Automatic swimming pool cleaners include components for driving the pool cleaners along the floor and sidewalls of a swimming pool, either in a random or deliberate manner, to vacuum debris on and adjacent to the floor and sidewalls. For example, conventional pressure side cleaners and suction cleaners often use hydraulic turbine assemblies as drive systems to drive one or more wheels. Robotic cleaners often include a motor or other mechanical system powered by an external power source to drive one or more wheels.
Although automatic swimming pool cleaners operate with little manual operator interaction, it is sometimes difficult for the operator to quickly determine whether the pool cleaner is operating correctly or efficiently. For example, an operator can see the pool cleaner moving along a swimming pool floor, but not realize that the cleaner is not vacuuming or barely vacuuming until hours or days later when a substantial amount of debris has settled on the pool floor. This may be due to mechanical malfunctions in robotic cleaners, or insufficient suction or pressure in suction-driven or pressure-driven pool cleaners. Furthermore, an operator must wait to watch whether a pool cleaner is moving to determine if it is operating. If the pool cleaner is scheduled to operate at night, the operator must turn on lights inside or around the swimming pool just to see if the pool cleaner is operating. This can be a tedious task that many operators do not pay attention to and, as a result, these operators do not realize their pool cleaner has not been operating until a substantial amount of debris has settled on the pool floor.
Some embodiments of the invention provide a light module for a swimming pool cleaner. The light module includes an outer housing, a paddle wheel, a generator, and at least one light emitting diode (LED). The outer housing is capable of being removably coupled to the swimming pool cleaner and includes a flow directing portion positioned in a fluid path of the swimming pool cleaner. The paddle wheel is located adjacent to the flow directing portion and rotates in response to fluid flow through the fluid path. The generator is coupled to the paddle wheel and generates power through rotation of the paddle wheel. The LED is coupled to the generator and receives the generated power from the generator to illuminate an area adjacent to the swimming pool cleaner.
Some embodiments of the invention provide a pool cleaner receiving fluid flow from a pool hose and including a supply mast and a light module. The light module includes a housing capable of being removably coupled to the supply mast and the pool hose and directing fluid flow from the pool hose to the supply mast. The light module also includes a generator positioned inside the housing and a paddle wheel coupled to the generator. The paddle wheel and the generator generate electric power using the fluid flow directed through the housing. The light module further includes at least one light emitting diode coupled to the generator. The light emitting diode receives the generated power from the generator and illuminates an area adjacent to the pool cleaner.
A method of operating a pool cleaner according to some embodiments of the invention includes receiving fluid flow through the pool cleaner and generating electric power using a paddle wheel positioned to receive at least some of the fluid flow and a generator coupled to the paddle wheel. The method also includes determining a pressure of the fluid flow, operating at least one light emitting diode according to a first operation if the pressure is sufficient for normal operation of the pool cleaner, and operating the at least one light emitting diode according to a second operation if the pressure is insufficient for normal operation of the pool cleaner. The first operation and the second operation can include operating the light emitting diode with a first color and a second color, respectively, or in a constantly visible and flashing manner, respectively.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.
Embodiments of the invention provide an LED module for a swimming pool cleaner. The LED module can provide functional and aesthetic uses by illuminating the pool cleaner surroundings, highlighting debris within the swimming pool, and/or conveying information related to the pool cleaner back to a user or operator. The LED module is capable of single color lighting modes, multi-color lighting modes, and/or color change modes. In addition, the LED module can be removably coupled to the swimming pool cleaner internally or externally, as further described below.
In one embodiment, the pool cleaner 12 can be a pressure-driven pool cleaner. As a result, water from the filter pump or the booster pump is driven through the pool hose and into fluid path of the pool cleaner 12 in order to operate the pool cleaner 12. More specifically, water is driven through the pool hose, the hose attachment adapter 16, the tube housing 34 of the in-line LED module 10, and into the supply mast 14. The paddle wheel 32 is substantially positioned within the paddle wheel housing 28 and extends into the tube housing 34. The tube housing 34 acts as a flow-directing portion of the in-line LED module 10 to provide fluid flow from the pool hose to the supply mast 14 and across the paddle wheel 32. Thus, when water flows through the tube housing 34, the paddle wheel 32 is rotated. The paddle wheel 32 is coupled to the generator 30 (e.g., a shaft 40 of the generator 30 is connected to the paddle wheel 32) so that rotation of the paddle wheel 32 hydraulically causes the generator 30 to produce electric power for operating the LEDs 38 and their related circuitry.
As shown in
As shown in
In other embodiments, the LEDs 38 can be positioned to illuminate other areas surrounding the pool cleaner 12. For example, the LEDs 38 can be positioned to illuminate upward and/or outward to convey information to a pool user, such as an indication that the pool cleaner 12 is operating or an amount of time the pool cleaner 12 has been operating or has left to operate (e.g., through color changes, flashing, etc.). The downward-facing LEDs 38, as described above, can also achieve this function of conveying information to the user. In addition, in some embodiments, the pool cleaner 12 can be a vacuum-driven pool cleaner, in which water flow through the fluid path of the pool cleaner 12 is reversed with respect to the pressure-driven pool cleaner embodiment described above. In such embodiments, the in-line LED module 10 operates the same as described above.
The internal LED module 56 can include an outer housing 26, a paddle wheel 32, a lead cover 50, lead cables 63, and LEDs 38. The outer housing 26 can house a generator 30, which can be coupled to a paddle wheel 32 via a generator shaft and can be substantially sealed off from the paddle wheel 32 by a seal plate and a rubber seal ring. As shown in
The internal LED module 56 can be positioned at any location within the pool cleaner 12 so that the flow director 58 enters the fluid path and receives water flow to redirect to the paddle wheel 32. For example, the internal LED module 56 can be positioned within the pool cleaner 12 so that the flow director 58 extends into the supply mast 14 or a distributor manifold 100 of the pool cleaner 12. As shown in
Referring back to the generator 30 in
The LEDs 38 can be positioned at one or more locations along the pool cleaner 12 to illuminate the surrounding area of the pool cleaner 12. For example, the LEDs 38 can be positioned at locations near the bottom sides of the pool cleaner 12 to illuminate the pool floor or walls near the pool cleaner 12. In another example, the LEDs 38 can be positioned at locations near the front of the pool cleaner 12 to illuminate debris in the path of the pool cleaner 12. In another example, the LEDs 38 can be positioned at locations near the back side of the pool cleaner 12 to illuminate a whiptail (not shown) trailing the pool cleaner 12 to scrub pool surfaces. The LEDs 38 can be positioned substantially outside the pool cleaner 12, or can be at least partially recessed within the pool cleaner 12 and protected by outer covers 64 (as shown in
The holder 68 and the cap 70 can form a water-tight housing 26 around the LEDs 38, the batteries 72, the first PCB 76, and the second PCB 78. According to one embodiment of the invention, as shown in
As described above, the holder 68 and the cap 70 can provide a water-tight outer housing 26 for the LEDs 38, the first PCB 76, the second PCB 78, and the batteries 72. More specifically, to prevent water from entering the LED tube module 66 when is it assembled, an o-ring 94 can be fitted over the holder 68 between the first closed end 84 and the opening 88 and can engage the cap 70 when the cap 70 and the holder 68 are assembled or screwed together (i.e., via the mating threaded portions 90, 92).
The LED tube module 66 can be attached to the pool cleaner 12 at any location along the pool cleaner's outer surface, for example onto a mounting assembly on one of the covers 64 of the pool cleaner 12. Therefore, a user can detach the LED tube module 66 from the attachment portion in order to use it as an external light under or above water, to replace the batteries 72, to replace the LEDs 38, etc. The first PCB 76 can include circuitry such as one or more capacitors 96 and a motion sensor 98. The motion sensor 98 can be used to detect substantial movement of the pool cleaner 12 (e.g., movement indicative of pool cleaner operation) and can be connected to the internal control circuitry of the LEDs 38 to signal operation of the LEDs 38 only when the pool cleaner 12 is in motion. In another embodiment, the LED tube module 66 can be attached to a chassis of the pool cleaner 12 or an underside of one of the covers 64, and the LEDs 38 can illuminate through grating, holes, or transparent portions in the covers 64.
The above embodiments of LED modules 10, 56, 66 describe illuminating the LEDs 38 when the pool cleaner 12 is in operation, either through electric power generation when the pool cleaner 12 is receiving water from a pool hose or through battery power based on motion sensor signals. Therefore, the LEDs 38 can provide functional as well as aesthetic uses. More specifically, the illuminated LEDs 38 can provide a quick signal to an operator that the pool cleaner 12 is in operation. In some embodiments, the control circuitry of the LEDs 38 and/or additional control circuitry of the LED modules 10, 56, 66 (such as the external control circuitry in the generator housing 28 or on the first PCB 76) can control the color and/or illumination time of the LEDs 38 based on the water pressure entering the pool cleaner 12, for the hydraulically powered LED modules 10, 56, or the speed of the pool cleaner 12, for the battery-powered LED tube module 66. For example, if the pool cleaner 12 is receiving insufficient water pressure, and as a result is not vacuuming properly, the paddle wheel 32 of the LED modules 10, 56 will rotate slower. Also, if the pool cleaner 12 is moving slower, for example due to an obstruction, a mechanical failure, etc., the motion sensor 98 may not signal or may emit different signals to the control circuitry. Either event can be communicated to the operator by operating the LEDs 38 with a different color (e.g., green for sufficient flow or movement speed, red for insufficient flow or movement speed) or at a different rate (e.g., constant illumination for sufficient flow or movement speed, flashing for insufficient flow or movement speed).
In addition, the LED control circuitry can operate the LEDs 38 in a single color mode (i.e., where all LEDs 38 illuminate the same color), a multi-color mode (i.e., where different LEDs 38 illuminate different colors, for example where one side of the pool cleaner 12 is illuminated red and the other side of the pool cleaner 12 is illuminated purple), or a color-changing mode (i.e., where the LEDs 38 illuminate a first color for a first time period, then a second color for a second time period, etc.). The color-changing mode may convey to an operator as to when the pool cleaner 12 will be done operating. For example, the LEDs 38 may be illuminated in a first color during most of the pool cleaner operation, and then illuminated in a second color during the last ten minutes of the pool cleaner operation so that the operator knows that the pool cleaner operation is almost completed. Each of the LED modules 10, 56, 66 can be easily removed from the pool cleaner 12 to allow repair or replacement of components, such as LEDs 38, generators 30, batteries 72, etc.
Furthermore, in some embodiments of the invention, the LED modules 10, 56, 66 may be capable of connecting to a power supply and/or a controller (not shown) of the pool cleaner 12. The power supply can assist powering the LEDs 38, while the controller can provide additional information about the pool cleaner 12 in order to illuminate the LEDs 38 in accordance with other operations of the pool cleaner 12. For example, the pool cleaner controller can include a sensor to determine when the debris bag needs to be emptied. The pool cleaner controller can communicate this needed action to the LED control circuitry, and the LED control circuitry can illuminate the LEDs 38 in a manner to alert the operator of the needed action.
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.