Over the past few decades, with more wells drilled, our understandings on formation pore pressure and measured data are accumulated continuously. However, some limitations and the inapplicability of these current physical methods remains. For example, in some basins where formation overpressure is dominated by complex overpressure mechanisms, and this makes the model-based approaches less reliable or inapplicable. Further, prediction results from these models depends on the experiences of people who are doing the jobs, for example, the “site-specific trend line” used in Eaton's model. Additionally, lack of intelligent and integrated “data and model” systems to give a more reliable pore pressure prediction is an issue, as the current approaches rely on individual data (for example sonic or resistivity) and not the whole data and information acquired (Data Lake), especially in real time drilling execution phase where large amounts of data are received continuously (e.g., drilling data, i.e., the D-exponent, LWD data and Mud logging, or MDT pressure testing data).
Further, an accurate and real time estimation of formation pore pressure facilitates safe and cost-effective drilling. Inaccurate pore pressure prediction can result in increased drilling risks, such as kicks/blowouts, mud losses, stuck pipes, wellbore instability, extra/unnecessary casing points, even loss of the entire well, which may result in extensive damage to equipment and risk the safety of rig personnel.
Numerous methods have been developed for estimating pore fluid pressure from geophysical data and drilling data. Empirical approaches equate departures from the normal trend line of some porosity-dependent measurement to an equivalent pore pressure gradient. Recent methods have followed the more fundamental effective stress approach.
Methods, computing systems, and computer-readable media for predicting pore pressure. As an example, the method includes receiving data representing a subterranean domain, modeling the domain based on the data, ranking the data, testing and validating the model, calibrating the model, and predicting a pore pressure in the domain. In some embodiments, the method may also include cross-checking the model as real-time data is received.
It will be appreciated that the foregoing summary is intended merely to introduce a subset of the features described below, and therefore is not to be considered exhaustive or otherwise limiting.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present teachings and together with the description, serve to explain the principles of the present teachings. In the figures:
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings and figures. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first object or step could be termed a second object or step, and, similarly, a second object or step could be termed a first object or step, without departing from the scope of the present disclosure. The first object or step, and the second object or step, are both, objects or steps, respectively, but they are not to be considered the same object or step.
The terminology used in the description herein is for the purpose of describing particular embodiments and is not intended to be limiting. As used in this description and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Further, as used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context.
Attention is now directed to processing procedures, methods, techniques, and workflows that are in accordance with some embodiments. Some operations in the processing procedures, methods, techniques, and workflows disclosed herein may be combined and/or the order of some operations may be changed.
In the example of
In an example embodiment, the simulation component 120 may rely on entities 122. Entities 122 may include earth entities or geological objects such as wells, surfaces, bodies, reservoirs, etc. In the system 100, the entities 122 can include virtual representations of actual physical entities that are reconstructed for purposes of simulation. The entities 122 may include entities based on data acquired via sensing, observation, etc. (e.g., the seismic data 112 and other information 114). An entity may be characterized by one or more properties (e.g., a geometrical pillar grid entity of an earth model may be characterized by a porosity property). Such properties may represent one or more measurements (e.g., acquired data), calculations, etc.
In an example embodiment, the simulation component 120 may operate in conjunction with a software framework such as an object-based framework. In such a framework, entities may include entities based on pre-defined classes to facilitate modeling and simulation. A commercially available example of an object-based framework is the MICROSOFT® .NET® framework (Redmond, Wash.), which provides a set of extensible object classes. In the .NET® framework, an object class encapsulates a module of reusable code and associated data structures. Object classes can be used to instantiate object instances for use in by a program, script, etc. For example, borehole classes may define objects for representing boreholes based on well data.
In the example of
As an example, the simulation component 120 may include one or more features of a simulator such as the ECLIPSE™ reservoir simulator (Schlumberger Limited, Houston Tex.), the INTERSECT reservoir simulator (Schlumberger Limited, Houston Tex.), etc. As an example, a simulation component, a simulator, etc. may include features to implement one or more meshless techniques (e.g., to solve one or more equations, etc.). As an example, a reservoir or reservoirs may be simulated with respect to one or more enhanced recovery techniques (e.g., consider a thermal process such as SAGD, etc.).
In an example embodiment, the management components 110 may include features of a commercially available framework such as the PETREL® seismic to simulation software framework (Schlumberger Limited, Houston, Tex.). The PETREL® framework provides components that allow for optimization of exploration and development operations. The PETREL® framework includes seismic to simulation software components that can output information for use in increasing reservoir performance, for example, by improving asset team productivity. Through use of such a framework, various professionals (e.g., geophysicists, geologists, and reservoir engineers) can develop collaborative workflows and integrate operations to streamline processes. Such a framework may be considered an application and may be considered a data-driven application (e.g., where data is input for purposes of modeling, simulating, etc.).
In an example embodiment, various aspects of the management components 110 may include add-ons or plug-ins that operate according to specifications of a framework environment. For example, a commercially available framework environment marketed as the OCEAN® framework environment (Schlumberger Limited, Houston, Tex.) allows for integration of add-ons (or plug-ins) into a PETREL® framework workflow. The OCEAN® framework environment leverages .NET® tools (Microsoft Corporation, Redmond, Wash.) and offers stable, user-friendly interfaces for efficient development. In an example embodiment, various components may be implemented as add-ons (or plug-ins) that conform to and operate according to specifications of a framework environment (e.g., according to application programming interface (API) specifications, etc.).
As an example, a framework may include features for implementing one or more mesh generation techniques. For example, a framework may include an input component for receipt of information from interpretation of seismic data, one or more attributes based at least in part on seismic data, log data, image data, etc. Such a framework may include a mesh generation component that processes input information, optionally in conjunction with other information, to generate a mesh.
In the example of
As an example, the domain objects 182 can include entity objects, property objects and optionally other objects. Entity objects may be used to geometrically represent wells, surfaces, bodies, reservoirs, etc., while property objects may be used to provide property values as well as data versions and display parameters. For example, an entity object may represent a well where a property object provides log information as well as version information and display information (e.g., to display the well as part of a model).
In the example of
In the example of
Other equipment 156 may be located remote from a well site and include sensing, detecting, emitting or other circuitry. Such equipment may include storage and communication circuitry to store and to communicate data, instructions, etc. As an example, one or more satellites may be provided for purposes of communications, data acquisition, etc. For example,
As mentioned, the system 100 may be used to perform one or more workflows. A workflow may be a process that includes a number of worksteps. A workstep may operate on data, for example, to create new data, to update existing data, etc. As an example, a may operate on one or more inputs and create one or more results, for example, based on one or more algorithms. As an example, a system may include a workflow editor for creation, editing, executing, etc. of a workflow. In such an example, the workflow editor may provide for selection of one or more pre-defined worksteps, one or more customized worksteps, etc. As an example, a workflow may be a workflow implementable in the PETREL® software, for example, that operates on seismic data, seismic attribute(s), etc. As an example, a workflow may be a process implementable in the OCEAN® framework. As an example, a workflow may include one or more worksteps that access a module such as a plug-in (e.g., external executable code, etc.).
Embodiments of the present disclosure use an Artificial Intelligence (AI) approach to solve the problem. AI technology may be employed to capitalize on its high performance, deep learning capability and data-based multi-variate problem prediction, which may be well-suited for pore pressure predication in accordance with the present implementations.
In particular, embodiments of the present disclosure may develop an AI-based pore pressure prediction system for drilling and geoscience modeling. This system is built on the basis of Machine Learning and knowledge of subsurface formation pore pressure, training and supporting by ranked data collected from various sources. The system is designed to work both in well planning phase and in real time well drilling execution phase, to provide more accurate and in time pore pressure prediction for a safe and cost effective drilling.
Example workflow of this system for well planning and for real time drilling are shown in
For example, in
Once the machine learning process is complete, the method may move to artificial intelligence pore pressure prediction (PPP) as part of well planning. The PPP system may qualify and rank data, predict pore pressure, cross-check and calibrate, and then make pore pressure, drilling mud weight windows, and/or other predictions. Further, during cross-checking and calibration the well planning process may refer to analog data, e.g., as collected from or in the wellbore.
The method of
In some embodiments, the methods of the present disclosure may be executed by a computing system.
A processor may include a microprocessor, microcontroller, processor module or subsystem, programmable integrated circuit, programmable gate array, or another control or computing device.
The storage media 406 may be implemented as one or more computer-readable or machine-readable storage media. Note that while in the example embodiment of
In some embodiments, computing system 400 contains one or more PPP module(s) 408. In the example of computing system 400, the computer system 401A includes the PPPmodule 408. In some embodiments, a single PPPmodule may be used to perform some aspects of one or more embodiments of the methods disclosed herein. In other embodiments, a plurality of PPP 408 modules may be used to perform some aspects of methods herein.
It should be appreciated that computing system 400 is merely one example of a computing system, and that computing system 400 may have more or fewer components than shown, may combine additional components not depicted in the example embodiment of
Further, the steps in the processing methods described herein may be implemented by running one or more functional modules in information processing apparatus such as general purpose processors or application specific chips, such as ASICs, FPGAs, PLDs, or other appropriate devices. These modules, combinations of these modules, and/or their combination with general hardware are included within the scope of the present disclosure.
Geologic interpretations, models, and/or other interpretation aids may be refined in an iterative fashion; this concept is applicable to the methods discussed herein. This may include use of feedback loops executed on an algorithmic basis, such as at a computing device (e.g., computing system 400,
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or limiting to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. Moreover, the order in which the elements of the methods described herein are illustrate and described may be re-arranged, and/or two or more elements may occur simultaneously. The embodiments were chosen and described in order to best explain the principals of the disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the disclosed embodiments and various embodiments with various modifications as are suited to the particular use contemplated.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/084635 | 6/3/2016 | WO | 00 |