1. Field of the Invention
The invention is directed to pontoon boats, and more particularly to the wall assembly of a pontoon boat.
2. Description of the Related Art
Pontoon boats are becoming an increasingly popular choice among boat owners who are looking for a vessel that can accommodate a large family or group of people in a comfortable environment for leisure and/or entertainment purposes. Additional advantages of pontoon boats over other options include their ability to navigate shallow water with ease, their relatively low cost compared to other boat options of comparable size, the ability to configure the deck area with a variety of seating configurations and other options, and their ease of handling to name just a few.
Pontoon boats are typically constructed to include a generally flat platform or deck which is mounted to two or more hollow, tubular floatable pontoons to support the deck off the water. The typical construction further includes some type of barrier or wall system that extends about the perimeter of the deck to define a passenger space and some type of seating arrangement within the passenger space.
The wall system itself includes multiple sections of tubular structural framing that is anchored to the decking. Often, the open areas of the framing are fitted with decorative panels, or skins, of sheet metal to provide a solid wall appearance as well as a containment barrier for the passengers on board.
One type of wall system in many modern pontoon boats is curved to provide the pontoon boat with a clean and luxurious external appearance. Known curved pontoon walls of the prior art are made by first forming the tubular framework in planar sections and securing panels to the framework with fasteners, e.g. rivets. Once the planar wall sections are formed, they are roll formed as needed to bend all or part of the wall section to the desired curvature. A problem inherent with this approach is that it places great stress on the wall segments, and particularly the panels which are generally no greater than three hundredths of an inch (0.03 in) thick. The stress of the bending operation is born in part by the panels and they tend to stretch and distort under the stress giving the panels a non-uniform appearance (e.g., buckling, dents, kinks, etc). Some manufactures have tried to minimize the appearance of these stress-induced imperfections by employing a corrugated or ribbed panel material which helps with the defects, but which also detracts from a smooth appearance of the panels that may be more appealing to some boat owners.
An aspect to the invention is to provide a curved wall segment for a wall system of a pontoon boat with an improved structural integrity, cost and appearance. According to a particular feature of this improved wall segment, a frame of a plurality of hollow beam members is formed and bent through at least one curve. During or after the bending of the frame, a panel is bonded to the frame. Because the panel is bonded to the frame during or after rather than before the bending process, the it is substantially free of internal stresses, even through the curve in the wall segment. Such a stress-free panel can be made thick enough to resist dents from the forces a pontoon boat will encounter during everyday use. Therefore, the panel can be made with a generally smooth external surface, which many customers may find to be appealing. Another advantage of the panel being substantially free of internal stresses is that the wall segment has a reduced risk of ripping and/or breaking, especially in the area of the curve.
According to another aspect of the invention, at least one of the beams has a generally mushroom-shaped cross-section with an enlarged head portion and a relatively narrow body portion. The narrow body portion has two outer side surfaces that are laterally inset from the head portion. L-shaped steps extend between and interconnect the head and body portions. The panel overlies at least one of the outer side surfaces, and the panel has a thickness which is less than the length of the associated L-shaped step. This is advantageous for a number of reasons, including protecting the edges of the panels from direct contact by external forces to preclude bending, chipping, delamination and the like, and also because it provides a very clean, aesthetically pleasing, robust appearance to the wall segments.
According to yet a further aspect of the invention, at least some adhesive interconnecting the frame and panel extends to a front portion of the panel. This adhesive creates a zone of protection for the edge of the panel and further secures the panel to the frame. Optionally, the panel and frame can be painted together to create a layer of paint which further reinforces the connection between the panel and the frame.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
a is a cross-sectional view taken along line 4-4 of
b is a cross-sectional view taken along line 4-4 of
c is a cross-sectional view taken along line 4-4 of
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, an exemplary pontoon boat 20 is generally shown in
The pontoon boat 20 includes a wall assembly comprising a plurality of wall segments 26 which extend about the perimeter of the deck 22 to define an interior space for accommodating passengers. Each of the wall segments 26 is anchored on the deck 22 and extends generally upwardly therefrom. As shown in
As shown in
The beam members 30 are preferably formed as aluminum extrusions having the desired cross-section, and the beam members 30 are preferably secured to one another through welding. However, it should be appreciated that the beam members 30 could be of any desirable material, formed through any desirable forming process, and secured to one another through any desirable process.
As shown in
As described above, at least one panel 32 is applied to the frame 28 to give the wall segment 26 a solid appearance. After the frame 28 is bent to a predetermined curve 44, an adhesive 46 is applied to the perimeter beam members 30 and/or to the edges of the panel 32. The adhesive 46 is preferably applied to both the outer side surface 38 of the body portion 36 and to the L-shaped step 40 between the head and body portions 34, 36. To bond the panel 32 to the frame 28, one end of the panel 32 is first clamed to the frame 28 such that the panel 32 overlies one of the outer side surfaces 38 of the perimeter beam members 30 and the edge of the panel 32 abuts the L-shaped step 40. When the panel 32 is pressed against the frame 28, at least some of the adhesive 46 should disposed on the front surface of the panel 32 to provide additional protection to the edges of the panel 32. In the exemplary embodiment, the adhesive 46 is Maxlok™ MX/T18, which is a product of the Lord Corporation. However, it should be appreciated that any desirable adhesive may be used.
Next, the length of the panel 32 is progressively pressed to the frame 28 such that the edge of the panel 32 overlies one of the side surfaces 38 of the beam members 30. This process is continued through the curve 44 to bond the panel 32 to the frame 28. It may be necessary to use one or more clamps to hold the panel 32 against the frame 28 through the curve 44 until the adhesive 46 is finished curing. In the exemplary embodiment, the adhesive 46 is sufficient to interconnect the panel 32 and the frame 28; however, additional connectors could be added for additional reinforcement if desired.
In the exemplary embodiment, each of the panels 32 has a generally smooth exterior surface, which gives the pontoon boat 20 a smooth, high-quality external appearance. The panel 32 of the exemplary embodiment is approximately six one-hundredths of an inch (0.06 in) thick. However, it should be appreciated that the panel 32 could have any desirable thickness. Because the panel 32 is applied during or after the bending process is complete, it is substantially free of internal stresses, which improves its ability to absorb forces without deforming or tearing.
It should be appreciated that the same type of beam member 30 could be used to for both the port (left) and starboard (right) wall segments 26 of the pontoon boat 20. For example, in
Also shown in
Once the panels 32 are finished bonding to the frame 28, then the wall segment 26 is primed and painted. In the exemplary embodiment, both the frame 28 and the panels 32 are painted, however it might be desirable to only paint the panels 32 and not the frame 28. The resulting layer 48 of primer and paint, which is best shown in
As shown in
A flow chart for an exemplary method of manufacturing a pontoon boat 20 is shown in
The exemplary method then continues with the step 104 of extruding a plurality of beam members 30, with each beam having at least one flat surface. As discussed above, each beam preferably has a cross-section defining a first portion and a wider second portion. The method then continues with the step 106 of securing the beams to one another in a predetermined configuration to form a frame 28 for a wall segment 26. In the exemplary method, the beams are welded to one another to form the frame 28. However, it should be appreciated that any means of securing the beams together could alternatively be used including, for example, fasteners or adhesives 46.
The method then continues with the step 108 of bending the frame 28 to form at least one curve 44. The curve 44 could have any desirable sharpness and angle. Once the panel 32 is formed and shaped, the method continues with the step 110 of applying an adhesive 46 to a generally smooth panel 32 and/or one of the flat surfaces of the beams of the frame 28. In the exemplary method, the panel 32 is of 0.06 inch thick aluminum. However, as discussed above, the panel 32 could have any desirable thickness and could be of any desirable material. The panel 32 is preferably cut to shape using a water-cutting process. However, any desirable process could be used to shape the panel 32.
Next, the method continues with the step 112 of clamping one end of the panel 32 to one end of the frame 28. The method then continues with the step 114 of progressively pressing the panel 32 to the flat surfaces of the frame 28 from the clamped end to the opposite end. Through the curve 44, additional clamps might be applied to hold the panel 32 against the flat surfaces of the frame 28 while the adhesive 46 cures. The method then continues with the step 116 of curing the adhesive 46. It should be appreciated that the time required to cure the adhesive 46 will vary according to the adhesive 46 used.
Next, the exemplary method continues with the steps 118, 120 of applying a primer to the panel 32 and painting the panel 32. It should be appreciated an exterior coating, such as a clear coating, could optionally be applied on top of the paint to enhance the appearance of the panel 32 and/or to protect the paint. Once the wall segment 26 is complete, the method continues with the step 122 of securing the wall segment 26 to the deck 22 of the pontoon boat 20.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. These antecedent recitations should be interpreted to cover any combination in which the inventive novelty exercises its utility.
Number | Name | Date | Kind |
---|---|---|---|
5485801 | Gibbs | Jan 1996 | A |
7913637 | Roehm et al. | Mar 2011 | B2 |
Entry |
---|
Restorepontoon.com http://www.restorepontoon.com/pontoon/pc/Vinyl-Fence-Paneling-65p79.htm#details Jul. 18, 2009. |
Number | Date | Country | |
---|---|---|---|
20130025519 A1 | Jan 2013 | US |