The following disclosure relates generally to popcorn machines having kettle assemblies with connected exhaust systems and associated devices and methods.
The process of popping corn involves applying heat to convert water in the interior of a corn kernel into steam. Raw corn kernels and cooking oil are placed in a popcorn kettle of a popcorn machine and heated. When the corn kernels reach a sufficiently hot temperature, they can explode due to a high internal pressure caused by transformation of the interior water into steam. These explosions can be violent and can propel popped kernels, raw kernels, and residual oil upward. A significant amount of steam may be generated as well as the interior water makes up approximately 1/7 of the weight of raw corn kernels.
The kettle can include a cover that confines the popped corn, unpopped kernels, oil, and steam in the kettle until a layer of popped corn accumulates. After sufficient accumulation of the popped corn, the cover may be lifted by manual or automatic mechanical means, allowing the popped corn to collect in a cabinet in which the kettle is contained. The lifting of the cover also allows the steam and the oil vapor to rise above a bed of the popped corn in the kettle and escape into the adjacent space in the popcorn machine.
The following disclosure describes various embodiments of popcorn machines having kettles with connected duct exhaust systems and associated devices and methods. Certain details are set forth in the following description and in
The dimensions, angles, features, and other specifications shown in the figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other dimensions, angles, features, and other specifications without departing from the scope of the present disclosure. In the drawings, identical reference numbers identify identical, or at least generally similar, elements.
The popcorn machine 10 includes a popcorn cabinet or case 12 and a storage section 14. The storage section 14 can be used to store supplies (e.g., extra popping kernels, oil, containers, etc.). The popcorn case 12 includes a bottom shelf 16, a top wall 18, a rear panel 20, and a pair of opposing side walls 22 and 24. The rear panel 20 and the side walls 22 and 24 can be made of tempered glass, Plexiglas or another suitable transparent material to allow viewing of the popping process and the popped corn collecting in the popcorn case 12. A pair of hinged doors 26 and 28 provide access to the popcorn case 12 to allow an operator to carry out cooking operations and to dispense popcorn. The hinged doors 26 and 28 can made of, for example, Plexiglas or another suitable material (e.g., glass, heat-resistant plastic, etc.).
The popcorn case 12 can include a hot air conditioner (not shown) mounted under the bottom shelf 16 and between the popcorn case 12 and the storage section 14. The hot air conditioner can include a blower and a heating element that operate together to force hot air through the popped corn in the popcorn case 12 to keep it warm until it is ready to be served. In some embodiments, the conditioner can be a one pass conditioner, wherein air is heated to keep the popped corn warm and then allowed to escape. In other embodiments, however, the conditioner can include a recirculation system in which the air and/or heat from the air can be vented and/or ducted to return to the conditioner for reuse. A control unit 36 is mounted under the bottom shelf 16 between the popcorn case 12 and the storage section 14. The control unit 36 can be electrically connected to and can control, for example, several components of the popcorn machine 10 described below.
A kettle assembly 37 including a kettle 38 for receiving popcorn kernels is suspended from the top wall 18 of the popcorn case 12. A support column 46 extending from the top wall 18 of the popcorn case 12 supports a kettle dump handle 48. A coupling rod 49 extends through the column 46 and couples the kettle 38 to the handle 48, allowing the operator to rotate the handle 48 downwardly to tip the kettle 38 and discharge popped corn into the popcorn case 12. The kettle 38 can be constructed of, for example, stainless steel and may include heating elements that can heat oil in the kettle 38 to pop the corn kernels placed therein. A thermocouple 42 fixedly attached to the kettle 38 and operably coupled to the control unit 36 measures the temperature of the kettle 38. In some embodiments (as described in more detail below with reference to
The kettle assembly 37 further includes a circular kettle cover 44 configured to rest upon a kettle top 39 to cover the kettle 38 while the kernels are heated and/or popping. The kettle cover 44 is operably coupled to a cover lift rod 58, which is operationally coupled to a spring loaded hinge assembly (positioned above the top wall 18 and not shown in
An exhaust duct 90 extends from an opening 19 in the top wall 18 and is releasably attached thereto by one or more support pins 92. As explained in further detail below with reference to
An exhaust unit cover 66 mounted on the top wall 18 includes a light 70 and at least partially surrounds the exhaust unit 60. As described in more detail with reference to
The control unit 36 can include a control panel 80 having a variety of buttons, switches, controls, and/or displays, and can be configured to automatically complete various operations of the popcorn machine 10. For example, the control unit 36 can turn off power to the heating elements after a predetermined amount of time or after a predetermined temperature has been reached (e.g., as measured by the thermocouple 42). The control unit 36 can turn off power to the agitator 56 and/or the exhaust unit 60 after a predetermined time, and can provide an indication on the touch screen 81 that the popping cycle is complete.
A user can operate various components of the popcorn machine 10 via the control panel 80. For example, the control panel 80 can include a variety of buttons, indicators, displays, touch screens, lights and/or other suitable components that a user can interact with to operate the popcorn machine 10. For example, in operation, a user can press a Start Button when the user is ready to begin popping. Pressing the Start Button can initiate a variety of functions on the popcorn machine 10. For example, the heating elements can be energized to begin heating the corn kernels, the agitator 56 can be activated to agitate the corn kernels and/or the exhaust unit 60 can be activated to remove odors, oil and/or particulates.
A power cord 110 connected to the control unit 36 provides the popcorn machine 10 with the necessary electrical power to operate the various components. The power cord 110 may be, for example, a three line power cord that can be plugged into a power source (e.g., a 120/208/60 outlet). A plurality of wheels or casters 72 may be attached to the bottom of the popcorn machine 10, allowing it to move thereon.
The rod 295 includes a lower portion 296 having a smaller diameter than the rest of the rod 295 and configured to engage an upper portion of the agitator rod 254 (
The cover-lifting system 320 is configured to keep the kettle cover 44 on the kettle 38 during a portion of the corn popping operation and to allow the kettle cover to slide vertically when lifted. When the kettle cover 44 rests on the kettle 38 (as shown in
For example, in one embodiment (not shown), each of the distal ends of the first arm 330 and the second arm 332 respectively may include first and second distal end pins configured to slide in and/or on a horizontal groove (not shown). Each end portion of the groove may include a depression in which the respective pins rest when the kettle cover 44 rests on the kettle 38 and the first spring 334 and the second spring 336 are at a maximum elongation. A small vertical movement of the cover lift rod 58 can cause the pivot 340 to correspondingly move upward. Vertical movement of the pivot 340 causes the first arm 330 and the second arm 332 to also move upward. The respective pins are resultingly displaced from their respective depressions and may freely move through the horizontal groove. The first spring 334 and the second spring 336 are thus allowed to contract to their respective resting states, thereby bringing the first arm 330 and the second arm 332 together and forcing the pivot 340 rapidly upward. The resulting upward movement of the pivot 340 causes the cover lift rod 58 to rapidly raise the kettle cover 44 off of the cover. Thus, a small upward vertical motion of the kettle cover 44 (e.g., when the kettle 38 overflows with popped corn and/or when the operator moves the knob 59 upward to lift the kettle cover 44) can automatically cause the kettle cover 44 to quickly rise above (or “jump up” from) the kettle 38, permitting easier access thereof by the operator and/or clearance to rotate the kettle 38 for emptying.
Referring to
As shown in
The exhaust unit 60 illustrated in the embodiment of
The foregoing description of embodiments of the invention is not intended to be exhaustive or to limit the disclosed technology to the precise embodiments disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those of ordinary skill in the relevant art will recognize. For example, although certain functions may be described in the present disclosure in a particular order, in alternate embodiments these functions can be performed in a different order or substantially concurrently, without departing from the spirit or scope of the present disclosure. In addition, the teachings of the present disclosure can be applied to other systems, not only the representative popcorn machine devices and methods described herein. Further, various aspects of the invention described herein can be combined to provide yet other embodiments.
All of the references cited herein are incorporated in their entireties by reference. Accordingly, aspects of the invention can be modified, if necessary or desirable, to employ the systems, functions, and concepts of the cited references to provide yet further embodiments of the disclosure. These and other changes can be made to the invention in light of the above-detailed description. In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above-detailed description explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses the disclosed embodiments and all equivalent ways of practicing or implementing the disclosure under the claims.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
From the foregoing, it will be appreciated that specific embodiments of the disclosed technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the invention. Certain aspects of the disclosure described in the context of particular embodiments may be combined or eliminated in other embodiments. Further, while advantages associated with certain embodiments of the disclosed technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the disclosed technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. The invention is not limited, except as by the claims.
This patent application claims the benefit under 35 U.S.C. § 119 of U.S. Provisional Patent Application Ser. No. 61/635,782; filed Apr. 19, 2012; and titled POPCORN MACHINE HAVING A FILTER PASSAGE INLET CONNECTED TO A KETTLE ASSEMBLY, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
884771 | Snow | Apr 1908 | A |
1251291 | Scheeffer | Dec 1917 | A |
1308241 | Scheeffer | Jul 1919 | A |
1339662 | Morgan | May 1920 | A |
1436400 | Mabey | Nov 1922 | A |
1477704 | Holcomb et al. | Dec 1923 | A |
1501114 | Howe | Jul 1924 | A |
1525966 | Vickers | Feb 1925 | A |
1867910 | Eakins | Jul 1932 | A |
1880822 | Cook et al. | Oct 1932 | A |
1961812 | Burch | Jun 1934 | A |
1987388 | Cretors | Jan 1935 | A |
2123663 | Roach | Jul 1938 | A |
2198152 | Cooley | Jun 1939 | A |
2232954 | Manley | Feb 1941 | A |
2248812 | Cretors | Jul 1941 | A |
2467866 | Smolderen et al. | Apr 1949 | A |
2477416 | Page | Jul 1949 | A |
2537744 | Cretors | Jan 1951 | A |
2549449 | Gibson | Apr 1951 | A |
2570126 | Hobbs | Oct 1951 | A |
2586347 | Kloster | Feb 1952 | A |
2604030 | Cretors | Jul 1952 | A |
2654823 | Altemiller | Oct 1953 | A |
2812704 | Hawks | Nov 1957 | A |
2856841 | Cretors et al. | Oct 1958 | A |
2858761 | Denniss | Nov 1958 | A |
2907264 | Bushway | Oct 1959 | A |
2939379 | Schmitt | Jun 1960 | A |
2984169 | Bushway | May 1961 | A |
3095326 | Green et al. | Jun 1963 | A |
3120168 | Lippert | Feb 1964 | A |
3140952 | Cretors | Jul 1964 | A |
3156451 | Waas | Nov 1964 | A |
3280720 | Kuhn | Oct 1966 | A |
3421475 | Evans et al. | Jan 1969 | A |
3450068 | Temple | Jun 1969 | A |
3512989 | Smith | May 1970 | A |
3554115 | Manley et al. | Jan 1971 | A |
3568782 | Cox | Mar 1971 | A |
3650199 | Sachnik | Mar 1972 | A |
3697289 | Day et al. | Oct 1972 | A |
3739953 | Cretors | Jun 1973 | A |
3751267 | Sachnik | Aug 1973 | A |
3783854 | Hurko et al. | Jan 1974 | A |
3812774 | Day et al. | May 1974 | A |
3930996 | Day et al. | Jan 1976 | A |
4120236 | Blomberg | Oct 1978 | A |
4152974 | Tienor | May 1979 | A |
4165620 | Gehauf nee Kiesel et al. | Aug 1979 | A |
4173925 | Leon | Nov 1979 | A |
4178843 | Crabtree et al. | Dec 1979 | A |
4182229 | VandeWalker | Jan 1980 | A |
4206695 | Cretors | Jun 1980 | A |
4288686 | Cretors | Sep 1981 | A |
4289079 | Swistun | Sep 1981 | A |
4331124 | Seidel et al. | May 1982 | A |
4337584 | Johnson | Jul 1982 | A |
4438682 | King et al. | Mar 1984 | A |
4494314 | Gell | Jan 1985 | A |
4512247 | Friedman | Apr 1985 | A |
4648719 | Roben et al. | Mar 1987 | A |
4649263 | Goodlaxson | Mar 1987 | A |
4702158 | Ishihara | Oct 1987 | A |
4750276 | Smith et al. | Jun 1988 | A |
4763568 | Kiczek | Aug 1988 | A |
4881457 | Lyga et al. | Nov 1989 | A |
4914834 | Sime | Apr 1990 | A |
5033363 | King et al. | Jul 1991 | A |
5035173 | Stein et al. | Jul 1991 | A |
5046481 | Warwick | Sep 1991 | A |
5069923 | Hubbard et al. | Dec 1991 | A |
5083505 | Kohlstrung et al. | Jan 1992 | A |
5154161 | Rogers et al. | Oct 1992 | A |
5180898 | Alden et al. | Jan 1993 | A |
5203256 | Mueller | Apr 1993 | A |
5263405 | Simon | Nov 1993 | A |
5301601 | Cretors | Apr 1994 | A |
5311930 | Bruenn | May 1994 | A |
5315919 | Hoeberigs | May 1994 | A |
5339726 | Poulson | Aug 1994 | A |
5397219 | Cretors | Mar 1995 | A |
5417148 | Cavallo | May 1995 | A |
5419239 | Covington et al. | May 1995 | A |
5445073 | Gilwood | Aug 1995 | A |
5501139 | Lee et al. | Mar 1996 | A |
5513558 | Erickson et al. | May 1996 | A |
5555792 | Stein et al. | Sep 1996 | A |
5579681 | Ubert et al. | Dec 1996 | A |
5590582 | Weiss | Jan 1997 | A |
5605091 | Garber | Feb 1997 | A |
5662024 | Cretors et al. | Sep 1997 | A |
5690018 | Hansen | Nov 1997 | A |
5694830 | Hodgson et al. | Dec 1997 | A |
5743172 | Weiss et al. | Apr 1998 | A |
5771779 | Stein et al. | Jun 1998 | A |
5782165 | Glenboski et al. | Jul 1998 | A |
5787798 | Stein et al. | Aug 1998 | A |
5871792 | Weiss et al. | Feb 1999 | A |
5979301 | Perttola | Nov 1999 | A |
6000318 | Weiss et al. | Dec 1999 | A |
6098526 | Stein | Aug 2000 | A |
6123011 | Cretors | Sep 2000 | A |
6133549 | Shih et al. | Oct 2000 | A |
6164192 | Stein et al. | Dec 2000 | A |
6164193 | Perttola | Dec 2000 | A |
6234063 | Evers et al. | May 2001 | B1 |
6374727 | Cretors | Apr 2002 | B1 |
6382087 | Iiyama | May 2002 | B1 |
6412395 | Weiss et al. | Jul 2002 | B1 |
6412396 | Wright | Jul 2002 | B1 |
6460451 | Helman et al. | Oct 2002 | B1 |
6461033 | Palmer et al. | Oct 2002 | B2 |
6534103 | Weiss | Mar 2003 | B2 |
6578468 | Horn | Jun 2003 | B1 |
6612225 | Mann | Sep 2003 | B1 |
6669304 | Binning | Dec 2003 | B2 |
6672201 | Evans, Sr. et al. | Jan 2004 | B2 |
6872923 | Cretors et al. | Mar 2005 | B2 |
6914226 | Ottaway | Jul 2005 | B2 |
7024986 | Kurosawa | Apr 2006 | B2 |
7285300 | Allington et al. | Oct 2007 | B1 |
7846493 | Cox | Dec 2010 | B1 |
7874244 | Rhome | Jan 2011 | B1 |
8011622 | Guthrie | Sep 2011 | B1 |
8201492 | Cretors | Jun 2012 | B2 |
8464634 | Cretors et al. | Jun 2013 | B2 |
8651014 | Vidojevic et al. | Feb 2014 | B2 |
8794129 | Cretors | Aug 2014 | B2 |
8869679 | Ryan et al. | Oct 2014 | B2 |
9144247 | Cretors | Sep 2015 | B2 |
20020034567 | Jacobsen et al. | Mar 2002 | A1 |
20020147006 | Coon et al. | Oct 2002 | A1 |
20030159591 | Evans et al. | Aug 2003 | A1 |
20030168438 | Zhou | Sep 2003 | A1 |
20040026404 | Lerner | Feb 2004 | A1 |
20040045444 | Mann | Mar 2004 | A1 |
20040074397 | Calhoun | Apr 2004 | A1 |
20040265993 | Darling et al. | Dec 2004 | A1 |
20050056154 | Fu | Mar 2005 | A1 |
20090041915 | Biechteler | Feb 2009 | A1 |
20090056558 | Cretors et al. | Mar 2009 | A1 |
20090126579 | Cretors | May 2009 | A1 |
20090208621 | Dotan | Aug 2009 | A1 |
20090223378 | Cretors | Sep 2009 | A1 |
20100270282 | Fernandez | Oct 2010 | A1 |
20110014340 | Spitzley | Jan 2011 | A1 |
20110027434 | Cretors | Feb 2011 | A1 |
20110076372 | Cretors | Mar 2011 | A1 |
20110076373 | Cretors et al. | Mar 2011 | A1 |
20110083562 | Ryan et al. | Apr 2011 | A1 |
20110120317 | Rhome | May 2011 | A1 |
20110200727 | Biechteler | Aug 2011 | A1 |
20120266756 | Cretors | Oct 2012 | A1 |
20130022727 | Sherwin | Jan 2013 | A1 |
20130276641 | Vidojevic | Oct 2013 | A1 |
20130280386 | Cretors | Oct 2013 | A1 |
20150064320 | Cretors | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
8624682 | Dec 1986 | DE |
20120429 | Jul 2002 | DE |
0364071 | Apr 1990 | EP |
2401387 | Mar 1979 | FR |
0688223 | Mar 1953 | GB |
717654 | Oct 1954 | GB |
S-59135849 | Aug 1984 | JP |
2006081587 | Mar 2006 | JP |
WO-9310698 | Jun 1993 | WO |
WO-9706699 | Feb 1997 | WO |
WO-2004054384 | Jul 2004 | WO |
WO-2012145717 | Oct 2012 | WO |
Entry |
---|
C. Cretors and Co.; “Diplomat” product manual for models DI20C, DI32C, DI20F, DI32F, DI205, TDI205, TDI206, DI325 and TDI326; 1996, 58 pages. |
C. Cretors and Co.; “Diplomat” product manual for models DI20CP, DI32CP, DI20FP and DI32FP; 1989, 62 pages. |
C. Cretors and Co.; Multi-product sell sheet for “The New Diplomat Counter Showcase” and “Thunder Kettle” for models G48E, EPR48E5 and PR48E5; dated 1990, 2 pages. |
Gold Medal Products Co.; “Funfood Equipment & Supplies” catalog; vol. 56, dated 2000, 108 pages. |
Loeb Equipment 20 Gallon Groen Model DNTA20 Twin Scrape Agitated Jacketed Kettle; www.loebequipment.com, Oct. 31, 2011, 1 page. |
Proctor Companies; “Concession Stands and Equipment” catalog, vol. 3, 1996, 84 pages. |
Proctor Companies; Equipment Catalog, 1992, (missing all even numbered pages) 33 pages. |
Cretors Coater Mixer Tumbler, http://www.cretors.com/store/catalog.asp?item=39&category_id=3, Copyright 2014, 1 page. |
International Search Report and Written Opinion for PCT/US2008/075083; dated Nov. 12, 2008; Applicant: C. Cretors and Company, 8 pages. |
International Search Report and Written Opinion; PCT/EP05/009010, dated Jan. 5, 2006, Applicant: Pfister and Pfister, 6 pages. |
International Search Report and Written Opinion; PCT/US10/50442, dated Nov. 23, 2010, Applicant: C. Cretors & Company, 10 pages. |
Suspended Poppers: 20 oz., 32 oz., 48 oz., 60 oz., C. Cretors and Company, published Nov. 2004, 6 pages. |
Topping & Dispensing Systems, C. Cretors and Company Product Brochure, pp. 36-39, published Oct. 2005, 5 pages. |
Topping Systems, C. Cretors and Company, published Nov. 2003, 2 pages. |
International Search Report and Written Opinion, PCT/US2012/03459, dated Sep. 20, 2012, 7 pages. |
“How to Succeed in the Caramel Corn Business,” Gold Medal Products Company, Copyright 2011, gmpopcorn.com, 24 pages. |
Number | Date | Country | |
---|---|---|---|
20130276640 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61635782 | Apr 2012 | US |