum structural members of the frame of an aircraft such as those in cargo bays and also on aluminum mating surface beneath lavatories and galleys, where moisture may be a problem. This will help prevent access of moisture to the structural member. It is noted that use of Applicant's polyurea tape or gaskets will be self-sealing around fastener holes. This occurs when there is some deformation of the tape or gaskets at their edges under compression between the two joined mating surfaces.
In summary, it may be seen that Applicant's unique method of manufacturing either the tape or the gasket may include the step of flattening the skeletal member against a flat surface, typically a table top and more typically table top against which a flat release film 30b such as an FEP film has been placed thereon. It is seen that a curable liquid polyurea mix is combined and applied in liquid form, in one embodiment, to cover and encapsulate the skeletal member to a depth sufficient to ensure that skeletal member 12 is closer to (or adjacent (against) a bottom surface of the resulting product than to the upper surface. It is further seen that the resilient body liquid mix is typically self-leveling and will cure at room temperature. The resulting body may be then precut to a desired shape or cut to a preselected width and roller up in a form of gasket tape. It is further seen that the gasket tape, as illustrated in
The body 14 of gasket 10 may be comprised of a two-component polyurea mix 13. Two-component polyurea systems have very rapid dry time and are typically achieved after the use of catalysts as in the two-component polyurethane system. This rapid dry time is very consistent and uniform over a broad temperature range. Conventional two-component fast set polyurea systems typically contain any solvent or VOC's (volatile organic compounds), Applicant's, in one preferred embodiment, do not.
Peel strength may be measured in an aluminum trough 1″ wide, 6″ long, in which the pre-cured mix is placed to about 0.045″ depth and allowed to cure at room temperature. A piece of mesh may be used in soft materials, such as an anchor to attach a force gauge. An Imada Digital Force Gauge (DP5-44R) or other force gauge may be used with a thin film grip or other suitable gripping apparatus, and the top should have an inch or so removed from the trough and attached to the gauge, that will put at a 90° angle to the trough, to measure the force that the 1″ wide strip will peel (release) at. The unit of measurement may be pounds/inch-width.
Although the invention has been described with reference to a specific embodiment, this description is not meant to be construed in a limiting sense. On the contrary, various modifications of the disclosed embodiments will become apparent to those skilled in the art upon reference to the description of the invention. It is therefore contemplated that the appended claims will cover such modifications, alternatives, and equivalents that fall within the true spirit and scope of the invention.
This application claims priority from U.S. Patent Application No. 62/031,916, filed Aug. 1, 2014. This patent application incorporates by reference U.S. Pat. Nos. 6,530,577; 6,695,320; and 7,229,516, to the extent they do not conflict with the specification set forth herein.
Number | Date | Country | |
---|---|---|---|
20160033043 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
62031916 | Aug 2014 | US | |
61498185 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13524876 | Jun 2012 | US |
Child | 14815646 | US |