1. Field of the invention
The present invention relates to a poppet valve device for performing opening and closing of a high-pressure liquid passage, specifically to a poppet valve device to control the injection timing of the electronic controlled fuel injection apparatus for an internal combustion engine.
2. Description of the Related Art
In diesel engines, electronic controlled fuel injection apparatuses are widely used recently as effective means for reducing atmospheric pollutant such as NOx(nitrogen oxides) and HC(hydrocarbons) (for example, see Japanese Laid-Open Patent Application Nos 2001-248479 and 2002-98024).
A poppet valve device driven by an electromagnetic valve device is used in each of these apparatuses for opening and closing the fuel passage in the apparatus.
When the poppet valve 5 is opened, the pressure in the plunger chamber 25 does not increase by a down stroke of the plunger 1 because the plunger chamber 25 is communicated to the fuel tank through the fuel passage 52, the poppet valve which is opened, and the fuel passage 12. When the poppet valve 5 is closed, the pressure in the plunger chamber 25 increases as the plunger 1 moves down, and when the pressure in the fuel pool 02 reaches the needle-opening pressure, the needle valve 4 lifts up overcoming the spring force of the needle valve spring 51 and the fuel begins to be injected from the injection holes 02a. During fuel injection period, the amount of fuel compressed by the plunger is larger than that injected from the injection holes 02a of the injection nozzle 2 and the injection pressure increases with time. When the poppet valve is opened to communicate the plunger chamber 25 to the fuel tank, the pressure in the plunger chamber decreases rapidly, the pressure in the fuel pool 02 decreases rapidly, the needle valve is pushed down by the spring force of the needle valve spring 51 for the needle valve to be closed, and the injection is finished. In the succeeding lifting stroke of the plunger, fuel is sucked into the plunger chamber 25 through the fuel passage 12, poppet valve 5 which is opened, and fuel passage 52.
An example of the conventional poppet valve used in an electronic controlled fuel injection apparatus for the purpose as above described is shown in
In an armature room 30, an armature 27 is fixed to the top of the popped valve 5 by means of a bolt 29.
Reference numeral 10 is a valve seat member and fixed in the pump case 3 by means of a fixing screw member 015. Reference numeral 033 is a passage hole drilled in the valve seat member 10 in the radial direction and allows an annular recession 05 of the poppet valve to communicate to an annular recession 17 of valve seat member 10, the recessions 05 and 17 being explained later. Reference numeral 5 is a poppet valve which is fit in through-hole of the valve seat member 10 for sliding and to the top of which is fixed an armature 27 by means of a bolt 29. Reference numeral 14 is a poppet valve spring disposed between the shoulder part of the poppet valve 5 and the ceiling part of the fixing screw member 015. The poppet valve 5 is pushed downward in the direction for the poppet valve 5 to be opened, that is, in the reverse direction of the attraction force of the armature 27. Reference numeral 05 is an annular recession formed along the periphery of the poppet valve 5, and reference numeral 17 is an annular recession formed along the periphery of the valve seat member 10. Reference numeral 12 is a supply and drain passage, one side thereof communicating to the annular recession 17 and the other side being connected to a fuel tank(not shown in the drawings). Reference numeral 10a is a seat face in the valve seat member 10, 5a is a seat face of the poppet valve 5. The seat face 5a of the poppet valve sits on the seat face 10a of the valve seat member when closing the poppet valve. According as the seat face 5a sits on or departs from the seat face 10a of the valve seat member 10, supply and drain passage 12 is discommunicated or communicated to a fuel passage 52 in the pump case 3. Reference numeral 07 is an axial passage communicating to an annular recession 06 formed along the inside circumference of the valve seat member 10, the axial passage 07 communicating to the fuel passage 52 which communicates to the plunger chamber of an injection pump not shown in
When electric current is shut off from flowing to the solenoid 28 of the electromagnetic valve device 20, the poppet valve 5 is pushed down by the spring force of the poppet valve spring 14, a gap “S” is developed between the upper surface of the armature 27 and the lower surface of the solenoid 28, the lower end face 5b of the poppet valve 5 contacts the bottom face 3a of the poppet valve device accommodating part of the pump case, the seat face 5a of the poppet valve 5 departs from the seat face 10a of the valve seat member 10, and the poppet valve is opened. Therefore, the plunger chamber 25 (see
When electric current is flowed to the solenoid 28 of the electromagnetic valve device 20, the armature 27 and the poppet valve 5 connected thereto are lifted up by the attraction generated in the solenoid 28 against the spring force of the valve seat spring 14 until the seat face 5a of the poppet valve 5 sits on the seat face 10a of the valve seat member 10, and the poppet valve is closed. Then the pressure rises in the plunger chamber 25 as the plunger 1 moves down, and the fuel pushed out from the plunger chamber 25 is injected from the injection holes 02a of the injection nozzle 2.
In recent years, injection pressure is increasingly apt to be increased in order to enhance the effect of an electronic fuel injection apparatus to reduce atmospheric contaminant such as NOx and HC. The poppet valve device working in the electronic fuel injection apparatus as described above will be brought under severer working condition as fuel injection pressure increases.
However, with the poppet valve device of prior art, there are problems that cavitation erosion occurs in the poppet valve body and valve seat member due to the outburst of high-pressurized fuel through the gap of the valve seat part, that friction of sliding of the poppet valve body increases due to increased side thrust exerting to the poppet valve body, that a crack occurs in the passage exposed to high-pressure liquid in the valve device and that bouncing occurs when the poppet valve opens, that is, when the seat face of the poppet valve body departs from the seat face of the valve seat member and the lower end face of the poppet valve contacts the bottom face of the poppet valve device accommodating part of the injection pump case.
The present invention was made in light of the problems as above described, and the object is to provide a poppet valve device with which the occurrence of a crack in the passage exposed to high-pressure liquid in the valve device, occurrence of cavitation erosion in the poppet valve body and valve seat member of the valve device, increase in sliding friction of the poppet valve body, and the occurrence of bouncing of the poppet valve body can be prevented.
To solve the problems, the present invention proposes a poppet valve device for opening and closing a high-pressure liquid passage; comprising a valve seat member and a poppet valve body inserted in the through-hole of the valve seat member for sliding, the device being composed such that the sitting of the seat face of the poppet valve body onto the seat face of the valve seat member separates an annular, high-pressure room from an annular, low-pressure room, said annular rooms being formed between said poppet valve body and valve seat member, said valve seat member having an axial passage communicating to said high-pressure room and a radial passage communicating to said low-pressure room; wherein said axial passage is formed into a plurality of passages of substantially the same diameter and length located adjacent to each other.
In the poppet valve device, the high-pressure room is exposed to high pressure liquid not always but temporarily, and the axial passage communicating to the high-pressure room is exposed to repetition of high pressure and low pressure. Conventionally, one axial passage has been provided in the valve seat member, and the radial thickness between periphery of the trough-hole (hereafter referred to the sliding surface) and the periphery of the axial passage is inevitably limited for space limitation, and when the valve device was used for high-pressure injection apparatus, the part of said limited radial thickness cracked.
By providing a plurality of axial passages having a required passage area, the stress due to high pressure in the passages is dispersed and reduced. Therefore, cracks do not occur even if the thickness between the sliding surface and the periphery of the axial passage are the same as that in the case of conventional one axial passage. Further, as the diameter of each of the passages is reduced, the outer diameter of the annular, high-pressure room can be reduced. As a result, it is possible to design to reduce the volume of the high-pressure room.
To reduce the volume of high pressure room means that dead volume is reduced, which results in a sharp rise of injection pressure in the case of a fuel injection apparatus for example. That is, as the rate of rise of the pressure of the fuel compressed by the plunger is less reduced with smaller dead volume, the injection pressure rises faster with the same plunger diameter and the same plunger velocity.
Further, in the present invention, it is preferable that said axial passage is formed into a plurality of passages of substantially same diameter and length located axially symmetrically to the center axis of the valve device.
When the valve is closed, the poppet valve body experiences even pressure around its periphery from the liquid filling the high-pressure room. When valve is opened, the liquid in the high-pressure room flows out into the low-pressure room and high-pressure liquid flows into the high-pressure room through the axial passage. When one axial passage is provided, the high-pressure liquid flow entering into the high-pressure room through the axial passage acts to push the poppet valve body, and a side thrust exerts in the sliding part of the poppet valve body and the through-hole of the valve seat member. Therefore, the resistance for the poppet valve body to slide is caused, which increases with increased liquid pressure in the axial passage. Further, the flow velocity in the annular gap between the seat faces is faster near the axial passage in the annular gap and slower at the part opposite to the axial passage. The uneven velocity distribution in the annual gap between the seat faces induces a decrease in discharge coefficient and increase in pressure loss.
By providing a plurality of axial passages of substantially the same diameter and length located in axial symmetry, the thrusts exerting on the poppet valve body are balanced because the high-pressure liquid enters into the high-pressure room axially symmetrically, and no resultant thrust exerts on the poppet valve body, as a result poppet valve body can move smoothly. Further, as a plurality of axial passages are provided, velocity distribution of flow in the gap between the seat faces approaches to more even distribution along the annular gap, and maximum velocity decreases with required flow rate through the gap secured. By this, the occurrence of cavitation erosion on the poppet valve body and valve seat member can be suppressed.
In the present invention, it is preferable that the radial width of the annular gap formed between the periphery of said poppet valve body in the middle part thereof and the inside perimeter of an annular projection of the valve seat member is narrowed to restrict liquid flow from said high-pressure room to said low-pressure room so that the occurrence of cavitation erosion is suppressed.
When the poppet valve opens, the liquid in the high-pressure room bursts out rapidly to the low-pressure room and cavitation bubbles are generated. Cavitation erosion occurs on the surface of the poppet valve body and valve seat member by the liquid hammer action induced by the extinction of the bubbles.
According to the invention, as the radial width of the annular gap connecting the high-pressure room to the low-pressure room is restricted, velocity distribution in the annual gap between the seat faces is more uniformized resulting in reduced maximum flow velocity when the seat face of the poppet valve body departs from the seat face of the valve seat member and liquid flows out from the high-pressure room to the low-pressure room passing through the annular gap between the seat faces, and the energy of the liquid flow passing through the annual gap between the seat faces to collide against the poppet valve body is suppressed, so that the occurrence of cavitation erosion is suppressed.
Further, the present invention proposes an electronic controlled fuel injection apparatus provided with the poppet valve device, wherein a valve seat member of the poppet valve device is fixed to a valve device accommodating part so that the bottom end of the valve seat member is in close contact with the bottom face of said valve device accommodating part, the poppet valve body of said valve device is forced by an elastic member in the direction the seat face of said poppet valve body departs from the seat face of said valve seat member, and an electromagnetic valve is provided so that the poppet valve is closed when the poppet valve body is attracted by said electromagnetic valve against the elastic force of said elastic member to allow the seat face of the poppet valve body to sit on the seat face of the valve seat member and the poppet valve is opened when the attraction of said electromagnetic valve is released to allow the seat face of the poppet valve body to depart from the seat face of the valve seat member. The electronic controlled fuel injection apparatus is characterized by the poppet valve device of the invention being mounted with the configuration of valve device mounting part the same as is in prior art.
It is preferable that the poppet valve body of the valve device has a central hollow for allowing the fuel leaked from the sliding part of the poppet valve body in the trough-hole of the valve seat member to escape to the poppet valve spring accommodating room, and a cylindrical projection is formed on the bottom of the valve device accommodating part so that the cylindrical projection can fit in the central hollow of the poppet valve body with a small radial clearance, whereby the impact when the lower end face of the poppet valve body collides against the bottom face of the valve device accommodating part is lessened and the occurrence of bouncing of the poppet valve body is prevented.
In an electronic fuel injection apparatus, a poppet valve device is provided for controlling fuel injection timing in the fuel supply line of the apparatus to supply fuel to the fuel injection pump of the apparatus, and the timing of opening and closing of the valve device is electronically controlled by means of an electromagnetic valve and an elastic member (usually, a coil spring).
The valve is closed by lifting the poppet valve body by the attraction of the electromagnetic valve and opened by pushing down the poppet valve body by the spring force of the poppet valve spring until the lower end face of the poppet valve body is brought into contact with the bottom face of the valve device accommodating part of the injection pump case. When the valve is closed, there is formed a clearance between the lower end face of the poppet valve body and the bottom face of the valve device accommodating part, and the clearance is filled with the fuel leaked from the sliding part of the of the poppet valve body in the trough-hole of the valve seat member, so the fuel in the clearance must be exhausted from there in order to allow the lower end face of the poppet valve body to come into contact with the bottom face of the valve device accommodating part.
For this purpose, an escape hole for letting out the fuel to the space where the poppet valve spring is accommodated is provided in the poppet valve body. By providing a cylindrical projection on the bottom of the valve device accommodating part to fit into the escape hole with small radial clearance to form an annular clearance of small radial width when the poppet valve body comes down, the fuel in the clearance between the lower end face of the poppet valve body and the bottom face of the valve device accommodating part must pass through the annular clearance to escape through the escape hole, by which resistance is caused for the poppet valve body to move down, and the impact when the lower end face of the poppet valve body collides against the bottom of the valve device accommodating part is lessened.
If the height of the cylindrical projection is formed to be larger than the lift of the poppet valve body, said resistance due to fuel escape flow restriction acts all over the period the poppet valve body moves down and if the height is smaller than the lift of the poppet valve body, said resistance due to fuel escape flow restriction acts just before the lower end of the poppet valve body reaches the bottom of the valve device accommodating part, whereby both good responsibility of valve opening and lessening of the impact can be secured, here good responsibility means that fuel injection ends sharply.
By softening the impact, valve bouncing that the poppet valve body collides against the bottom of the valve device accommodating part and rebounds from the bottom is prevented.
It is required to prevent the bouncing, because the bouncing of the poppet valve body causes pressure oscillation in the high-pressure passage between the valve device and the injection nozzle, which deteriorates the sharpness of injection end resulting in reduced engine performance.
In the present invention, it is suitable that the poppet valve body has a cylindrical projection smaller in diameter than that of the sliding part thereof at the lower end part thereof, and a cylindrical recess is provided in the bottom of the valve device accommodating part so that said cylindrical projection can fit into said cylindrical recess of with a small radial clearance to form an annular gap of small radial width when the poppet valve body moves down for opening the valve until the lower end face thereof comes into contact with the bottom face of the valve device accommodating part, whereby the impact when the lower end face of the poppet valve body collides against the bottom face of the device accommodating part is lessened and the occurrence of bouncing of the poppet valve body is prevented.
It is also preferable that said poppet valve body is provided with an throttling member to throttle fuel flow into the central hollow of the poppet valve body, whereby the impact when the lower end face of the poppet valve body collides against the bottom face of the device accommodating part is lessened and the occurrence of bouncing of the poppet valve body is prevented.
In this case, if the throttling hole of the throttling member is formed such that the upper (central hollow side) edge thereof is rounded or chamfered and the lower edge is not rounded nor chamfered, the poppet valve body is easy to move upward and downward movement thereof is suppressed. Therefore, by properly rounding or chamfering the upper edge of the throttling hole, bouncing when valve closing and when valve opening can be properly controlled.
A preferred embodiment of the present invention will now be detailed with reference to the accompanying drawings. It is intended, however, that unless particularly specified, dimensions, materials, relative positions and so forth of the constituent parts in the embodiments shall be interpreted as illustrative only not as limitative of the scope of the present invention.
In
In
In addition, between the two passages of diameter of d1, the tensile stress at F is reduced because the circumferential deformation due to the pressure in the two passages is canceled to each other. As
shown in
Therefore, the increase of friction by a side thrust when the poppet valve body slides in the valve seat member 10 can be prevented.
When the valve opens, the liquid in the high-pressure room 06 flows out to the low-pressure room 05 passing through the annular gap developed between the seat face 5a of the poppet valve body 5 and the seat face 10a of the valve seat member 10 as indicated by arrows in
Therefore, the occurrence of cavitation erosion is prevented or moderated. Two right and left axial passages are provided in
When the seat face 5a of the poppet valve body 5 departs from the seat 10a of the valve seat member 10 and a gap is developed between the seat faces, high-pressure liquid flows out from the high-pressure room 06 to the low-pressure room 05 passing through the gap between the seat faces and further passing through said annular gap of width “s”. When the annular gap of width “s” is narrowed, the flow through the annular gap is restricted by the narrow annular gap, and flow energy of liquid is also restricted, so that the collision energy of the liquid flow impinging against the periphery 5c of the middle part of the poppet valve body 5 is also restricted.
Therefore, the occurrence of cavitation erosion is prevented or moderated. However, if the flow through said annular gap is restricted excessively, the velocity of pressure drop of the high-pressure fuel in the injection pump becomes slower, which results in poor sharpness of injection end. Therefore, the width “s” of the annular gap must be determined to be not too small.
In the poppet valve devices of prior art, such a consideration as to provide a throttled part as mentioned above has not been made heretofore.
In
Generally, bouncing occurs when the poppet valve opens, that is, the poppet valve body 5 is pushed down by the spring force until the lower end face 5b thereof impacts upon the bottom face 3a of the valve device accommodating part and then rebound. The state bouncing is occurring is shown in
The poppet valve body 5 is provided with a central hollow 115 and lateral holes 116 as shown in
Therefore, when the poppet valve body 5 moves down, the fuel between the lower end face 5b thereof and the bottom face 3a of the valve device accommodating part escapes toward the central hollow 115 passing through said narrow annular clearance.
Accordingly, there occurs resistance for the poppet valve body to move down, descending velocity thereof is reduced, and the impact when the lower end face 5a of the poppet valve body collides on the bottom face 3a of the valve device accommodating part is lessened. The diameter of the cylindrical projection 103 and enlarged hole should be determined such that the descending velocity is not excessively reduced. The velocity the gap between the valve seat faces increases is reduced by the reduction in descending velocity of the poppet valve body, therefore, the energy of fuel flow through the gap between the valve seat faces is reduced, which effects to reduce the potential for cavitation erosion.
In the embodiment of
In the embodiment of
As has been described in the foregoing, the poppet valve device according to the invention can prevent the occurrence of damage in a high-pressure liquid passage of the valve device, increase in sliding friction due to the occurrence of a side thrust, occurrence of cavitation erosion, and occurrence of bouncing even when the valve device is applied to open and close a passage exposed to high-pressure liquid. Particularly, when the valve device is used for an electronic controlled fuel injection apparatus, an electronic controlled fuel injection apparatus superior in durability can be obtained without using material higher in grade than that used conventionally.
Number | Date | Country | Kind |
---|---|---|---|
2004-055202 | Feb 2004 | JP | national |
This is a divisional of U.S. patent application Ser. No. 11/066,234, filed Feb. 25, 2005.
Number | Date | Country | |
---|---|---|---|
Parent | 11066234 | Feb 2005 | US |
Child | 11514233 | Sep 2006 | US |