The present invention relates to pool cleaning apparatus; more particularly, the invention relates to a system for determining the effectiveness of the filtering and maneuverability of a robot for cleaning swimming pools.
A robot for cleaning a swimming pool pumps the water in its vicinity through a filter and then expels clean water out into the pool. A more advanced robot of this type utilizes the reaction force of the flow of the water being expelled to couple the robot itself to the floor and walls of the pool on which the robot is propelled, this coupling force assisting the propulsion of the robot along inclined or upright pool walls for cleaning purposes.
Since the effectiveness of the coupling of the robot to the floor and walls of the pool is a function of the reaction force of the flow of water expelled from the robot, and since this flow passes through the filter, the effectiveness of the robot's cleaning capability subsides as the filter becomes clogged. Specifically, the degree to which the robot clings to the floor or walls of the pool decreases as the filter becomes clogged, resulting in unsatisfactory cleaning.
It is therefore a broad object of the present invention to provide a system for determining the effectiveness of the filtering and maneuverability of a robot for cleaning swimming pools.
It is a further object of the present invention to provide a system for indicating a necessity to change the filter in a robot for cleaning swimming pools, in consideration of the robot's capability to thoroughly clean specific swimming pool surfaces.
In accordance with the invention, there is therefore provided a system for determining the effectiveness of the filtering and maneuverability of a robot for cleaning swimming pools, the robot including a robot propelling motor, at least one water pump having an impeller and an impeller motor, a pool water inlet leading to a filter, a filtered water outlet, and means for propelling the robot along the floor and/or walls of a swimming pool, the system comprising computer means for determining and setting an initial power to be supplied to the impeller motor; first circuit means for sensing the actual power supplied to the impeller motor during its operation; second circuit means for calculating the ratio between the set power and an instantaneous power supplied to the impeller motor, and means connected to the second circuit means for producing an indication signal when the ratio exceeds a predetermined value.
The invention will now be described in connection with a certain preferred embodiment and with reference to the following illustrative figures, so that it may be more fully understood.
With specific reference now to the figures in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of a preferred embodiment of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
In the drawings:
Referring now to
Housing 4 accommodates a filter 20 in the form of a replaceable bag affixed inside the housing by means of clamps 22, and a water pump 24 including an impeller 26 and impeller motor 28. Pool water is sucked into the robot through suitable apertures 30 in the bottom of housing 4, while filtered water is expelled from the robot through outlet port 32 in the top portion of the housing.
Controller 40 samples the current fed to pump driver 38 when filter 20 has just been installed or changed, and stores it as a reference current. Periodically, during operation of the robot, e.g., every five minutes, controller 40 samples the current flowing through sensor 42 and compares it with the value of the stored reference current. When the instantaneous sampled current exceeds a preset threshold value, e.g., when the instantaneous current is more than 15% higher than the stored reference current, controller 40 issues a signal activating an indicator, e.g., a warning light, showing that the filter is partly clogged. When the current exceeds, for example, 20% of the reference signal, a further warning signal is activated, indicating that the filter is due for cleaning or replacement.
As described above, the function of impeller 26 is not only to expel filtered water from the robot, but also to create a force sufficient to cause the robot to cling to the floor or wall of the pool to be cleaned. When the filter is at least partly clogged, the optimal rate of water flow obtained with an unclogged filter is reduced; correspondingly, the force of the water flow expelled by the impeller is also reduced, and consequently, the force at which the robot clings to the floor or wall of the pool is reduced, impairing the optimal operation of the robot. Once such a situation occurs and is detected by the robot's control system and/or by an operator, rectifying measures can be taken. A command can be given to the impeller motor drive 38 to increase power up to a predetermined maximum, so as to substantially retain the optimal rate of water flow and transmit, either simultaneously or thereafter, a signal indicative of the clogging of the filter and the necessity for its cleaning or replacement. By doing so, the effectiveness and maneuverability of the robot are maintained.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiment, and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes, which come within the meaning and range of equivalency of the claims, are therefore intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
156535 | Jun 2003 | IL | national |
Number | Name | Date | Kind |
---|---|---|---|
4518437 | Sommer | May 1985 | A |
5337434 | Erlich | Aug 1994 | A |
5435031 | Minami et al. | Jul 1995 | A |
5569371 | Perling | Oct 1996 | A |
5715797 | Minagawa et al. | Feb 1998 | A |
5947051 | Geiger | Sep 1999 | A |
6299699 | Porat et al. | Oct 2001 | B1 |
6409916 | Zelas et al. | Jun 2002 | B1 |
6412133 | Erlich et al. | Jul 2002 | B1 |
6758655 | Sacher | Jul 2004 | B2 |
6797157 | Erlich | Sep 2004 | B2 |
6842931 | Porat et al. | Jan 2005 | B2 |
Number | Date | Country |
---|---|---|
1 041 220 | Oct 2000 | EP |
WO 02068778 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040260428 A1 | Dec 2004 | US |