This application claims priority from provisional application number 61431782, filed Jan. 11, 2011, the entire contents of which are herewith Incorporated by reference.
Acoustic barriers are often used for various purposes including blocking the sound from sound producing devices in a performance environment (such as on a stage). The acoustic barriers may be permanent or movable.
A portable acoustic barrier can be used for various functions including for example in an orchestra to block louder players such as the drummer, to reduce the sound created by the drummer. This can be used for example in a garage for forming a portable recording studio. Portable acoustic barriers can be used for many other purposes.
The present application rates relates to a raisable and lowerable acoustic curtain. The curtain is made of acoustic attenuating material. In one embodiment, the curtain can be raised in order to create, for example, a portable sound deadening drape.
According to an embodiment, the sound deadening barrier can be stored in a space reduced state inside a box. For example this may facilitate the transport of the sound deadening barrier, since a smaller box can be more easily transported than the extended device. The box can unfold to make it drape that can be raised in order to use sound deadening material in any desired location. For example, a user can open the lid, pull up the drape, and form a curtain of sound deadening drapery material.
In embodiments, springs are provided to bias the unfolded sound deadening barrier towards its uppermost (deployed) position. The legs can also lock into place in the uppermost position.
In the drawings:
The curtain itself can be formed of any acoustic deadening or attenuating material, which may be made of vinyl, cotton, wool or any other material. For example, 10 ounce or 18 ounce cotton draperies can be used.
Each leg assembly such as 201 includes a first leg piece 240 connected to a second leg piece 242 via a hinge 244 that includes an extension spring thereon, shown in further detail in
Each interface between each two legs includes such a hinge and extension spring thereon, thus biasing the device toward its open most position.
In operation, there is a pull string shown as 210 attached to the top support surface 208.
The unfolding operation starts by pulling up against the device slightly against the force of the springs. The pulling can be done by pulling on the cable 210 which pulls up the top support 208, and releases any closing lock on the legs, if there is one. The springs, once released, assist the process of unfolding the accordion legs 200, 201, and raising the curtain.
Either each, or a number of , the accordion shaped legs is also connected to release string 205 which in turn connects to release pull 210. The release pull 210 may be up 1/16 inch coated wire rope with a release cable and with a finger pull 211.
The accordion legs 200, 201 are spring biased into their open most position (as shown in
The ribs 220 can be supports that support the structure of the device and also may hold the drape of material.
As the device opens, it progresses to the position shown in
The springs are finally in their most relaxed and stable position when each of the legs 200 is in a substantially vertical position as in
Once the device is fully open, it is in the position shown in
Release cable end 400 is pulled to pull the release parts 402, 404, thereby releasing locks such as 410, 412, allowing the device to be closed. In one embodiment, there are only two such locks shown as 410412, or there can be corresponding locks at all or some of the hinges in other embodiments. Pulling on the release string 402 releases the locks allowing closing the device against the force of the spring, and placing it back into the box.
When fully extended in an embodiment, the drape can be approximately 6 feet tall. In different embodiments, there can be different heights. There can also be casters on the bottom of the device, or foldout legs that assist in the stability.
Assembly drawings of the box parts, including sides and bottom, are as shown in
The float 800 has an acoustic clip 805 that clips to the acoustic material. The legs 802 may be any of the accordion shaped legs such as 200 shown in
The legs 802 are formed with double hinges, including a first hinge 805 on its bottom portion and a second hinge 810 on its top portion. The hinges are attached to the legs by tamper-resistant blind rivets 811.
As the two leg segments 905, 910 move towards one another in the direction of the arrows shown in
Although only a few embodiments have been disclosed in detail above, other embodiments are possible and the inventors intend these to be encompassed within this specification. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way. This disclosure is intended to be exemplary, and the claims are intended to cover any modification or alternative which might be predictable to a person having ordinary skill in the art. For example other configurations for other applications are possible. Other kinds of springs and other kinds of legs can be used. Locks can be used to hold the legs and open and/or close positions, or the force or spring force can be used.
Also, the inventor intends that only those claims which use the words “means for” are intended to be interpreted under 35 USC 112, sixth paragraph. Moreover, no limitations from the specification are intended to be read into any claims, unless those limitations are expressly included in the claims. The computers described herein may be any kind of computer, either general purpose, or some specific purpose computer such as a workstation. The programs may be written in C, or Java, Brew or any other programming language. The programs may be resident on a storage medium, e.g., magnetic or optical, e.g. the computer hard drive, a removable disk or media such as a memory stick or SD media, or other removable medium. The programs may also be run over a network, for example, with a server or other machine sending signals to the local machine, which allows the local machine to carry out the operations described herein.
Where a specific numerical value is mentioned herein, it should be considered that the value may be increased or decreased by 20%, while still staying within the teachings of the present application, unless some different range is specifically mentioned. Where a specified logical sense is used, the opposite logical sense is also intended to be encompassed.
The previous description of the disclosed exemplary embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these exemplary embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Number | Date | Country | |
---|---|---|---|
61431782 | Jan 2011 | US |