1. Field of the Invention
The present invention relates generally to water jet assemblies, and particularly to a water jet assembly incorporating a pop-up member for discharging water into a water reservoir such as a spa.
2. Description of the Related Art
Hydrotherapy jets for use in spas, hot tubs, pools and bathtubs that discharge a stream of water are well known in the art. In accordance with one variation, disclosed in U.S. Pat. No. 6,263,522 issued on Jul. 24, 2001, to the assignee of the present invention, and incorporated herein by reference in its entirety, an adjustable hydrotherapy jet is mounted in the side wall of a spa or the like below the surface of the water. The jet includes an outlet that extends horizontally from a jet body in response to water flow admitted to the jet body and retracts, under spring bias, when the flow is terminated. The stream emanating from these hydrotherapy jets may be illuminated by means of fiber optic elements, as disclosed in U.S. Pat. No. 6,510,277, issued Jan. 21, 2003, to the assignee of the present invention and incorporated herein by reference in its entirety, or by means of an LED light source, as disclosed in the above-referenced provisional application No. 60/585,017.
U.S. Pat. No. 6,595,675, issued on Jul. 22, 2003 to the assignee of the present invention and incorporated herein by reference in its entirety, discloses a pool or spa waterfall unit incorporating fiber optic illumination. The waterfall unit is typically installed in the side wall of the pool or spa, above the surface of the water, with the majority of the waterfall unit being disposed behind the side wall with only an outlet fitting being visible from within the pool or spa.
Systems providing “jumping jets” from units positioned around or within the confines of decorative ponds or pools of the kind found in public parks are also known as exemplified by products sold by PEM Fountain Co., Ontario, Canada. These units are relatively large and are mounted above ground or above the surface of the pond water when mounted within the confines of the pond or pool. The units are mounted on stands bolted or otherwise secured to base structures located on the ground around the pool or pond or within their confines. Controllably timed, intermittent streams whose trajectories are preset may be provided and the units may include illumination sources to internally illuminate the discharged streams. These reservoirs and their associated water displays are primarily intended to be visually appreciated by observers and are generally not meant for use as a spa or swimming pool.
In accordance with one, specific exemplary embodiment of the present invention, there is provided a pop-up water jet assembly comprising a housing having a vertical central axis, an upper end, a top surface, a lower end, an interior and a water inlet adjacent to the lower end communicating with the interior of the housing. The assembly further comprises a pop-up member having an upper portion, a top surface, a lower portion and an interior in communication with the interior of the housing. The pop-up member is movable relative to the housing between a lowered position in which the top surfaces of the housing and the pop-up member are substantially flush and a raised position in which the upper portion of the pop-up member extends from the upper end of the housing. The upper portion of the pop-up member carries a water outlet nozzle communicating with the interior of the pop-up member. The nozzle has an axis at an angle to the axis of the housing to discharge water directed in an arc away from the pop-up jet assembly. The pop-up member is movable to its raised position in response to water flow admitted into the housing through the inlet and to its lowered position under gravity bias upon termination of the water flow.
In accordance with one aspect of the invention, the pop-up member has a cap overlying the upper portion of the pop-up member, the cap having a top surface that is substantially flush with a top surface of the outer housing when the pop-up member is in its lowered position, the pop-up member being thereby concealed within the housing except for the top surface. Pursuant to another aspect of the invention, the upper end of the housing carries an outwardly extending, horizontal flange having a top surface defining the top surface of the housing. Preferably, the flange comprises a thin structure.
In accordance with yet another aspect of the invention, the housing contains a light source for illuminating the water discharged from the nozzle. Preferably, the light source is mounted within a light transmitting probe. The probe may be adapted to receive a fiber optic illumination source. Alternatively, the probe may be adapted to receive an LED illumination source.
Pursuant to another, specific, exemplary embodiment of the invention, there is provided a water reservoir system comprising a reservoir shell for holding water. The shell comprises a side wall and an upper, horizontal rim extending outwardly from the side wall. At least one pop-up water jet assembly is mounted on the rim, the at least one jet assembly comprising an outer housing received within an opening in the rim and secured to the rim. The jet assembly further comprises a pop-up member carried by the outer housing, the pop-up member being raised in response to water flow into the housing to thereby expose a nozzle mounted on the pop-up member and cause water to be discharged from the nozzle onto the surface of water held by the shell. The system further includes a water source connected to the outer housing for supplying water to the housing.
According to another aspect of this embodiment, the outer housing has an upper end carrying an outwardly extending, horizontal flange having a lower surface engaging the upper surface of the rim of the reservoir shell. Preferably, the flange comprises a thin structure providing a low profile. Accordingly, other than the visible flange and the top surface of the pop-up member, the water jet assembly is located in its entirety under the top surface of the water reservoir rim when the pop-up member is in its lowermost position within the outer housing. Pursuant to another aspect of this embodiment, the outer housing and the pop-up member have top surfaces that are substantially flush when the pop-up member is in its lowered position. Still further, the outer housing may contain a light source for illuminating the water discharged from the nozzle. In this regard, means connected to the light source is provided for illuminating the light source. The light source may comprise a fiber optic illumination source. Alternatively, the light source may comprise an LED illumination source.
The foregoing and other objects, features and advantages of the invention will become evident to those skilled in the art from the detailed description of the preferred embodiments, below, taken together with the accompanying drawings in which:
The following description presents preferred embodiments of the invention representing the best mode contemplated for practicing the invention. This description is not to be taken in a limiting sense but is made merely for the purpose of describing the general principles of the invention whose scope is defined by the appended claims.
Referring to
The pop-up jet assembly 10 comprises an outer, preferably tubular body or housing 16 extending along a vertical, central axis 18. The housing 16 has an upper portion 20, a lower portion 22, and a top surface 24. The housing 16 further includes an inner cylindrical wall 26 defining an internal chamber 28. Attached to the lower portion 22 of the housing 16 is a water inlet pipe 30 shown in the specific example of
The upper portion 20 of the outer housing 16 has an outer surface 52 defining a threaded section 54 for receiving a threaded nut 56. The threaded section is received within an opening 58 in the horizontal rim 12 of the reservoir. The rim 12 is sandwiched between the outer portion 36 of the flange 34 and the nut 56 which, when tightened, clamps the jet assembly 10 in place. A thin sealing gasket (not shown) may be inserted between the flange 34 and the reservoir rim 12.
The water inlet pipe 30 is preferably formed as an integral part of a tubular member 60 having an upper part 62 extending into the chamber 28 of the housing 16 and is adapted to be bonded to the inner cylindrical wall 26 of the housing with an appropriate bonding agent. The tubular element includes an upper annular edge 64.
Mounted for slidable movement within the chamber 28 of the outer housing 16 is a pop-up member 70 having an upper portion 72 and a lower portion 74. The lower portion 74 is at all times contained within the chamber 28 of the outer housing 16 and includes outwardly projecting, axially spaced-apart, upper and lower lips 76 and 78, respectively, dimensioned for a free or loose fit with the inner cylindrical wall 26 of the outer housing 16 to permit the pop-up member 70 to easily slide up and down relative to the housing. The lower portion 74 of the pop-up member 70 defines an annular edge 80 at the lower extremity of the member 70. Disposed about an upper surface of the upper lip 76 is an O-ring seal 82 adapted to sealingly engage the inwardly directed portion 38 of the flange 34.
The pop-up member 70 has an interior cavity 84 closed at its upper end and open at its lower end so as to communicate with the chamber 28 of the housing 16 permitting water to flow from the water inlet pipe 30 into the cavity 84. The upper portion 72 of the pop-up member 70 has a recessed, generally vertical wall 86 defining an opening 88 for receiving a water discharge nozzle 90. The body of the nozzle 90 is preferably adhesively bonded to the part of the wall 86 around the nozzle-receiving opening 88. It will be appreciated that nozzles of various designs may be utilized and inserted in the opening 88 and bonded in place. Alternatively, the nozzle 90 may be threadedly received in the opening 88 to facilitate replacement or substitution of various nozzles to provide different water discharge characteristics, trajectories, and so forth. In the particular example under consideration, the nozzle 90 defines a nozzle passage 92 having a central axis 94, the passage 92 having a cross-section flow area that converges from a nozzle inlet 96 to a nozzle outlet 98. The axis 94 of the nozzle passage 92 may be oriented at various angles. In the specific exemplary embodiment of
Formed in a wall 102 of the pop-up member 70 opposite the vertical nozzle-carrying wall 86 is a vertical, flat surface 104 that cooperates with the flat segment 44 on the edge 42 of the opening 40 in the housing flange 34 so as to key the pop-up member 70 to the outer housing 16 and thereby prevent rotation of the pop-up member 70 relative to the housing while permitting axial movement thereof.
Formed at the upper extremity of the pop-up member 70 is a generally horizontal cap 110 that closes off the interior 84 of the pop-up member and has an outer edge 112 having a configuration that closely matches that of the edge 42 of the opening 40 in the flange 34. It will thus be seen, as shown in
In the operation of the pop-up jet assembly of
The outer housing 182 contains an elongated, transparent, tubular probe 212 that extends most of the length of the housing 182 coaxial of a longitudinal central axis 214. The probe 212 is inserted into the housing 182 through a central opening 216 in the lower wall of a tubular member 218 forming an extension of the lower portion 186 of the housing 182. The probe 212 is secured along a threaded section 220 of the opening 216 to provide, along with an O-ring 222, a water tight seal. The tubular probe 212 has a closed top end 224 and defines a central, axial passageway 226 terminating at an opening 228 in the lower end of the probe. A light source 230 received by the tubular probe may comprise, by way of example and not limitation, an optical fiber 231 for transmitting light to the closed end 224 of the tubular probe 212.
The probe 212 includes a lower extension 232 that snuggly receives an elastomeric water tight sleeve 234 having a reduced diameter portion 236 that sealingly engages the optical fiber 231 (or an electrical conductor in the case in which the light source comprises an LED). In either case, the light emitted by the tip of the optical fiber 231 by the LED is directed toward the probe's closed end 224 so that the emitted light passes through the probe end to illuminate the stream of water discharged from the nozzle 210.
The probe 212 can be fabricated of many different materials that transmit, diffuse, disperse or focus light, preferably transparent or translucent polycarbonate. Alternatively, the probe 212 may be opaque along its entire length except for a transparent closed top end. Coatings, reflectors, filters and/or lenses may be incorporated in the probe for providing various optical effects. Although a tubular probe is to be preferred for its simplicity, it will be evident that the probe may have many different shapes and dimensions and may be mounted within the pop-up jet assembly in many different ways; all of these variations will be apparent to those skilled in the art. Furthermore, the light source, whether LED or optical fiber, may provide light of various colors and may be controlled for continuous light emission or for blinking or flashing operation.
Referring now to
When the pop-up member is in its lower position, the entire assembly is concealed below the top surface of the rim of the reservoir except for the thin flange on the top of the outer housing and the top surface of the pop-up member cap within the opening in the flange. The top surfaces of the housing flange and the pop-up member cap together form a substantially smooth, slightly rounded or crowned, continuous surface. The outer top edge of the housing flange is rounded. The result is that with the pop-up member in its lowest position, the only portion of the assembly that is visible above the top surface of the spa rim comprises a low profile, unobtrusive structure that does not significantly interfere with persons seated or standing on the rim.
This application claims the benefit of the filing date of U.S. provisional application No. 60/585,017 filed Jul. 2, 2004, for “LED-ILLUMINATED SPA JET”, and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1651887 | Hawes | Dec 1927 | A |
3292861 | Kawamura et al. | Dec 1966 | A |
3675252 | Ghiz | Jul 1972 | A |
4202499 | Mathews | May 1980 | A |
4316579 | Ray et al. | Feb 1982 | A |
4347979 | Mathews | Sep 1982 | A |
4617615 | Eychaner | Oct 1986 | A |
4840312 | Tyler | Jun 1989 | A |
4881280 | Lesikar | Nov 1989 | A |
5051875 | Johnson | Sep 1991 | A |
5115974 | Tobias et al. | May 1992 | A |
5122936 | Guthrie | Jun 1992 | A |
5249744 | Ruthenberg | Oct 1993 | A |
5271561 | Tobias et al. | Dec 1993 | A |
5388285 | Belniak | Feb 1995 | A |
5537696 | Chartier | Jul 1996 | A |
5881401 | Saputo | Mar 1999 | A |
5893179 | Johnson | Apr 1999 | A |
6138924 | Hunter et al. | Oct 2000 | A |
6170094 | Weise et al. | Jan 2001 | B1 |
6595435 | Cardenas | Jul 2003 | B1 |
6595675 | Dongo | Jul 2003 | B2 |
6644561 | Daane | Nov 2003 | B1 |
7182477 | Hartz | Feb 2007 | B1 |
Number | Date | Country | |
---|---|---|---|
60585017 | Jul 2004 | US |