Modern day agricultural planters are sophisticated machines. Planters place seeds into the soil at a precise depth and frequency, in many rows simultaneously as the machinery progresses down the field. A pivotal component of the planter is the gauge wheel. Gauge wheels essentially consist of a rim, which could be one or multiple pieces and a tire which contacts the ground and possibly a disc, used for opening a slot to place seeds in the soil. Each row of the planter has one or multiple gauge wheels. These wheels regulate the depth at which seeds are placed into the ground. The gauge wheels ride on top of the field surface and are subjected to harsh conditions due to debris and rocks left in the field from previous planting seasons, especially if the grower utilizes a “no-till” philosophy.
In some embodiments, a gauge wheel tire comprises a first polyurethane sidewall portion, a second polyurethane sidewall portion, a polyurethane ground-engaging portion, and a polyurethane axial support portion. The first polyurethane sidewall portion is spaced apart from the second polyurethane sidewall portion, and the polyurethane ground-engaging portion extends from the first polyurethane sidewall portion to the second polyurethane sidewall portion and is adapted to contact a ground surface as the gauge wheel tire rotates about an axis of rotation. The polyurethane axial support portion extends from the first polyurethane sidewall portion to the second polyurethane sidewall portion, and is spaced apart from the polyurethane ground-engaging portion to form a gap that allows radial movement of the polyurethane ground-engaging portion relative to the polyurethane axial support portion.
In some embodiments, a method for making a gauge wheel tire involves forming a first elastomer component comprising at least a ground-engaging portion of the gauge wheel tire, the ground-engaging portion being adapted to contact a ground surface as the gauge wheel tire rotates about an axis of rotation. The method further involves forming a second elastomer component comprising at least an axial support portion, and combining the first elastomer component and the second elastomer component into an assembly in which the axial support portion is spaced apart from the ground-engaging portion to form a gap that allows radial movement of the ground-engaging portion relative to the axial support portion.
Conventional gauge wheel tires are made of a low modulus material, such as rubber, that is both flexible and resilient. A cutaway drawing of such a conventional rubber gauge wheel tire 100 is shown in
U.S. Pat. No. 9,643,454 (“the '454 patent”) describes a gauge wheel constructed with a tire made of a higher modulus material and a “hollow channel” that allows some radial flexing of the tire. While the hollow channel the '454 patent describes can provide some benefits, the inventors have recognized and appreciated a significant flaw with that design. In particular, the gauge wheel tire the '454 patent describes is unable to maintain its rigidity in the axial direction. Such lack of rigidity in the axial direction allows gaps to form between the tire and the rim(s), and thus allows field debris to enter the internal hollow channel of the gauge wheel.
Offered is a gauge wheel tire made of a higher modulus material that, in addition to being able to flex appreciably in the radial direction, is able to maintain its rigidity in the axial direction. Example embodiments of gauge wheel tires 202a, 202b having such characteristics are described below in connection with
A seed firming wheel 214 may be coupled to arm 204. The seed firming wheel 214 may gently pack a seed, seedling, or other plant to be planted at the bottom of the furrow. A packer wheel 216 may be coupled to arm 204 in order to close the furrow after seed placement. A depth control assembly 218 may be coupled to the arm 204 to enable the making of depth adjustments to the seeding depth.
A scraper 220 may be provided on a first side 222 of the disc or knife 210. The scraper 220 may be coupled to the arm 204 to protect against plugging, while additionally acting as a seed boot, thus creating a shelf for accurate seed placement in the furrow. As illustrated, the gauge wheel 106 may be provided on a second side 224 of the disc. The rim(s) 208 may carry the gauge wheel tire 202 which engages or rolls over the soil or ground. In addition, the gauge wheel tire 202 may contact the second side 224 of the disc or knife 210, creating a cleaning action to facilitate removal of debris deposited on the disc during planting operations.
A first example of a gauge wheel tire 202a capable of overcoming the above-noted problems is shown in
In some embodiments, the gauge wheel tires 202a and 202b may comprise multiple, individually constructed pieces combined into a final assembly. In other embodiments, the gauge wheel tires 202a and 202b may be molded as a single, integral unit. In the illustrated examples, the gauge wheel tires 202a and 202b (illustrated in their assembled states in
In embodiments that employ individually manufactured sections 302, 702, 304, 704, such sections may be constructed using materials with the same or different moduli and/or the same or different chemical make-up. It is important only that the individual pieces be constructed in such a way that is conducive to the final assembly process. In some embodiments, the final assembly of the gauge wheel tire 202a, 202b may resemble the profile and outer envelope of traditional, rubber gauge wheel designs, such as that shown in
As shown best in
As shown best in
As shown best in
In some embodiments, the outer component 302, 702 and/or inner component(s) 304, 704 may be formed using elastomeric materials with a hardness of approximately 92 Shore A. Such a material has been found to provide a satisfactory balance between puncture resistance from field debris and overall flexibility of the assembly. Elastomeric materials softer than 92 Shore A, such as 90 Shore A, 85 Shore A, 80 Shore A, 75 Shore A or 70 Shore A, and/or elastomeric materials harder than 92 Shore A, such as 95 Shore A, 50 Shore D, 55 Shore D, 60 Shore D or 65 Shore D may additionally or alternatively be used for either or both of the outer component 302, 702 and the inner component(s) 304, 704.
The individual pieces of the final gauge wheel tire assembly 202a, 202b may be constructed using any of a number of elastomers. Examples of suitable materials include hot castable, room temperature castable or thermoplastic injection moldable polyurethanes, such as MDI polyurethane, TDI polyurethane, or PPDI polyurethane. An MDI polyurethane may include methylene diphenyl diisocyanate reacted with a polyester or polyether polyol. In some implementations, 1,4 butanediol may be employed as a chain extender to cure an MDI based polyurethane. In other implementations, other diols may additionally or alternatively be used as a chain extender. A TDI polyurethane may include toluene diisocyanate reacted with a polyester or polyether polyol. In some implementations, 4,4′ methylenebis (2-chloroaniline) may be employed as a chain extender to cure a TDI based polyurethane. In other implementations, other diamines, such as Dimethylthiotoluenediamine or Methylene bis (2,6-diethyl-3-chloroaniline), may additionally or alternatively be used as a chain extender. A PPDI polyurethane may include p-phenylenediisocyanate reacted with a polyester or polyether polyol. In some implementations, 1,4 butanediol may be employed as a chain extender to cure an PPDI based polyurethane. In other implementations, other diols may additionally or alternatively be used as a chain extender. For MDI-based, TDI-based, or PPDI based polyurethanes, additives may also be added to the polyurethane compound in order to tailor select polyurethane material properties. For example, additives such as internal lubricants may be added to increase sliding abrasion resistance.
Other elastomeric material families may additionally or alternatively be used to construct one or more of the individual pieces of the final gauge wheel tire assembly 202a, 202b. Example of such families include: Thermoplastic Rubber (TPR), Thermoplastic Elastomer (TPE), Thermoplastic Vulcanizates (TPV), Polyamide, Polyethylene, Polypropylene, Polyoxymethylene, or Polychloroprene. Additives may be added to any of these elastomeric material families in order to tailor select properties to meet the requirements of the application.
The individual pieces of the final gauge wheel tire assembly 202a, 202b may be manufactured in a variety of ways. Examples of suitable manufacturing methods include casting, injection molding, transfer molding, compression molding, machining from billets, or additive manufacturing.
There are many different methods that may be utilized for combining the individual pieces of the final assembly of the novel gauge wheel tire design described herein. One way the individual pieces may be combined into a final assembly is through the use of an adhesive. Commercially available epoxy resins, such as Epon 828, available from Hexion Company of Columbus, Ohio, when cross-linked with appropriate curatives such as Versamid 140, available from BASF, headquartered in Ludwigshafen, Germany, can form a robust joint between the individual pieces of the final assembly. Joining surfaces 408, 808 (shown best in
Another suitable method for combining the individual pieces into a final assembly involves the use of mechanical fasteners. The joining surfaces 408, 808 and surrounding areas of the individual components may, for example, be altered such that commercially available mechanical fasteners can be used to hold the mating surfaces of the final assembly against one another securely.
Yet another suitable method for combining the individual pieces into the final assembly involves the use of thermal welding. Thermoplastic materials may be heated to a melting point, such that they will become a viscous liquid. When the heat source is removed, the thermoplastic materials will cool and phase change back into solids. If two adjacent surfaces are heated, such that both phase change to viscous liquids and the melted material from the two surfaces is combined, when the heat source is removed the two surfaces will become one. In some implementations, friction may be used as the heat source to cause such melting. An individual component of the final gauge wheel tire assembly may be held against another individual component of the final gauge wheel tire assembly. By moving the two individual components relative to one another, either by simultaneously moving both components or by holding one component stationary while moving the other, friction between the mating surfaces will result in the generation of heat. The heat generated by the friction may be made high enough to cause the joining surfaces 408, 808 of the individual gauge wheel components to melt and combine. When the relative movement is stopped, friction is no longer generated, thus allowing the parts to cool and become one integral component. In some embodiments, the outer component 302, 702 may be spun relative to the inner component 304, 704, or vice versa, so as to cause such thermal welding to occur.
It should be appreciated that use of any of the above-described joining techniques may result in at least one seam being formed between the respective components at the joining surfaces 408, 808. Such seam(s) may, for example, comprise an adhesive material, a physical contact region between the joining surfaces, a thermal welding joint, etc.
In some embodiments, the hollow cavity 412, 812 (see
Having thus described several aspects of at least one embodiment, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the disclosure. Accordingly, the foregoing description and drawings are by way of example only.
Various aspects of the present disclosure may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in this application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.
Also, the disclosed aspects may be embodied as a method, of which an example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claimed element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
Also, the phraseology and terminology used herein is used for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 62/805,245 entitled HOLLOW POLYURETHANE GAUGE WHEEL, filed Feb. 13, 2019, the entire contents of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2978277 | Gaudry | Apr 1961 | A |
3450182 | Verdier | Jun 1969 | A |
3470433 | Siefert | Sep 1969 | A |
3977453 | Coran et al. | Aug 1976 | A |
4049767 | Vaidya | Sep 1977 | A |
4430952 | Murray | Feb 1984 | A |
4449756 | Weeks | May 1984 | A |
4493274 | Robinson, Jr. et al. | Jan 1985 | A |
4733730 | Murray | Mar 1988 | A |
4802519 | Moranz | Feb 1989 | A |
4998980 | Katou | Mar 1991 | A |
5167439 | Green et al. | Dec 1992 | A |
5343916 | Duddey et al. | Sep 1994 | A |
5460213 | Pajtas | Oct 1995 | A |
5533793 | Walker | Jul 1996 | A |
5887664 | Whalen et al. | Mar 1999 | A |
6102091 | Peterson et al. | Aug 2000 | A |
6227622 | Roderick et al. | May 2001 | B1 |
6463972 | Lacour | Oct 2002 | B1 |
6644223 | Prairie et al. | Nov 2003 | B2 |
6820669 | Hodges et al. | Nov 2004 | B2 |
6845796 | Katoh et al. | Jan 2005 | B2 |
7128110 | Yamazaki et al. | Oct 2006 | B2 |
7481278 | Pomedli et al. | Jan 2009 | B1 |
7481498 | Morris | Jan 2009 | B1 |
8037911 | Morris | Oct 2011 | B2 |
8544516 | Mariman et al. | Oct 2013 | B2 |
9643454 | Kumar et al. | May 2017 | B2 |
10136572 | Weisz et al. | Nov 2018 | B2 |
20030024622 | Chrobak | Feb 2003 | A1 |
20040089209 | Romagnoll | May 2004 | A1 |
20050218712 | Beaumier | Oct 2005 | A1 |
20100251947 | Mariman et al. | Oct 2010 | A1 |
20140319899 | Colon | Oct 2014 | A1 |
20150122386 | Kumar et al. | May 2015 | A1 |
20160114623 | Smith | Apr 2016 | A1 |
20160128266 | Phely et al. | May 2016 | A1 |
20180134084 | Seljan et al. | May 2018 | A1 |
20180290494 | Kon | Oct 2018 | A1 |
20190016176 | Johnson | Jan 2019 | A1 |
20200016933 | Knotowicz et al. | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
0076412 | Apr 1983 | EP |
1238824 | Sep 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20200254820 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62805245 | Feb 2019 | US |