This application claims priority to Chinese Patent Application No. 2019107119654 filed on Aug. 2, 2019, the entire contents of which is incorporated herein by reference.
The present disclosure relates to a field of electronic cigarette technology, in particular, to a porous component and an electronic cigarette including the same.
Electronic cigarette products have developed into a major substitute to traditional tobaccos, and have a variety of types. Atomizer, as a core component of the electronic cigarette products, is usually composed of three parts: a liquid reservoir, a liquid guiding component, and an atomizing component. The liquid guiding components on the market are mainly made of three types of materials: fiber rope, liquid-guiding cotton, and porous ceramic. These types of materials all have very well-developed microporous structures. Liquid in the liquid reservoir is transmitted to the atomizing component subjected to infiltration and capillary effect of micropores in the liquid guiding component, and then is atomized via heating, vibration or the like of the atomizing component.
Structures and property of the micropores in the liquid guiding component directly determine its thermal conduction and liquid guiding capabilities, which are the key factors affecting the quality of an atomizer and the taste of smoke. By changing the type of materials and processing methods, the structures and property of the liquid guiding component can be changed to a certain extent. However, such methods are to adjust the liquid guiding component as a whole, some specific properties are improved, usually at the cost of other properties, and it is impossible to achieve a balanced improvement in the overall property of the atomizer.
According to various embodiments, a porous component is provided.
A porous component for an electronic cigarette includes: a porous substrate; an atomizing portion located on the porous substrate; a liquid guiding portion located on the porous substrate, a porosity of the liquid guiding portion being greater than a porosity of the atomizing portion, and a functional portion located on the porous substrate. A porosity of the functional portion is greater than a porosity of the liquid guiding portion, and a thermal conductivity of the functional portion is greater than a thermal conductivity of the atomizing portion and the liquid guiding portion.
An electronic cigarette includes the porous component as described above.
Through the porous component formed by combining the atomizing portion, the liquid guiding portion with the functional portion capable of ventilation and/or thermal conduction, and changing the material characteristics of the atomizing portion, the liquid guiding portion and the functional portion, it can achieve a balanced improvement in the overall property of the atomizer, and save the space occupied by the atomizer.
These and other objects, advantages, purposes and features will become apparent upon review of the following specification in conjunction with the drawings.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the views.
For the convenience of understanding of the present disclosure, the present disclosure will be described more fully with reference to related drawings. The preferred embodiments of the present disclosure are illustrated in the drawings. However, the present disclosure can be implemented in many different forms and is not limited to the embodiments described herein. In contrast, providing these embodiments is to providing a fully and thoroughly understanding of the disclosure of the present disclosure.
It should be noted that when an element is referred as to be “fixed” to another element, it can be directly on another element or there may be an intermediate element therebetween. When an element is considered to be “connected” to another element, it may be directly connected to another element or there may be an intermediate element therebetween at the same time. The terms “vertical”, “horizontal”, “left”, “right” and the like used herein are for illustration only and are not meant to be the only embodiment.
Unless otherwise defined, all technical and scientific terminologies used herein have the same meaning as commonly understood by those skilled in the technical field of the present disclosure. The terminology used in the description of the present disclosure herein is for the purpose of describing specific embodiments, and is not intended to limit the present disclosure.
An electronic cigarette according to an embodiment includes a porous component 100. Referring to
The porous substrate 110 has a porous structure for storing liquid. A pore size of the porous structure may be in a range from 10 μm to 50 μm. A porosity of the porous substrate 110 may be in a range from 30% to 70%. Further, the porous substrate 110 is made of porous ceramic or porous metal. When the porous substrate 110 is made of porous metal, the porous substrate 110 can also be connected to a power source to generate heat for atomization. The porous ceramic may be at least one selected from a group consisting of porous alumina ceramic, porous silica ceramic, the porous zirconia ceramic, porous silicon nitride ceramic, porous cordierite ceramic, porous silicon carbide ceramic, porous aluminum titanate ceramic, porous spodumene ceramic, and porous mullite ceramic. The porous metal may be at least one selected from a group consisting of porous stainless steel, porous iron-chromium aluminum alloy, porous nickel, porous nickel-chromium alloy, porous titanium alloy, porous aluminum alloy, porous platinum alloy, and porous silver alloy.
The atomizing portion 120 is used to atomize liquid. A porosity of the atomizing portion 120 may be less than 20%, more specifically less than 10%. The atomizing portion 120 may be made of a material having a dense structure or a microporous structure. When the atomizing portion 120 is made of a material having the microporous structure, the pore size thereof may be in a range from 5 μm to 30 μm. Moreover, the atomizing portion 120 is made of at least one selected from a group consisting of alumina ceramic, silicon oxide ceramic, zirconia ceramic, silicon nitride ceramic, cordierite ceramic, silicon carbide ceramic, aluminum titanate ceramic, spodumene ceramic and mullite ceramic.
The liquid guiding portion 130 is used to guide the liquid, so as to supply the liquid to the atomizing portion 120. A porosity of the liquid guiding portion 130 is greater than that of the atomizing portion 120, such that the guiding effect can be achieved. A porosity of the liquid guiding portion 130 may be in a range from 20% to 60%, more specifically 30% to 40%. The liquid guiding portion 130 may be made of a material with high porosity. The pore size thereof may be in a range from 10 μm to 50 μm. Moreover, the liquid guiding portion 130 is made of a ceramic material with high porosity. For example, the liquid guiding portion 130 is made of at least one selected from a group consisting of alumina ceramic, cordierite ceramic, diatomaceous earth ceramic, and silicon carbide ceramic.
When a plurality of liquid guiding portion 130 are provided, and porosities or liquid guiding speeds of the plurality of liquid guiding portion 130 may be different. The arrangement of the plurality of liquid guiding portion 130 can be configured according to the diffusion speed of different flavor and fragrance ingredients in the liquid, in such a way, the different flavor and fragrance ingredients in the liquid can be adjusted to be diffused into a heating portion in a specific order, thereby improving the sense of gradation of volatile smoke smell, improving the taste of the smoke. For example, the liquid guiding portion 130 corresponding to the flavor and fragrance ingredient that needs to be diffused first can be disposed closer to the atomizing portion 120, and the liquid guiding portion 130 corresponding to the flavor and fragrance ingredient that needs to be diffused later can be disposed away from the atomizing portion 120.
The functional portion 140 is connected to at least one of the atomizing portion 120 and the liquid guiding portion 130. In other words, the functional portion 140 may be only connected to the atomizing portion 120, may be only connected to the liquid guiding portion 130, or may be connected to the both. The functional portion 140 includes at least one of the first functional portion 1401 and a second functional portion 1402 for ventilation and/or thermal conduction. A porosity of the first functional portion 1401 may be greater than the porosity of the liquid guiding portion 130, such that the first functional portion 1401 may be used as a ventilation functional portion, which can enable the air to flow through the porous component quickly, so as to allow the atomized smoke to reach the user's mouth quickly. A thermal conductivity of the second functional portion 1402 may be greater than the thermal conductivity of the atomizing portion 120 and the liquid guiding portion 130, which can be used as a thermal conduction functional portion, for conducting the heat to the liquid.
The atomizing portion 120, the liquid guiding portion 130, and the functional portion 140 may be horizontally arranged on a side of the porous substrate 110. That is, the atomizing portion 120, the liquid guiding portion 130, and the functional portion 140 are each in contact with the porous substrate 110, the three together form a layered structure on the porous substrate 110. In this case, a preparing method of the atomizing portion 120, the liquid guiding portion 130, and the functional portion 140 may include: machining a plurality of holes on a surface of the porous substrate 110 by laser etching, and then filling the plurality of holes with a required functional material. The functional material may be filled by, for example, a directional freezing tape-casting method, an organic precursor impregnation method, a 3D printing method, and the like.
By combining the atomizing portion 120, the liquid guiding portion 130, and the functional portion 140, it is possible to achieve different effects with the porous structure module 100. The number of the atomizing portion 120, the liquid guiding portion 130, and the functional portion 140 may be one or more. Through designing or partially adjusting the arrangement of the atomizing portion 120, the liquid guiding portion 130 and the functional portion 140, the porous component 100 of the present disclosure can have excellent overall property.
In one of the embodiments, referring to
Moreover, a plurality of the liquid guiding portions 130 and a plurality of the first functional portions 1401 are provided, the number of the both are the same. Each of the first functional portions 1401 is surrounded by a corresponding liquid guiding portion 130, and the plurality of liquid guiding portion 130 are surrounded by the atomizing portion 120. Furthermore, referring to
In one of the embodiments, referring to
Moreover, referring to
In addition, the plurality of liquid guiding portion 130 and the plurality of second functional portion 1402 are arranged in the atomizing portion 120 in an array. The area where the plurality of liquid guiding portion 130 and the plurality of second functional portion 1402 are arranged is small, and the area of the atomizing portion 120 is relatively large, which is beneficial to improve atomization effect, especially suitable for the liquid with good fluidity.
A plurality of the second functional portions 1402 are provided and the second functional portions 1402 has different thermal conductivity. The plurality of the second functional portion 1402 may be arranged on the porous substrate 110 according to the thermal conductivity gradient as needed, so as to regulate temperature distribution in different areas, which can effectively avoid scorching caused by overheating of the liquid during smoking, and reduce unnecessary heat loss. For example, the plurality of the second functional portion 1402 may be arranged such that the thermal conductivity thereof gradually decreases in a direction from being close to the atomized material part to away from the atomized material part 120. In addition, the arrangement and the size of each area of the plurality of second functional portions 1402 and the plurality of liquid guiding portions 130 can be designed, through combining the plurality of second functional portions 1402 and the plurality of liquid guiding portions 130 and according to an atomization temperature and a liquid supplying speed required by the different types of the liquid, which can significantly increase the matching degree of the atomizer to different types of the liquid, and improve the compatibility of the atomizer to different types of the liquid.
In one of the embodiments, referring to
In one of the embodiments, referring to
In one of the embodiments, referring to
In one of the embodiments, referring to
Through the porous component formed by combining the atomizing portion, the liquid guiding portion with the functional portion capable of ventilation and/or thermal conduction, and changing the material characteristics of the atomizing portion, the liquid guiding portion and the functional portion, it can achieve a balanced improvement in the overall property of the atomizer, and save the space occupied by the atomizer.
Each the technical features of the embodiments described above can be arbitrarily combined. In order to simplify the description, all possible combinations of each technical features in the above embodiments have not been described. However, as long as there is no contradiction in the combination of these technical features, it should be considered as that all of them fall within the scope recorded in this specification.
The above described embodiments only present several implementation manners of the present disclosure, and descriptions thereof are more specific and detailed, but they cannot be understood as limiting the scope of the application patent. It should be noted that, to those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present disclosure, which all fall within the protection scope of the present disclosure. Therefore, the protection scope of this application patent shall be subject to the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2019107119654 | Aug 2019 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20160021930 | Minskoff | Jan 2016 | A1 |
20170127723 | Wu | May 2017 | A1 |
20170340012 | Mironov | Nov 2017 | A1 |
20210030066 | Xiao | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
103929984 | Jul 2014 | CN |
104470387 | Mar 2015 | CN |
104768407 | Jul 2015 | CN |
108338416 | Jul 2018 | CN |
Number | Date | Country | |
---|---|---|---|
20210030066 A1 | Feb 2021 | US |