Polyurethane thermoplastic elastomer membrane for seat suspension

Information

  • Patent Grant
  • 5775779
  • Patent Number
    5,775,779
  • Date Filed
    Thursday, March 27, 1997
    27 years ago
  • Date Issued
    Tuesday, July 7, 1998
    26 years ago
Abstract
A seat suspension membrane is provided which consists substantially of a biaxially oriented film of a polyurethane thermoplastic elastomer composition, which composition is characterized by substantially linear polymer molecules containing alternate rigid segments of diisocyanate short chain diol addition reaction products and flexible segments of relatively high molecular weight polyether diol or polyester diol segments and which is produced from a relatively soft film composition.
Description

TECHNICAL FIELD
This invention relates to oriented polyurethane thermoplastic elastomer membranes and, more particularly, it provides such an elastomeric membrane for a seat suspension member.
BACKGROUND OF THE INVENTION
There is a need to reduce the thickness or profile of seats, especially seats for automotive vehicles and the like. U.S. Pat. Nos. 4,842,257; 4,939,183 and 5,009,827 each pertain to a vehicle seat suspension for an automotive vehicle wherein a thin, high strength elastomeric membrane is formed and directionally oriented to provide a useful seat suspension. The high strength elastomeric membrane provides a seating surface that initially yields when a passenger sits on the seat but becomes more firm if an additional load is applied to the passenger and seat such as the vertical impacts applied by the vehicle traveling over a bumpy road. In the case of the elastomeric membrane disclosed in the above-identified patents, the composition was a block copolymer of polytetramethylene terephthalate polyester and polytetramethylene ether. When processed in accordance with the teachings of the above patents, a useful seat suspension membrane is formed.
There is an ongoing need to find less expensive, more readily processable and higher strength membranes for such seat suspension applications.
There are many thermoplastic elastomer composition materials which may seem to possess potential as an orientable membrane material for seat suspension members such as those described in the above patents. However, it is found that many such compositions are difficult to process for biaxial orientation or otherwise do not lend themselves to the formation of a suitable seat suspension membrane. For example, it has been found that polyolefinic thermoplastic elastomers, polyamide thermoplastic elastomers, poly(butadiene/styrene) block copolymers and some polyurethane thermoplastic elastomers could not be suitably processed into oriented seat suspension membranes suitable for vehicle application or even comparable to the above polytetramethylene ether and polytetramethylene terephthalate polyester block copolymers. The problem in finding improvements on such oriented polyether-polyester copolymer compositions has proven to be difficult.
Accordingly, it is an object of this invention to provide such a seat suspension membrane and seat structure adapted to utilize the membrane.
SUMMARY OF THE INVENTION
In accordance with this invention, a suitable seat frame structure is provided which is adapted for attachment with a suitable polyurethane thermoplastic elastomer membrane seat suspension member. The seat suspension member is suitably generally rectangular, of sufficient area to serve its seating function and adapted to be suspended at two opposing edges to a suitable seat frame. The seat frame is adapted to hold the seat suspension member under modest tension in a generally horizontal position for seating. Of course, the seat is open at the front for passenger access. The seat frame may have a generally vertical back support member attached to it, and the back member may be hinged and may, when desired, also carry a like elastomeric suspension member for the back support.
In accordance with this invention, the seat suspension membrane consists essentially of a biaxially oriented film of a block copolymer of a suitable polyurethane thermoplastic elastomer composition. As is known, polyurethane thermoplastic elastomers are the polymeric addition reaction products of suitable short chain diols (for example, butane diol), a diisocyanate (for example, toluene diisocyanate or methylene diphenyl diisocyanate), and relatively long chain polyols which are polyester diols or polyether diols. As formulated and as commercially available, such polyurethane thermoplastic elastomer compositions are characterized by generally linear polymer molecules that contain flexible or soft segments of the polyol domains that alternate with relatively hard or rigid polymeric segments of the reaction product of the diisocyanate and short chain diol.
In accordance with this invention, the starting material is a film or membrane of extruded polyurethane thermoplastic elastomer composition. In order to produce a suitable seat suspension structure (e.g., a rectangular film) from the membrane, it is oriented biaxially in two perpendicular directions such as lengthwise and widthwise. Such orientation is accomplished by drawing the membrane in two directions so as to permanently deform and orient the uncrosslinked polymeric chains and thereby increase the membrane's modulus of elasticity in the directions of orientation and reduce its elongation at break in such directions.
A difficulty is that not all polyurethane thermoplastic elastomer compositions of the above-described type are suitably processable and susceptible to biaxial drawing as is required to accomplish the results of this invention. The chemical composition of suitable polyurethane thermoplastic elastomers for such biaxial orientation will be specified below, as will the properties of unoriented starting compositions. Even within such ranges of composition and properties, some polyurethane thermoplastic elastomers are more difficult to extrude and orient than other grades. Therefore, some further testing of compositions specified herein may be necessary to obtain the most desirable seat suspension membranes as are intended to be provided.
However, the seat suspension membranes of this invention offer significant advantages in seat structures, especially seat structures for automotive vehicles. Suitable polyurethane thermoplastic elastomer compositions are relatively inexpensive, respond very favorably to extrusion and biaxial orientation of the polymer molecules within the membrane, and in a final product possess directional moduli of elasticity that produce a comfortable seat for a vehicle passenger that also resists further deformation (e.g., bottoming out) of the seat suspension when the vehicle is traversing a rough road.
These and other advantages of the invention will become more apparent from a detailed description thereof which follows. Reference will be had to the drawings in which:





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view, partly cut away and in section, of a vehicle seat utilizing a seat suspension membrane of this invention.
FIG. 2 is a plan view of a seat suspension member of this invention.
FIG. 3 is a plot of stress-strain curves of a biaxially-oriented seat suspension membrane of this invention.





DESCRIPTION OF THE PREFERRED EMBODIMENT
Vehicle Seat Application
The polyurethane thermoplastic elastomer membranes of this invention are intended to be employed in a seat construction of the type which is illustrated in FIG. 1. In FIG. 1, a vehicle seat assembly 10 is illustrated including a generally horizontal seat portion 12 and a back support portion 14. The seat portion 12 includes a frame member 16 which, as illustrated, is a U-shaped tube or bar 18 and adapted to be fixed to the floor of the vehicle. Attached to the end portions of the tube 18 are brackets 20 and 22 to which the back support 14 of the seat is connected. The connection to brackets 20, 22 may be a hinged connection so that the back 14 may be pushed forward if desired. Thus, U-shaped tube 18 has two side legs 24 and 26 and a base leg 28 at the front of the seat. The seat frame 16 also comprises two horizontal bars 30, 32 that extend respectively from upper portions of the brackets 20, 22 to the front leg 28 of tube frame 18. These horizontal side members 30, 32 are the supporting members for the polyurethane thermoplastic elastomer membrane 34 which constitutes the seat suspension member of this invention.
Referring to FIGS. 1 and 2, the edges 36, 38 of the seat membrane are folded around wire hooks 40, 42 at the lateral edges of the suspension and heat sealed at 44, 46 to the membrane 34 surface. As seen, the wire hooks 40, 42 are shaped both to extend along the edges of the membrane 34 and to form suitable means for attachment to the side bars 30, 32.
The seat suspension membrane 34 is covered with a thin layer of flexible foam material 48 or other padding (FIG. 1) which will provide a comfortable feel when a passenger is seated under static load conditions. It is preferred that the comfortable foam layer be softer and have a lower modulus than the modulus of the seat suspension member. The softness of the comfortable layer is selected to enable it to conform to the shape of the passenger and transfer the shape to the seat suspension where the static load is further conformed and supported, as will be described.
In the FIG. 1 illustrated arrangement, the comfortable layer 48 also includes a cloth trim covering 50. The comfortable layer 48 is represented showing side bolsters 52 (only one shown) for lateral support of the passenger. A critical portion of this seat structure is the polyurethane thermoplastic elastomer membrane 34 which, when suitably formed and processed, constitute the seating suspension member of this invention. In prior processing as described below, the membrane 34 has been oriented in x--x (side to side) and y--y (front to back) directions as shown in FIG. 2 to provide the desirable seating properties of this invention. The membrane 34 may be stretched elastically about 8% to 12% in the side-to-side direction during seat assembly.
In a typical vehicle seating application, the thickness of membrane 34 is suitably about 0.2 to 0.3 millimeter.
The effect of the orientation in one or both of the side-to-side and front-to-back directions is to strengthen the membrane in these directions and, importantly, to provide it with a "dual modulus" tensile stress-strain curve in each oriented direction as illustrated in FIG. 3, for example. Such dual modulus directional properties mean that the seat membrane initially yields readily under a normal seat load to provide comfort. However, upon further loading as from rough ride impacts, the "comfortable seat" does not easily yield further and bottom out.
In the case of the subject membrane 34, it is generally preferred that the direction of greatest orientation in the membrane be set in the front-to-back position of the seat.
Membrane Technology
Polyurethane thermoplastic elastomers are made of block copolymers consisting of rigid and hard crystalline urethane blocks chemically connected to relatively soft amorphous blocks of polyether or polyester molecular units. The degree of elasticity of the thermoplastic elastomers depends on the molar ratio of the soft segments to the hard segments. The higher ratios of soft segment give rise to more elastic behavior in the polyurethane films. All grades of the polymer are processable as thermoplastics, i.e., they can be injected molded or extruded just like a thermoplastic. The polyurethane thermoplastic elastomers are characterized by polymer molecules that are not chemically bonded together by crosslinks. Instead, the crystalline blocks of the polymers act as physical crosslinks below their melting point and disappear as crosslinks when the crystallites melt. The material is recyclable and articles made of it can be reground and reprocessed many times.
Prior patents show a vehicle seat suspension component and its method of manufacture (U.S. Pat. No. 4,842,257), the suspension being made of a block copolymer consisting of polytetramethylene ether and polytetramethylene terephthalate polyester. Prior patents also show a method of manufacture of the elastomeric membrane (U.S. Pat. No. 4,939,183), and a process for forming the membrane (U.S. Pat. No. 5,009,827). The driving force for the work described in this disclosure was to find a material that is more robust as far as processability is concerned and has lower cost. Initially, a matrix of twelve thermoplastic elastomers were tested--six were block copolymers of polyurethane, two were copolyester polyethers, two were polyolefinic, one was based on polyamide hard segment, and the last one was a poly(butadiene/styrene) block copolymer. It appeared that none of these thermoplastic elastomers had been oriented to produce a useful product.
Preliminary orientation studies showed that not all of these polymers can be oriented. Actually, no significant drawing or orientation could be achieved for one of the polyurethanes, one of the polyesters, and the poly(butadiene/styrene). The studies were conducted using a biaxial orientation apparatus. As a rule, it was attempted to effect the biaxial drawing at a temperature 20.degree. C. below the melting or softening point of the polymer. If that failed, orientation of samples was attempted at slightly higher or lower temperatures.
The tensile properties of the oriented and unoriented films of each of the nine successfully oriented polymers were determined using an Instron mechanical testing equipment. All samples were tested per ASTM D 412 at a crosshead speed of 50 mm/minute. The results are shown in Table I. For comparison, tensile properties on the copolyester polyether material described in previous patents are also shown in the Table. Although there is quite a bit of scatter in the data, it is obvious that drawing of the polymers leads to molecular orientation, which gives rise to an increase in tensile strength and a decrease in elongation at break for all samples. It was surprising to observe that much higher tensile strength was obtained for the oriented polyurethane films than for the copolyester polyether under the same draw ratios.
TABLE I______________________________________SUMMARY OF PRELIMINARY ORIENTATION STUDY Tensile Strength Elongation at Tear StrengthMaterial Draw Ratio (MPa) Break (%) (N/mm)______________________________________Copolyester 1 42 737 114polyether 2 43 744 131Hytrel D4056 3 54 503 161(DuPont)Polyester 1 66 512 129polyurethane 1.5 65 455 160Elastollan S90A 2 73 344 155(BASF) 3 82 279 109 4 96 196 91Polyamide 1 47 580 142Pebax 4033 2 46 594 185(Elf Atochem) 3 55 283 129Polypropylene/ 1 18 453 78EPDM 2 23 404 81Santoprene 3 26 325 79103-40Polyester 1 64 416 126polyurethane 1.5 74 478 129Estane 58092 2 88 219 127(B. F. Goodrich) 3 85 285 112Polyester 1 67 514 111polyurethane 1.5 86 789 117Texin 285 2 84 225 112(Bayer)Polyester 1 61 482 125polyurethane 1.5 73 450 124Elastollan 1190A 3 79 228 93(BASF)Polyester 1 59 361 136polyurethane 1.5 79 584 142Pellethane 3 105 173 972103-90A(Dow Chemical)Copolyester 1 46 411 201polyether 1.5 48 269 230Lomod 2 60 201 203TE 3010A (GE)Polypropylene/ 1 31 595 109EPDM 2 36 508 106Polytrope 3 45 186 106TTP 403-31(Schulman)______________________________________
Because of the excellent properties exhibited by most of the polyurethane thermoplastic elastomers, four of the polymers were chosen for further development and large scale evaluation. Early runs showed that the Pellethane was processable into films only through a narrow window of temperatures and drawing rates and ratios. For this reason, Pellethane was dropped from further evaluations. The Elastollan (S-90 A) polyester-based urethane, the Elastollan (1190) polyether urethane, and a Texin (985U) polyether urethane elastomer (not previously tested) were used for further evaluation and development. Some of the properties and processing conditions of these materials prior to orientation are shown in Table II.
TABLE II__________________________________________________________________________PROPERTIES AND PROCESSING CHARACTERISTICS OFCHOSEN POLYURETHANE THERMOPLASTIC ELASTOMERS Polymer Pellethane Elastollan Elastollan TexinProperty 2103-90A S-90A 1190 985U__________________________________________________________________________Melt Index 23 14 40 9.6-13.4220.degree. C., g/10 min.Specific Gravity 1.14 1.23 1.13 1.20Tensile Strength (MPa) 45 40 32 41Elongation at Break (%) 450 560 575 550Vicant Softening Point (.degree.F.) 224 230 230 176Shore Hardness A: 92 92 -- 86D: 41 41 42 --Flex Modulus (MPa) 76 54 48 27Drying Conditions Prior 190.degree. F./5 Hrs. 180.degree. F./6 Hrs. 180.degree. F./5 Hrs. 170.degree. F./8 Hrs.to Molding (.degree.F./Time)Melt Temperature (.degree.F.) 400 430 420 410Recommended 240 240 240 200Temperature (.degree.F.) forDrawing__________________________________________________________________________
A large scale processing evaluation was conducted at an industrial film extrusion and rolling facility. The process included casting a film of each of the three selected compositions by extrusion using a 75 mm diameter extruder. The conditions of the extrusion were adjusted for each material to give a film with uniform thickness and without surface defects. The films were then air cooled and passed through five sets of rolls for machine direction orientation (MDO). The rolls were used for sheet preheating, slow stretch, fast stretch, heat set, and cooling. The speeds and temperatures of all rolls were adjusted to give a film with the desired orientation. In some cases, the films were passed through a tenter frame placed inside an oven equipped with five zones of temperature control. The tenter frame consisted of two rails equipped with clamps to hold the polymer film. Orientation of the film in the transverse machine direction (TDO) is accomplished by widening the distance between the rails holding the film as it passes through the oven.
The processing conditions used for extrusion, MDO drawing, and TDO drawing of the Texin (985U) are shown in Table III. The three heating zones in the extruder barrel were controlled at temperatures ranging between 350.degree. F. and 410.degree. F. Between the extruder barrel and the die, an adapter barrel was placed to allow unhindered extrusion of the film on the casting roll. The temperature of the adapter was controlled at 410.degree. F. to 430.degree. F. The die temperatures were in the range of 380.degree. F. to 400.degree. F. Under these conditions, the resulting polymer melt temperature was between 398.degree. F. and 408.degree. F., when the extruder screw speed was maintained at 38 to 48 rpm. Temperature adjustments within the range mentioned above were made in order to produce a smooth and defect-free film surface.
TABLE III__________________________________________________________________________EXTRUSION AND ORIENTATION CONDITIONS FOR POLYETHER URETHANE MATERIALOBTAINED FROM TEXIN (985U)__________________________________________________________________________Extrusion ConditionsExtruder Barrel AdapterTemperature, .degree.F. Temperatures, .degree.F. Die Temperatures, .degree.F.Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3__________________________________________________________________________350-380 360-410 370-410 410-420 420-430 420-430 380-400 400 400__________________________________________________________________________Polymer Melt Temperature, .degree.F. Extruder Screw Speed (RPM) Extruder Pressure (PSI)__________________________________________________________________________398-408 38-48 650-670__________________________________________________________________________MDO Line Drawing ConditionsPreheat Roll Slow Draw Roll Fast Draw Roll Annealing Roll Cooling RollTemperature, .degree.F. Temperature, .degree.F. Temperature, .degree.F. Temperature, .degree.F. Temperature, .degree.F.__________________________________________________________________________199-201 200 209-211 197-201 64-66__________________________________________________________________________TDO Line Drawing ConditionsPreheat Zone Stretch Zone Annealing ZoneTemperature, .degree.F. Temperature, .degree.F. Temperature. .degree.F.__________________________________________________________________________200-250 210-255 180-210__________________________________________________________________________
The MDO drawing line conditions are also shown in Table III. As seen in the table, the temperatures used during drawing of the film had to be kept at low values of 197.degree. F. to 211.degree. F. for successful drawing of the films in a continuous manner and without film breakage during stretching. Similarly, the temperatures inside the tenter frame were also controlled at low values to insure successful orientation in the transverse machine direction.
The properties of four batches of film made under different orientation conditions are shown in Table IV. The nominal thickness of the films was about 0.25 mm. As expected, orientation leads to increase in tensile strength, a decrease in elongation, and an increase in tear strength. However, for this material, it seems that an optimum draw ratio of about four results in the best balanced properties of the film. Beyond this, draw ratio properties start to degrade. Of the four batches that were made, the best properties were exhibited by the film having draw ratios of 2.1 MDO and 3.9 TDO. The draw ratio is calculated from machine settings of roll speeds relative to each other during MDO drawing or clamp separation during TDO drawing of the film. The stress strain curves of samples cut in the MDO (100) and TDO (102) directions of the film are shown in FIG. 3. The dual modulus character of these samples is evident from the graph.
TABLE IV______________________________________PROPERTIES OF ORIENTED FILMS MADE FROMTEXIN (985U) TensileDraw Strength Elongation Tear StrengthDirection Draw Ratio (MPa) at Break (%) (N/mm)______________________________________MDO 1.5 68 280 99TDO 1 56 514 113MDO 2.1 72 296 122TDO 3 78 272 108MDO 2.1 88 426 143TDO 3.9 99 264 108MDO 2 63 346 210TDO 5.3 82 129 72______________________________________
The processing conditions and properties of eight batches of oriented polyester urethane material obtained from BASF (S-90) are shown in Tables V and VI, respectively. For this polymer, the temperatures of the orientation line were raised to higher values than used in the previous sample. The MDO preheat and draw stations were maintained at temperatures between 234.degree. F. and 296.degree. F., while the TDO oven temperatures ranged between 200.degree. F. and 301.degree. F. The properties of the oriented films were similar to those of the Texin samples.
TABLE V__________________________________________________________________________EXTRUSION AND ORIENTATION CONDITIONS FOR POLYESTER URETHANE MATERIALOBTAINED FROM BASF (S-90)__________________________________________________________________________Extrusion ConditionsExtruder Barrel AdapterTemperature, .degree.F. Temperatures, .degree.F. Die Temperatures, .degree.F.Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3__________________________________________________________________________460-482 450-465 385-410 375-390 390-400 380-385 380-400 382-397 377-400__________________________________________________________________________Polymer Melt Temperature, .degree.F. Extruder Screw Speed (RPM) Extruder Pressure (PSI)__________________________________________________________________________370-378 50-80 650-1560__________________________________________________________________________MDO Line Drawing ConditionsPreheat Roll Slow Draw Roll Fast Draw Roll Annealing Roll Cooling RollTemperature, .degree.F. Temperature, .degree.F. Temperature .degree.F. Temperature, .degree.F. Temperature .degree.F.__________________________________________________________________________234-264 254-265 267-296 269-290 63-69__________________________________________________________________________TDO Line Drawing ConditionsPreheat Zone Stretch Zone Annealing ZoneTemperature, .degree.F. Temperature, .degree.F. Temperature, .degree.F.__________________________________________________________________________265-270 265-283 200-301__________________________________________________________________________
TABLE VI______________________________________PROPERTIES OF ORIENTED FILMS MADE FROM BASF (S-90A) Sample Angle Tensile TearDraw Draw with Respect Strength Elongation StrengthDirection Ratio to MDO (MPa) at Break (%) (N/mm)______________________________________MDO 2.5 0 105 340 173TDO 5.3 90 104 175 131MDO 2.5 0 79 224 151TDO 4.1 90 104 141 127MDO 2.5 0 85 211 141TDO 1 90 63 1311 142MDO 2.5 0 98 221 140TDO 4.1 90 98 138 132MDO 1.7 0 87 297 241TDO 5.9 90 95 101 88MDO 2.5 0 96 376 196TDO 4.9 90 105 155 121MDO 1.7 0 73 303 140 30 73 257 118 45 73 213 107 60 71 141 77TDO 5.1 90 90 107 90MDO 3 0 95 196 78 30 94 167 80 45 94 152 78 60 85 127 72TDO 5.9 90 103 84 57______________________________________
The processing conditions and properties of ten batches of oriented films made of polyether urethane BASF (1190) are shown in Tables VII and VIII. Some of the films were made from a resin containing 2% carbon black concentrate BASF (917), which is added for UV stability. Again, higher temperatures were used for stretching in the MDO and TDO directions. The properties of the oriented films were excellent. The best balance of properties was obtained for samples oriented to a draw ratio of 4.
TABLE VII__________________________________________________________________________EXTRUSION AND ORIENTATION CONDITIONS FOR POLYESTER URETHANE MATERIALOBTAINED FROM BASF (1190)__________________________________________________________________________Extrusion ConditionsExtruder Barrel AdapterTemperature, .degree.F. Temperatures, .degree.F. Die Temperatures, .degree.F.Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3__________________________________________________________________________340-470 350-482 360-420 395-405 395-400 375-390 379-395 370-404 388-425__________________________________________________________________________Polymer Melt Temperature, .degree.F. Extruder Screw Speed (RPM) Extruder Pressure (PSI)__________________________________________________________________________368-401 60-81 540-1620__________________________________________________________________________MDO Line Drawing ConditionsPreheat Roll Slow Draw Roll Fast Draw Roll Annealing Roll Cooling RollTemperature, .degree.F. Temperature, .degree.F. Temperature .degree.F. Temperature, .degree.F. Temperature .degree.F.__________________________________________________________________________235-240 241-260 241-286 240-270 56-66__________________________________________________________________________TDO Line Drawing ConditionsPreheat Zone Stretch Zone Annealing ZoneTemperature, .degree.F. Temperature, .degree.F. Temperature, .degree.F.__________________________________________________________________________240-270 220-270 202-230__________________________________________________________________________
TABLE VIII______________________________________PROPERTIES OF ORIENTED FILMS MADE FROM BASF (1190A) Sample Angle Tensile TearDraw Draw with Respect Strength Elongation StrengthDirection Ratio to MDO (MPa) at Break (%) (N/mm)______________________________________1190 SamplesMDO 2.4 0 88 284 157TDO 5.0 90 91 89 69MDO 2.4 0 85 299 136TDO 4.3 90 104 105 71MDO 2.0 0 73 263 120 30 78 245 79 45 78 190 109 60 71 155 86TDO 4.5 90 91 106 571190 + 2% 917 SamplesMDO 2.0 0 71 254 70TDO 4.7 90 88 133 81MDO 2.1 0 82 296 176TDO 2.9 90 94 192 102MDO 2.1 0 84 205 145TDO 2.9 90 94 208 96MDO 3.0 0 105 165 117TDO 2.5 90 80 296 111MDO 4.0 0 112 99 128MDO 2.0 0 71 246 185 30 82 209 143 45 81 174 110 60 83 145 111TDO 4.7 90 96 106 107______________________________________
Polyurethane films are easier to process and have better properties at equivalent draw ratios than the Hytrel films. They are also lower cost materials. They are intended herein for use as seat suspensions. The method for making the subject seat suspension is easier and less costly than the method needed to make a woven filament suspension. In the case of a woven filament suspension, after the filament is extruded and oriented, the fabric is woven and cut to size, wire hooks are inserted, and "sleeves" are created by the use of adhesives. In the case of polyurethane film suspension, the film is extruded and oriented, then it is cut to size and wire hooks are inserted through cut holes and the "sleeves" are formed by sealing the film on itself as illustrated in FIGS. 1 and 2. Therefore, not only one process (weaving) is eliminated; also, the use of adhesive is eliminated.
Thus, in seat membrane manufacture, a combination of heat and pressure to "seal" the polyurethane film on itself may be employed to form the desired "sleeves" and to hold the wire hooks in place. An automobile seat suspension has been made from oriented polyurethane film (BASF resin 1190) by using the heat sealing process described above. This suspension was incorporated in a regular production seat in a 1994 Pontiac Grand Am for engineering evaluation. The polyurethane suspension performed very well in providing comfort and support.
Care must be taken in the selection and film extrusion of polyurethane thermoplastic elastomers to obtain the oriented membranes of this invention. For example, it is preferred that the starting polyurethane materials for the subject membranes have a Shore A hardness value of 95 or less. It is also preferred that unoriented sheets of the starting polyurethane thermoplastic elastomers have stress values at 100% elongation and 300% elongation that are, respectively, less than 13 MPa and 25 MPa. The elongation at break measured on unoriented sheets at room temperature should not be less than 300%.
Experience also suggests that suitable polyurethane thermoplastic elastomers for drawing into the oriented membranes of this invention are suitably characterized by a composition in which the mole ratio of hard segment to soft segment is less than about 1.5.
Even within the above-specified ranges of properties and composition, some polyurethane thermoplastic elastomers are more difficult to extrude and orient than other grades. Other factors such as molecular weight, molecular weight distribution and hot tear strength are also likely to affect the extrudability and orientability of a particular polyurethane thermoplastic elastomer in accordance with this invention.
As stated, the thickness of the subject membranes for vehicle seating is nominally about 0.2 to 0.3 mm. Obviously, lesser or greater thicknesses may be desired or required in other applications. It is generally preferred that the membranes have a minimum tensile strength of 50 MPa in any direction in which they are oriented.
While the invention has been disclosed in terms of a few preferred embodiments, it will be appreciated that other forms could readily be adapted by one skilled in the art. Accordingly, the scope of the invention is intended to be limited only by the following claims.
Claims
  • 1. A seat comprising a seat frame carrying a seat suspension membrane for receiving a seating load, said seat suspension membrane having a side-to-side direction and a front-to-back direction with respect to said seat, said seat suspension membrane consisting essentially of a polyurethane thermoplastic elastomer membrane that is oriented in at least one of said directions, said polyurethane thermoplastic elastomer consisting substantially of generally linear polymer molecules that are characterized by rigid segments of diisocyanate and short chain diol addition reaction products and flexible segments of a polymeric species selected from the group consisting of polyether diols or polyester diols.
  • 2. A vehicle seat as recited in claim 1 in which the molecular ratio of said rigid segments to said flexible segments is less than 1.5.
  • 3. A vehicle seat as recited in claim 1 in which said oriented polyurethane thermoplastic elastomer is the extruded and axially drawn product of a polyurethane thermoplastic elastomer initially having a Shore A hardness value of 95 or less and a room temperature elongation at break that is greater than 300%.
  • 4. A seat comprising a seat frame carrying a seat suspension membrane for receiving a seating load, said seat suspension membrane having a side-to-side direction and a front-to-back direction with respect to said seat, said seat suspension membrane consisting essentially of a polyurethane thermoplastic elastomer membrane that is drawn and oriented in both of said directions, said polyurethane thermoplastic elastomer consisting substantially of generally linear polymer molecules that are characterized by rigid segments of diisocyanate and short chain diol addition reaction products and flexible segments of a polymeric species selected from the group consisting of polyether diols or polyester diols.
  • 5. A vehicle seat as recited in claim 4 in which the molecular ratio of said rigid segments to said flexible segments is less than 1.5.
  • 6. A vehicle seat as recited in claim 4 in which said oriented polyurethane thermoplastic elastomer is the extruded and biaxially drawn product of a polyurethane thermoplastic elastomer initially having a Shore A hardness value of 95 or less and a room temperature elongation at break that is greater than 300%.
  • 7. A biaxially-oriented polyurethane thermoplastic elastomer membrane, said membrane being the extruded and biaxially drawn product of a polyurethane thermoplastic elastomer initially having a Shore A hardness value of 95 or less and a room temperature elongation at break that is greater than 300%.
  • 8. A biaxially-oriented polyurethane thermoplastic elastomer membrane, said membrane being the extruded and biaxially drawn product of a polyurethane thermoplastic elastomer initially having a Shore A hardness value of 95 or less and a room temperature elongation at break that is greater than 300%, said elastomer consisting essentially of generally linear polymer molecules that are characterized by rigid segments of diisocyanate and short chain diol addition reaction products and flexible segments of a polymeric species selected from the group consisting of polyether diols or polyester diols.
US Referenced Citations (21)
Number Name Date Kind
3272890 O'Leary Sep 1966
3411824 White et al. Nov 1968
3512831 Flint May 1970
4342847 Goyert et al. Aug 1982
4423185 Matsumoto et al. Dec 1983
4492408 Lohr Jan 1985
4583783 Kanai Apr 1986
4702522 Vail et al. Oct 1987
4787948 Ermert Nov 1988
4834458 Izumida et al. May 1989
4842257 Abu-Isa et al. Jun 1989
4842794 Hovis Jun 1989
4883320 Izumida et al. Nov 1989
4939183 Abu-Isa et al. Jul 1990
4975207 Lee Dec 1990
5009827 Abu-Isa et al. Apr 1991
5013089 Abu-Isa et al. May 1991
5149739 Lee Sep 1992
5171633 Muramoto et al. Dec 1992
5439271 Ryan Aug 1995
5582463 Linder et al. Dec 1996