Porous dissolvable solid structure

Information

  • Patent Grant
  • 11525104
  • Patent Number
    11,525,104
  • Date Filed
    Friday, November 20, 2020
    4 years ago
  • Date Issued
    Tuesday, December 13, 2022
    2 years ago
Abstract
A porous dissolvable solid can include an isethionate surfactant; a non-sulfate anionic surfactant; and an amphoteric surfactant, a zwitterionic surfactant, or a combination thereof.
Description
FIELD OF THE INVENTION

The present application is directed to porous dissolvable solid structures containing non-sulfate surfactants.


BACKGROUND OF THE INVENTION

Porous dissolvable solid structures comprising surfactant(s) and/or other active ingredients in a water-soluble polymeric carrier or matrix can be used for cleansing. Such sheets are particularly useful for delivering surfactants and/or other active ingredients upon dissolution in water. In comparison with traditional granular or liquid forms in the same product category, such structures have better structural integrity, are more concentrated and easier to store, ship/transport, carry, and handle. There has been a recent push for cleansers which are free from sulfate. Sulfate based cleansers, however, are traditionally used in dissolvable solid structures and the removal of them can create structures which are difficult to process. As such, there is a need for a sulfate free dissolvable solid structure which is processable.


SUMMARY OF THE INVENTION

In one aspect, the present application is directed to a porous dissolvable solid structure, comprising: a) from about 20% to about 50%, preferably from about 20% to about 50%, more preferably from about 28% to about 45%, even more preferably from about 34% to about 41% by weight of the porous dissolvable solid of an isethionate surfactant, preferably sodium cocoyl isethionate, sodium lauroyl methyl isethionate, or a combination thereof; b) from about 4% to about 20%, preferably from about 6% to about 18%, more preferably from about 8% to about 16%; even more preferably from about 10% to about 16%, by weight of the porous dissolvable solid of a non-sulfate anionic surfactant, preferably sodium cocoyl glutamate, sodium lauroyl glutamate, disodium laureth sulfosuccinate, or a combination thereof; c) from about 5% to about 28%, preferably from about 7% to about 26%, more preferably from about 9% to about 24%; even more preferably from about 11% to about 22%, by weight of the solid structure of an amphoteric surfactant, zwitterionic surfactant or combination thereof; preferably lauramidopropyl betaine, cocamidopropyl betaine, sodium lauroamphoacetate, or a combination thereof; d) from about 18% to about 38%, preferably from about 20% to about 36%, more preferably from about 22% to about 34%; even more preferably from about 24% to about 32%, by weight of the porous dissolvable solid structure of polyvinyl alcohol; and e) from about 4.5% to about 20%, preferably from about 5.5% to about 17%, more preferably from about 6.5% to about 14%, even more preferably from about 7.5% to about 11% of glycerin; wherein said porous dissolvable solid structure has a density of from about 0.05 g/cm3 to about 0.20 g/cm3, preferably from about 0.07 g/cm3 to about 0.18 g/cm3, more preferably from about 0.09 g/cm3 to about 0.16 g/cm3, or even more preferably from about 0.11 g/cm3 to about 0.14 g/cm3.


These and other aspects will become more apparent upon reading the following detailed description.







DETAILED DESCRIPTION
Definitions

The term “flexible” as used herein refers to the ability of an article to withstand stress without breakage or significant fracture when it is bent at 90° along a center line perpendicular to its longitudinal direction. Preferably, such article can undergo significant elastic deformation and is characterized by a Young's Modulus of no more than 5 GPa, preferably no more than 1 GPa, more preferably no more than 0.5 GPa, most preferably no more than 0.2 GPa.


The term “solid” as used herein refers to the ability of an article to substantially retain its shape (i.e., without any visible change in its shape) at 20° C. and under the atmospheric pressure, when it is not confined and when no external force is applied thereto.


Porous dissolvable solid structures can be made by first preparing a pre-mixture containing various materials, then aerating the pre-mixture by introducing a gas thereunto, followed by forming the aerated pre-mixture into a sheet, and finally drying the sheet at an elevated temperature. The porous dissolvable solid structures are formed during the drying step under simultaneous mechanisms of water evaporation, bubble collapse, interstitial liquid drainage from the thin film bubble facings into the plateau borders between the bubbles (which generates openings between the bubbles and forms the open cells), and solidification of the pre-mixture. Various processing conditions may influence these mechanisms, e.g., solid content in the wet pre-mixture, viscosity of the wet pre-mixture, gravity, and the drying temperature, and the need to balance such processing conditions so as to achieve controlled drainage and form the desired porous dissolvable solid structures.


Here is an example of a manufacturing process for a porous dissolvable solid structure. A feeding trough is filled with an aerated wet pre-mixture. A heated rotatable cylinder (also referred to as a drum dryer) is placed above said feeding trough. Said heated drum dryer has a cylindrical heated outer surface characterized by a controlled surface temperature of about 130° C., and it rotates along a clock-wise direction (as shown by the thin curved line with an arrowhead) to pick up the aerated wet pre-mixture from the feeding trough. The aerated wet pre-mixture forms a thin sheet over the cylindrical heated outer surface of the drum dryer, which rotates and dries such sheet of aerated wet pre-mixture in approximately 10-15 minutes to form a porous solid structure. A leveling blade may be placed near the pre-mixture pick-up location to ensure a consistent thickness of the sheet so formed, although it is possible to control the thickness of the sheet simply by modulating the viscosity of the aerated wet pre-mixture and the rotating speed and surface temperature of the drum dryer. Once dried, the porous solid structure can then picked up, either manually or by a scraper at the end of the drum rotation. The sheet of porous solid structures can be rolled into a roll awaiting further processing.


The wet pre-mixture goes through a pretty rigorous process in the course of becoming a porous solid structure and the completed porous solid structure can be subjected to additional processing to be formed into a consumer friendly product. Thus, the ability to process both the pre-mixture to form a porous solid structure and the formed porous solid structure are important. When sulfate based surfactants were removed from pre-mixture formulations, there were issues processing these formulations into both porous solid structures and during processing after the formation of the porous solid structures. These issues can include, for example, peel-ability, roll-ability, and strength during roll unwinding and cutting.


In evaluating initial non-sulfate formulations, it is discovered that there were some issues with processability. It is believed that non-sulfate formulations can be prone to poor tensile properties making the per-mixture and/or resulting porous solid structure difficult to process and commercialize. The tensile property of Strain at Break has been found to correlate to the processability and scale-up of the formulations and in particular peel-ability, roll-ability and strength during roll unwinding & slitting/cutting. Particularly, a strain at break of 20 mm or more tends to predict a product which will be sufficiently processable. Thus the strain at break of a porous dissolvable structure can be, for example, 20 mm or more, 30 mm or more, or 35 mm or more.


Surprisingly, the present inventors have discovered that porous dissolvable solid structures comprising a high level of isethionate based surfactants (20% or more by weight of the porous dissolvable solid) as primary surfactants in combination with a secondary anionic co-surfactant and an amphoteric/zwitterionic surfactant provide step-changed tensile strength to solve the heretofore mentioned processing challenges, while still providing fast dissolution properties under consumer relevant conditions. While not being bound to theory, it is hypothesized that a balancing of the crystallinity of the isethionate surfactants by modulating it to a sufficient degree (to enable cell opening after aeration during the drying process and high elasticity & tensile strength) with the secondary anionic cosurfactant(s) and amphoteric/zwitterionic surfactant(s) allows for the formation of an acceptable porous dissolvable solid structure.


The balancing of the surfactant cocktail, however, took some work. As can be seen in Table 1 below, several porous solid structures which contain varying levels of similar surfactants (the exact formulations are below in the Examples Section) have vastly differing Strain at Break values. A Strain at Break value of 20 mm or more is believed to signify a porous dissolvable solid structure which will be adequately processable. Thus, the examples numbered 14 and 20-24 have an unacceptable strain at break.













TABLE 1






%
%
% Amphoteric/
Strain


Example
Isethionate
Anionic Co-
Zwitterionic
at Break


#
surfactants
Surfactants
Surfactants
(mm)



















13
39.6%
7.9%
15.8%
40.6


15
39.6%
15.8%
7.9%
44.9


16
39.6%
15.8%
7.9%
53.1


17
23.7%
23.7%
15.8%
29.3


18
23.7%
15.8%
23.7%
35.6


19
23.7%
15.8%
23.7%
24.6


14
23.7%
7.9%
31.6%
15.4


20
39.5%
0.0%
23.7%
15.0


21
20.6%
8.8%
29.5%
16.5


22
17.7%
0.0%
41.3%
15.3


23
17.7%
0.0%
41.3%
10.6


24
8.8%
8.8%
41.3%
8.7










Pre-Mixture


As noted above, a porous dissolvable solid structure starts as a pre-mixture. A pre-mixture is generally prepared by mixing of the desired ingredients. Ingredients for a porous dissolvable solid structure can include, for example, surfactants, water-soluble polymers, plasticizers, water, etc. These will be discussed more fully below. The pre-mixture can be formed using a mechanical mixer. Mechanical mixers useful herein, include, but aren't limited to pitched blade turbines or MAXBLEND™ mixer (Sumitomo Heavy Industries).


The viscosity of the pre-mixture can be adjusted for optimum processability. It can be, for example, in the range of about 1,000 cps to about 25,000 cps when measured at 40° C. and 1 s−1. Viscosity of the pre-mixture can have a significant impact on the pore expansion and pore opening of the aerated pre-mixture during the subsequent drying step, and pre-mixtures with different viscosities may form flexible, porous, dissolvable solid sheet articles of very different foam structures. On one hand, when the pre-mixture is has a viscosity higher than about 25,000 cps aeration of such wet pre-mixture may become more difficult. More importantly, interstitial liquid drainage from thin film bubble facings into the plateau borders of the three-dimensional foam during the subsequent drying step may be adversely affected or significantly limited. The interstitial liquid drainage during drying impacts pore expansion and pore opening in the aerated wet pre-mixture during the subsequent drying step. As a result, the flexible, porous, dissolvable solid sheet article so formed thereby may have significantly smaller pores and less interconnectivity between the pores (i.e., more “closed” pores than open pores), which render it harder for water to ingress into and egress from such sheet article. On the other hand, when the pre-mixture has a viscosity lower than about 1,000 cps the aerated pre-mixture may not be sufficiently stable, i.e., the air bubbles may rupture, collapse, or coalescence too quickly in the wet pre-mixture after aeration and before drying. Consequently, the resulting solid sheet article may be much less porous and more dense than desired.


Thus, viscosity of the pre-mixture may range, for example, from about 1,000 cps to about 25,000 cps, from about 3,000 cps to about 24,000 cps, from about 5,000 cps to about 23,000 cps, or from about 10,000 cps to about 20,000 cps, as measured at 40° C. and 1 sec−1. The pre-mixture viscosity values can be measured using a Malvern Kinexus Lab+ rheometer with cone and plate geometry (CP1/50 SR3468 SS), a gap width of 0.054 mm, a temperature of 40° C. and a shear rate of 1.0 reciprocal seconds for a period of 360 seconds.


The level of solids in the pre-mixture can also impact processability. The level of solids in the pre-mixture can be, for example, from about 15% to about 70%, from about 20% to about 50%, or from about 25% to about 45% by total weight of said wet pre-mixture. The percent solid content is the summation of the weight percentages by weight of the total processing mixture of all solid components, semi-solid components and liquid components excluding water and any obviously volatile materials such as low boiling alcohols.


The wet pre-mixture can be pre-heated immediately prior to and/or during the aeration process at above ambient temperature but below any temperatures that would cause degradation of the components therein. For example, the wet pre-mixture can be kept at an elevated temperature ranging from about 40° C. to about 100° C., from about 50° C. to about 95° C., from about 60° C. to about 90° C., or from about 75° C. to about 85° C. Further, additional heat can be applied during the aeration process to try and maintain the pre-mixture at such an elevated temperature as was attained prior to aeration. This can be accomplished, for example, via conductive heating from one or more surfaces, injection of steam or other processing means.


It is believed that the act of pre-heating the wet pre-mixture before and/or during the aeration step may provide a means for lowering the viscosity of pre-mixtures comprising higher percent solids content for improved introduction of bubbles into the mixture and formation of the desired solid sheet article. Achieving higher percent solids content is desirable since it may reduce the overall energy requirements for drying. The increase of percent solids may therefore conversely lead to a decrease in water level content and an increase in viscosity. As mentioned hereinabove, pre-mixtures with viscosities that are too high are undesirable. Pre-heating may effectively counteract such viscosity increase and thus allow for the manufacture of a fast dissolving sheet article even when using high solid content pre-mixtures.


The pre-mixture may also be aerated. Aeration of the wet pre-mixture is conducted in order to introduce a sufficient amount of air bubbles into the wet pre-mixture for subsequent formation of the porous dissolvable solid structures therein upon drying. Once sufficiently aerated, the pre-mixture is characterized by a density that is lower than that of the non-aerated pre-mixture (which may contain a few inadvertently trapped air bubbles) or an insufficiently aerated wet pre-mixture (which may contain some bubbles but at a much lower volume percentage and of significantly larger bubble sizes). The aerated wet pre-mixture has a density ranging, for example, from about 0.05 g/ml to about 0.5 g/ml, from about 0.08 g/ml to about 0.4 g/ml, from about 0.1 g/ml to about 0.35 g/ml, from about 0.15 g/ml to about 0.3 g/ml, or from about 0.2 g/ml to about 0.25 g/ml.


Aeration can be accomplished by either physical or chemical means. For example, it can be accomplished by introducing a gas into the pre-mixture through mechanical agitation, for example, by using any suitable mechanical processing means, including but not limited to: a rotor stator mixer, a planetary mixer, a pressurized mixer, a non-pressurized mixer, a batch mixer, a continuous mixer, a semi-continuous mixer, a high shear mixer, a low shear mixer, a submerged sparger, or any combinations thereof. It may be achieved via chemical means, for example, by using chemical forming agents to provide in-situ gas formation via chemical reaction of one or more ingredients, including formation of carbon dioxide (CO2 gas) by an effervescent system.


Bubble size of the aerated pre-mixture assists in achieving uniform layers in the porous dissolvable solid structures of the resulting solid sheet article. The bubble size of the aerated pre-mixture can be, for example, from about 5 to about 100 microns or from about 20 microns to about 80 microns. Uniformity of the bubble sizes causes the resulting porous dissolvable solid structures to have consistent densities.


Sheet Formation


After sufficient aeration, the aerated pre-mixture can form one or more sheets with opposing first and second sides. The sheet-forming step can be conducted in any suitable manner, e.g., by extrusion, casting, molding, vacuum-forming, pressing, printing, coating, and the like. More specifically, the aerated pre-mixture can be formed into a sheet by: (i) casting it into shallow cavities or trays or specially designed sheet moulds; (ii) extruding it onto a continuous belt or screen of a dryer; (iii) coating it onto the outer surface of a rotary drum dryer. The supporting surface upon which the sheet is formed can be formed by or coated with materials that are anti-corrosion, non-interacting and/or non-sticking, such as metal (e.g., steel, chromium, and the like), TEFLON®, polycarbonate, NEOPRENE®, HDPE, LDPE, rubber, glass and the like. Examples of suitable manufacturing methods can be found, for example, in CN 2019/071751; WO2012138820; and WO2010077627 all of which are incorporated herein by reference.


The formed sheet of aerated wet pre-mixture, i.e. a porous solid dissolvable structure, can have a thickness ranging, for example, from 0.5 mm to 4 mm, from 0.6 mm to 3.5 mm, from 0.7 mm to 3 mm, from 0.8 mm to 2 mm, or from 0.9 mm to 1.5 mm Controlling the thickness of such formed sheet of aerated pre-mixture may be important for ensuring that the resulting solid sheet article has the desired open celled structure. If the formed sheet is too thin (e.g., less than 0.5 mm in thickness), many of the air bubbles trapped in the aerated pre-mixture will expand during the subsequent drying step to form through-holes that extend through the entire thickness of the resulting solid sheet article. Such through-holes, if too many, may significantly compromise both the overall structural integrity and aesthetic appearance of the sheet article. If the formed sheet is too thick, not only it will take longer to dry, but also it will result in a solid sheet article with greater pore size variations between different regions (e.g., top, middle, and bottom regions) along its thickness. The longer the drying time, the more imbalance of forces may occur through bubble rupture/collapse/coalescence, liquid drainage, pore expansion, pore opening, water evaporation, and the like. Further, multiple layers of relatively thin sheets can be assembled into three-dimensional structures of greater thickness to deliver the desired cleaning benefits or other benefits, while still providing satisfactory pore structures for fast dissolution as well as ensuring efficient drying within a relatively short drying time.


Drying


The porous dissolvable solid structure may be dried in any manner appropriate in the art. During drying, the process may include the use of an antigravity heating direction either through the entire drying time or at least half of the drying time. Without being bound by any theory, it is believed that such anti-gravity heating direction may reduce or counteract excessive interstitial liquid drainage toward the bottom region of the formed sheet during the drying step. Further, because the top surface is dried last, it allows longer time for air bubbles near the top surface of the formed sheet to expand and form pore openings on the top surface (because once the wet matrix is dried, the air bubbles can no longer expand or form surface openings). Consequently, the porous dissolvable solid structure formed by drying with such anti-gravity heating is characterized by improved open cell structures that can enable faster dissolution as well as other unexpected benefits. The antigravity heating may be provided, for example, by a rotary drum, conduction based heating arrangement, etc.


The drying process may also include the use of a heated rotatable cylinder. The heated rotatable cylinder, often used in drum drying, can be heated internally, e.g., by steam or electricity, and can be rotated, for example, by a motorized drive installed on a base bracket at a predetermined rotational speed. The heated rotatable cylinder or drum can have an outer diameter ranging, for example, from about 0.5 meters to about 10 meters, from about 1 meter to about 5 meters, or from about 1.5 meters to about 2 meters. It may have a controlled surface temperature, for example, of from about 80° C. to about 170° C., from about 90° C. to about 150° C., or from about 100° C. to about 140° C. Further, such heated rotatable cylinder can be rotating at a speed, for example, of from about 0.005 rpm to about 0.25 rpm, from about 0.05 rpm to about 0.2 rpm, or from about 0.1 rpm to about 0.18 rpm.


Said heated rotatable cylinder can be coated with a non-stick coating on its outer surface. The non-stick coating may be overlying on the outer surface of the heated rotatable drum, or it can be fixed to a medium of the outer surface of the heated rotatable drum. The medium includes, but is not limited to, heat-resisting non-woven fabrics, heat-resisting carbon fiber, heat-resisting metal or non-metallic mesh and the like. The non-stick coating can effectively preserve structural integrity of the sheet-like article from damage during the sheet-forming process.


There can also be provided a feeding mechanism for adding the aerated pre-mixture of raw materials as described hereinabove onto the heated rotatable drum, thereby forming a thin layer of the viscous pre-mixture onto the outer surface of the heated rotatable drum. Such thin layer of the pre-mixture is therefore dried by the heated rotatable drum via contact-heating/drying. The feeding mechanism can include, for example, a feeding trough, while said feeding trough has installed thereupon at least one or more feeding hoppers, an imaging device for dynamic observation of the feeding, and an adjustment device for adjusting the position and inclination angle of the feeding hopper. By using said adjustment device to adjust the distance between said feeding hopper and the outer surface of the heated rotatable drum, the need for different thicknesses of the formed sheet-like article can be met. The adjustment device can also be used to adjust the feeding hopper to different inclination angles so as to meet the material requirements of speed and quality.


There may also be a static scraping mechanism for scraping or scooping up the porous dissolvable solid structure already formed by the heated rotatable drum. The static scraping mechanism can be installed, for example, on the base bracket, or on one side thereof, for transporting the already formed porous dissolvable solid structure downstream for further processing. The static scraping mechanism can automatically or manually move close and go away from the heated rotatable drum.


The making process of the porous, dissolvable solid structure article can be as follows. Firstly, the heated rotatable drum with the non-stick coating on the base bracket is driven by the motorized drive. Next, the adjustment device adjusts the feeding mechanism so that the distance between the feeding hopper and the outer surface of the heated rotatable drum reaches a preset value. Meanwhile, the feeding hopper adds the aerated pre-mixture containing all or some raw materials for making the porous dissolvable solid structure onto an outer surface of the heated rotatable drum, to form a thin layer of said aerated pre-mixture thereon with the desired thickness. Optionally, a suction device of the heating shield sucks the hot steam generated by the heated rotatable drum. Next, the static scraping mechanism scrapes/scoops up a dried/solidified sheet article, which is formed by the thin layer of aerated wet pre-mixture after it is dried by the heated rotatable drum at a relatively low temperature (e.g., 130° C.). The dried/solidified sheet article can also be manually or automatically peeled off, without such static scraping mechanism and then rolled up by a roller bar.


The total drying time depends on the formulations and solid contents in the pre-mixture, the drying temperature, the thermal energy influx, and the thickness of the porous dissolvable solid structure to be dried. The drying time can be, for example, from about 1 minute to about 60 minutes, from about 2 minutes to about 30 minutes, from about 2 to about 15 minutes, from about 2 to about 10 minutes, or from about 2 to about 5 minutes.


During such drying time, the heating direction can be so arranged that it is substantially opposite to the gravitational direction for more than half of the drying time, for more than 55% or 60% of the drying time (e.g., as in the rotary drum-based heating/drying arrangement described hereinabove), or for more than 75% or even 100% of the drying time (e.g., as in a bottom conduction-based heating/drying arrangement). Further, the sheet of aerated wet pre-mixture can be dried under a first heating direction for a first duration and then under a second, opposite heating direction under a second duration, while the first heating direction is substantially opposite to the gravitational direction. Such change in heating direction can be readily achieved by various other arrangements not illustrated herein, e.g., by an elongated heated belt of a serpentine shape that can rotate along a longitudinal central axis.


The porous dissolvable solid sheet article may further be characterized by one or more of the following:

    • a Percent Open Cell Content of from about 85% to 100% or from about 90% to 100%;
    • an Overall Average Pore Size of from about 150 μm to about 1000 μm, or from about 200 μm to about 600 μm;
    • an Average Cell Wall Thickness of from about 5 μm to about 200 μm, from about 10 μm to about 100 μm, or from about 10 μm to about 80 μm;
    • a final moisture content of from about 0.5% to about 25%, from about 1% to about 20%, or from about 3% to about 10%, by weight of said porous dissolvable solid structure;
    • a thickness ranging from about 0.6 mm to about 3.5 mm, from about 0.7 mm to about 3 mm, from about 0.8 mm to about 2 mm, or from about 1 mm to about 1.5 mm;
    • a basis weight of from about 50 grams/m2 to about 250 grams/m2, from about 80 grams/m2 to about 220 grams/m2, or from about 100 grams/m2 to about 200 grams/m2;
    • a density of from about 0.05 grams/cm3 to about 0.5 grams/cm3, from about 0.06 grams/cm3 to about 0.4 grams/cm3, from about 0.07 grams/cm3 to about 0.2 grams/cm3, or from about 0.08 grams/cm3 to about 0.15 grams/cm3; and
    • a Specific Surface Area of about 0.03 m2/g to about 0.25 m2/g, from about 0.04 m2/g to 0.22 m2/g, from about 0.05 m2/g to about 0.2 m2/g, or from about 0.1 m2/g to about 0.18 m2/g.


      Formulations


A porous dissolvable solid structure as described herein may contain, for example, surfactant, water soluble polymer, plasticizer, additives, etc. A porous dissolvable solid structure may comprise, for example, from about 25% to about 80%, from about 40% to about 70%, total surfactant, by weight of the porous dissolvable solid structure. It may also comprise from about 10% to about 40% of water soluble polymer, by weight of the porous dissolvable solid structure. A porous dissolvable structure may also comprise multiple layers. These layers can be made up of, for example, single layers of porous dissolvable solid structures. The single layer porous dissolvable structures can be in any applicable form, like a sheet, for example. The porous dissolvable structure may also be flexible. Porous dissolvable solid structures may be used, for example, as a skin cleanser. The porous dissolvable solid structure can be an open cell foam.


Surfactant


The surfactants may function as emulsifying agents during the aeration process to create a sufficient amount of stable bubbles for forming the desired open cell structure. The surfactants may also function as active ingredients for delivering a desired cleansing benefit. A porous dissolvable solid structure can comprise, for example, an isethionate surfactant, a non-sulfate anionic surfactant, an amphoteric surfactant, a zwitterionic surfactant, or a combination of amphoteric and zwitterionic surfactants.


The isethionate surfactant may be present at a level of about 20% to about 50%, about 22% to about 50%, about 28% to about 45%, from about 31% to about 41%, from about 34% to about 41%, from about 38% to about 41%, from about 20% to about 30%, from about 21% to about 25%, by weight of the porous dissolvable solid. The isethionate surfactant can include, for example, sodium cocoyl isethionate, sodium lauroyl methyl isethionate, or a combination thereof. In one example, a porous dissolvable solid structure comprises from about 15% to about 32%, by weight, of sodium lauroyl methyl isethionate; and from about 7% to about 25%, by weight, of sodium cocoyl isethionate. In another example, a porous dissolvable solid structure comprises from about 21% to about 25%, by weight, of sodium cocoyl isethionate.


The non-sulfate anionic surfactant includes anionic surfactants which are free of sulfate. The non-sulfate anionic surfactant may be present at a level of about 4% to about 25%, about 6% to about 18%, about 7% to about 18%, about 7% to about 17%, about 8% to about 16%; about 10% to about 16%, about 14% to about 17%, from about 15% to about 25%, or from about 22% to about 25%, by weight of the porous dissolvable solid structure. The non-sulfate anionic surfactant may include sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, sodium lauroyl glutamate, sodium cocoyl glutamate, disodium lauryl sulfosuccinate, disodium laureth sulfosuccinate, sodium cocoyl taurate, sodium lauroyl taurate, sodium lauroyl lactylate, sodium cocoyl lactylate, sodium lauroyl glycinate, sodium cocoyl glycinate, and combinations thereof. A subset of the non-sulfate anionic surfactant can include, for example, sodium cocoyl glutamate, sodium lauroyl glutamate, disodium laureth sulfosuccinate, or a combination thereof.


The amphoteric and/or zwitterionic surfactant may be present at a level of about 5% to about 28%, about 7% to about 26%, about 9% to about 24%; about 11% to about 22%, about 7% to about 18%, about 7% to about 17%, about 14% to about 17%, about 15% to about 25%, or about 22% to about 25%, by weight of the porous solid structure Amphoteric co-surfactants suitable for use herein can include those surfactants described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate, or phosphonate. Suitable amphoteric surfactant include, but are not limited to, those selected from the group consisting of: sodium cocaminopropionate, sodium cocaminodipropionate, sodium cocoamphoacetate, sodium cocoamphohydroxypropylsulfonate, sodium cocoamphopropionate, sodium cornamphopropionate, sodium lauraminopropionate, sodium lauroamphoacetate, sodium lauroamphohydroxypropylsulfonate, sodium lauroamphopropionate, sodium cornamphopropionate, sodium lauriminodipropionate, ammonium cocaminopropionate, ammonium cocaminodipropionate, ammonium cocoamphoacetate, ammonium cocoamphohydroxypropylsulfonate, ammonium cocoamphopropionate, ammonium cornamphopropionate, ammonium lauraminopropionate, ammonium lauroamphoacetate, ammonium lauroamphohydroxypropylsulfonate, ammonium lauroamphopropionate, ammonium cornamphopropionate, ammonium lauriminodipropionate, triethanonlamine cocaminopropionate, triethanonlamine cocaminodipropionate, triethanonlamine cocoamphoacetate, triethanonlamine cocoamphohydroxypropylsulfonate, triethanonlamine cocoamphopropionate, triethanonlamine cornamphopropionate, triethanonlamine lauraminopropionate, triethanonlamine lauroamphoacetate, triethanonlamine lauroamphohydroxypropylsulfonate, triethanonlamine lauroamphopropionate, triethanonlamine cornamphopropionate, triethanonlamine lauriminodipropionate, cocoamphodipropionic acid, disodium caproamphodiacetate, disodium caproamphoadipropionate, disodium capryloamphodiacetate, disodium capryloamphodipriopionate, disodium cocoamphocarboxyethylhydroxypropylsulfonate, disodium cocoamphodiacetate, disodium cocoamphodipropionate, disodium dicarboxyethylcocopropylenediamine, disodium laureth-5 carboxyamphodiacetate, disodium lauriminodipropionate, disodium lauroamphodiacetate, disodium lauroamphodipropionate, disodium oleoamphodipropionate, disodium PPG-2-isodecethyl-7 carboxyamphodiacetate, lauraminopropionic acid, lauroamphodipropionic acid, lauryl aminopropylglycine, lauryl diethylenediaminoglycine, and mixtures thereof.


The amphoteric co-surfactant can be a surfactant according to the following structure:




embedded image


wherein R12 is a C-linked monovalent substituent selected from the group consisting of substituted alkyl systems comprising 9 to 15 carbon atoms, unsubstituted alkyl systems comprising 9 to 15 carbon atoms, straight alkyl systems comprising 9 to 15 carbon atoms, branched alkyl systems comprising 9 to 15 carbon atoms, and unsaturated alkyl systems comprising 9 to 15 carbon atoms; R13, R14, and R15 are each independently selected from the group consisting of C-linked divalent straight alkyl systems comprising 1 to 3 carbon atoms, and C-linked divalent branched alkyl systems comprising 1 to 3 carbon atoms; and M+ is a monovalent counterion selected from the group consisting of sodium, ammonium and protonated triethanolamine One subset of suitable amphoteric surfactants includes sodium cocoamphoacetate, sodium cocoamphodiacetate, sodium lauroamphoacetate, sodium lauroamphodiacetate, ammonium lauroamphoacetate, ammonium cocoamphoacetate, triethanolamine lauroamphoacetate, triethanolamine cocoamphoacetate, and mixtures thereof.


The porous dissolvable solid structure may comprise a zwitterionic surfactant, wherein the zwitterionic surfactant is a derivative of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate or phosphonate. The zwitterionic surfactant can be selected from the group consisting of: cocamidoethyl betaine, cocamidopropylamine oxide, cocamidopropyl betaine, cocamidopropyl dimethylaminohydroxypropyl hydrolyzed collagen, cocamidopropyldimonium hydroxypropyl hydrolyzed collagen, cocamidopropyl hydroxysultaine, cocobetaineamido amphopropionate, coco-betaine, coco-hydroxysultaine, coco/oleamidopropyl betaine, coco-sultaine, lauramidopropyl betaine, lauryl betaine, lauryl hydroxysultaine, lauryl sultaine, and mixtures thereof. A suitable zwitterionic surfactant is lauryl hydroxysultaine. The zwitterionic surfactant can be selected from the group consisting of: lauryl hydroxysultaine, cocamidopropyl hydroxysultaine, coco-betaine, coco-hydroxysultaine, coco-sultaine, lauryl betaine, lauryl sultaine, and mixtures thereof.


A subset of the amphoteric and/or zwitterionic surfactants can include, for example, lauramidopropyl betaine, cocamidopropyl betaine, sodium lauroamphoacetate, sodium cocoamphoacetate, or a combination thereof.


Water soluble polymer A porous dissolvable solid structure may include a water soluble polymer in an amount ranging, for example, from about 18% to about 38%, from about 22% to about 34%, or from about 24% to about 32%, by weight of the porous dissolvable solid structure.


Water-soluble polymers suitable herein may be selected, for example, from those with weight average molecular weights ranging from about 50,000 to about 400,000 Daltons, from about 60,000 to about 300,000 Daltons, from about 70,000 to about 200,000 Daltons, or from about 80,000 to about 150,000 Daltons. The weight average molecular weight is computed by summing the average molecular weights of each polymer raw material multiplied by their respective relative weight percentages by weight of the total weight of polymers present within the porous dissolvable solid structure. The weight average molecular weight of the water-soluble polymer used herein may impact the viscosity of the wet pre-mixture, which may in turn influence the bubble number and size during the aeration step as well as the pore expansion/opening results during the drying step. Further, the weight average molecular weight of the water-soluble polymer may affect the overall film-forming properties of the wet pre-mixture and its compatibility/incompatibility with certain surfactants.


The water-soluble polymers useful herein may include, but are not limited to, synthetic polymers including polyvinyl alcohols, polyvinylpyrrolidones, polyalkylene oxides, polyacrylates, caprolactams, polymethacrylates, polymethylmethacrylates, polyacrylamides, polymethylacrylamides, polydimethylacrylamides, polyethylene glycol monomethacrylates, copolymers of acrylic acid and methyl acrylate, polyurethanes, polycarboxylic acids, polyvinyl acetates, polyesters, polyamides, polyamines, polyethyleneimines, maleic/(acrylate or methacrylate) copolymers, copolymers of methylvinyl ether and of maleic anhydride, copolymers of vinyl acetate and crotonic acid, copolymers of vinylpyrrolidone and of vinyl acetate, copolymers of vinylpyrrolidone and of caprolactam, vinyl pyrrolidone/vinyl acetate copolymers, copolymers of anionic, cationic and amphoteric monomers, and combinations thereof.


The water-soluble polymers may also be selected from naturally sourced polymers including those of plant origin, examples of which include karaya gum, tragacanth gum, gum Arabic, acemannan, konjac mannan, acacia gum, gum ghatti, whey protein isolate, and soy protein isolate; seed extracts including guar gum, locust bean gum, quince seed, and psyllium seed; seaweed extracts such as Carrageenan, alginates, and agar; fruit extracts (pectins); those of microbial origin including xanthan gum, gellan gum, pullulan, hyaluronic acid, chondroitin sulfate, and dextran; and those of animal origin including casein, gelatin, keratin, keratin hydrolysates, sulfonic keratins, albumin, collagen, glutelin, glucagons, gluten, zein, and shellac.


Modified natural polymers can also be used as water-soluble polymers. Suitable modified natural polymers include, but are not limited to, cellulose derivatives such as hydroxypropylmethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, methylcellulose, hydroxypropylcellulose, ethylcellulose, carboxymethylcellulose, cellulose acetate phthalate, nitrocellulose and other cellulose ethers/esters; and guar derivatives such as hydroxypropyl guar.


The water-soluble polymer may also include starch. As used herein, the term “starch” includes both naturally occurring and modified starches. Typical natural sources for starches can include cereals, tubers, roots, legumes and fruits. More specific natural sources can include corn, pea, potato, banana, barley, wheat, rice, sago, amaranth, tapioca, arrowroot, canna, sorghum, and waxy or high amylase varieties thereof. The natural starches can be modified by any modification method known in the art to form modified starches, including physically modified starches, such as sheared starches or thermally-inhibited starches; chemically modified starches, such as those which have been cross-linked, acetylated, and organically esterified, hydroxyethylated, and hydroxypropylated, phosphorylated, and inorganically esterified, cationic, anionic, nonionic, amphoteric and zwitterionic, and succinate and substituted succinate derivatives thereof; conversion products derived from any of the starches, including fluidity or thin-boiling starches prepared by oxidation, enzyme conversion, acid hydrolysis, heat or acid dextrinization, thermal and or sheared products may also be useful herein; and pregelatinized starches which are known in the art.


A useful subset of water soluble polymers can include polyvinyl alcohols, polyvinylpyrrolidones, polyalkylene oxides, starch and starch derivatives, pullulan, gelatin, hydroxypropylmethylcelluloses, methycelluloses, carboxymethycelluloses or combinations thereof. An even further subset includes polyvinyl alcohols, hydroxypropylmethylcelluloses, or a combination thereof.


Polyvinyl alcohols useful herein can include those characterized by a degree of hydrolysis ranging from about 40% to about 100%, from about 50% to about 95%, from about 70% to about 92%, or from about 80% to about 90%. Commercially available polyvinyl alcohols can include those from Celanese Corporation (Texas, USA) under the SELVOL™ trade name including, but not limited to, SELVOL™ 523, SELVOL™ 530, SELVOL™ 540, SELVOL™ 518, SELVOL™ 513, SELVOL™ 508, SELVOL™ 504; those from Kuraray Europe GmbH (Frankfurt, Germany) under the Mowiol® and POVAL™ trade names; and PVA 1788 (also referred to as PVA BP17) commercially available from various suppliers including Lubon Vinylon Co. (Nanjing, China); and combinations thereof. A porous dissolvable solid structure can include, for example, from about 10% to about 25%, or about 15% to about 23%, by total weight of such article, of a polyvinyl alcohol having a weight average molecular weight ranging from 80,000 to about 150,000 Daltons and a degree of hydrolysis ranging from about 80% to about 90%.


A single starch or a combination of starches may be used as a filler material in such an amount as to reduce the overall level of water-soluble polymers required, so long as it helps provide the sporous dissolvable solid structure with the requisite structure and physical/chemical characteristics as described herein. However, too much starch may comprise the solubility and structural integrity of the sheet article. Starch may be present, for example, at a level of no more 20%, from 0% to about 10%, from 0% to 5%, or from 0% to 1%, by weight of said porous dissolvable solid structure, of starch.


Plasticizers


Plasticizers may be present in the porous dissolvable solid structure at an amount ranging from about 4.5% to about 20%, from about 5.5% to about 17%, from about 6.5% to about 14%, from 7.5% to 11%, by total weight of said porous dissolvable solid structure. Suitable plasticizers for use herein can include, for example, polyols, copolyols, polycarboxylic acids, polyesters, dimethicone copolyols, and combinations thereof.


Examples of useful polyols include, but are not limited to: glycerin, diglycerin, ethylene glycol, polyethylene glycol (especially 200-600), propylene glycol, butylene glycol, pentylene glycol, glycerol derivatives (such as propoxylated glycerol), glycidol, cyclohexane dimethanol, hexanediol, 2,2,4-trimethylpentane-1,3-diol, pentaerythritol, urea, sugar alcohols (such as sorbitol, mannitol, lactitol, xylitol, maltitol, and other mono- and polyhydric alcohols), mono-, di- and oligo-saccharides (such as fructose, glucose, sucrose, maltose, lactose, high fructose corn syrup solids, and dextrins), ascorbic acid, sorbates, ethylene bisformamide, amino acids, and combinations thereof.


Examples of polycarboxylic acids include, but are not limited to citric acid, maleic acid, succinic acid, polyacrylic acid, polymaleic acid, and combinations thereof.


Examples of suitable polyesters include, but are not limited to, glycerol triacetate, acetylated-monoglyceride, diethyl phthalate, triethyl citrate, tributyl citrate, acetyl triethyl citrate, acetyl tributyl citrate, and combinations thereof.


Examples of suitable dimethicone copolyols include, but are not limited to, PEG-12 dimethicone, PEG/PPG-18/18 dimethicone, PPG-12 dimethicone, and combinations thereof.


Other suitable plasticizers include, but are not limited to, alkyl and allyl phthalates; napthalates; lactates (e.g., sodium, ammonium and potassium salts); sorbeth-30; urea; lactic acid; sodium pyrrolidone carboxylic acid (PCA); sodium hyraluronate or hyaluronic acid; soluble collagen; modified protein; monosodium L-glutamate; alpha & beta hydroxyl acids such as glycolic acid, lactic acid, citric acid, maleic acid and salicylic acid; glyceryl polymethacrylate; polymeric plasticizers such as polyquaterniums; proteins and amino acids such as glutamic acid, aspartic acid, and lysine; hydrogen starch hydrolysates; other low molecular weight esters (e.g., esters of C2-C10 alcohols and acids); and any other water soluble plasticizer known to one skilled in the art of the foods and plastics industries; and mixtures thereof.


A useful subset of plasticizers includes glycerin, ethylene glycol, polyethylene glycol, propylene glycol, and mixtures thereof. Herein, glycerin is the most commonly used plasticizer.


Additional Ingredients


In addition to the above-described ingredients, e.g., the water-soluble polymer, the surfactant(s) and the plasticizer, the porous dissolvable solid structure may comprise one or more additional ingredients, depending on its intended application. Such one or more additional ingredients may include, for example personal cleansing actives. Such ingredients may also work to help with the formulation and or aesthetics of the porous dissolvable solid structure, for example, pH modifiers, colorants, perfumes, etc.


The porous dissolvable solid structure may further comprise other optional ingredients that are known for use or otherwise useful in porous dissolvable solid structure, provided that such optional materials are compatible with the selected essential materials described herein, or do not otherwise unduly impair product performance.


Multi-layer Porous Dissolvable Solid Structures


Once the porous dissolvable solid structure is formed, two or more of such sheets can be further combined and/or treated to form multi-layer porous dissolvable solid structure of any desirable three-dimensional shapes, including but not limited to: spherical, cubic, rectangular, oblong, cylindrical, rod, sheet, flower-shaped, fan-shaped, star-shaped, disc-shaped, and the like. The sheets can be combined and/or treated by any means known in the art, examples of which include but are not limited to, chemical means, mechanical means, and combinations thereof. Such combination and/or treatment steps are hereby collectively referred to as a “conversion” process, i.e., which functions to convert two or more porous dissolvable solid structures into a multi-layer porous dissolvable solid structure with a desired three-dimensional shape.


Conventional dissolvable solid articles have relatively high length/width-to-thickness ratios, i.e., they are relatively thin, in order to ensure fast dissolution of such articles in water. Therefore, such dissolvable solid articles are typically provided in form of relatively large but thin sheet products, which may be difficult to handle (e.g., too floppy and easily sticking together and hard to separate upon use) and are not aesthetically pleasing to the consumers. However, there is little or no space for change or improvement of such product form, due to constraints imparted by the dissolution requirement.


However, multi-layer porous solid structures formed by stacking multiple layers of the porous dissolvable solid structures together can be more dissolvable than single-layer solid structures that have the same aspect ratio. This allows significant extension of such multi-layer solid structures along the thickness direction, to create three-dimensional product shapes that are easier to handle and more aesthetically pleasing to the consumers (e.g., products in form of thick pads or even cubes).


A multilayer porous dissolvable solid structure formed by stacking multiple layers of porous dissolvable solid structures can be characterized by a maximum dimension D and a minimum dimension z (which is perpendicular to the maximum dimension), while the ratio of D/z (hereinafter also referred to as the “Aspect Ratio”) ranges from 1 to about 10, from about 1.4 to about 9, from about 1.5 to about 8, or from about 2 to about 7. Note that when the Aspect Ratio is 1, the dissolvable solid article has a spherical shape. When the Aspect Ratio is about 1.4, the dissolvable solid article has a cubical shape.


The multilayer porous dissolvable solid structure may have, for example, a minimal dimension z that is about 3 mm to about 20 cm, from about 4 mm to about 10 cm, or from about 5 mm to about 30 mm.


The above described multi-layer porous dissolvable solid structures may comprise, for example, from about 2 to about 60, from about 4 to about 50, from about 5 to about 40, or from about 6 to about 30, of single layer porous dissolvable structures.


The multilayer dissolvable solid structure may comprise porous dissolvable solid structures of different colors, which are visual from an external surface (e.g., one or more side surfaces) of such multi-layer porous dissolvable solid structure. Such visible sheets of different colors can be aesthetically pleasing to the consumers. Further, the different colors may provide visual cues indicative of different benefit agents contained in the individual sheets. For example, the multi-layer porous dissolvable solid structure may comprise a first sheet that has a first color and contains a first benefit agent and a second sheet that has a second color and contains a second benefit, while the first color provides a visual cue indicative of the first benefit agent, and while the second color provides a visual cue indicative of the second benefit agent.


Further, one or more functional ingredients can be “sandwiched” between individual sheets of the multilayer porous dissolvable solid structure as described hereinabove, e.g., by spraying, sprinkling, dusting, coating, spreading, dipping, injecting, or even vapor deposition. In order to avoid interference of such functional ingredients with the cutting seal or edge seal near the peripherals of the individual sheets, the functional ingredients can be located within a central region between two adjacent sheets, which is defined as a region that is spaced apart from the peripherals of such adjacent sheets by a distance that is at least 10% of the maximum Dimension D.


Test Methods


A) Determination of Average Pore Diameter


An Hitachi TM3000 Tabletop Microscope (S/N: 123104-04) is used to acquire SEM micrographs of samples. Samples of a porous dissolvable solid structure are approximately 1 cm×1 cm in area and cut from larger sheets. Images are collected at a magnification of 50×, and the unit is operated at 15 kV. A minimum of 5 micrograph images are collected from randomly chosen locations across each sample, resulting in a total analyzed area of approximately 43.0 mm2 across which the average pore diameter is estimated.


The SEM micrographs are then firstly processed using the image analysis toolbox in Matlab. Where required, the images are converted to grayscale. For a given image, a histogram of the intensity values of every single pixel is generated using the ‘imhist’ Matlab function. Typically, from such a histogram, two separate distributions are obvious, corresponding to pixels of the brighter sheet surface and pixels of the darker regions within the pores. A threshold value is chosen, corresponding to an intensity value between the peak values of these two distributions. All pixels having an intensity value lower than this threshold value are then set to an intensity value of 0, while pixels having an intensity value higher are set to 1, thus producing a binary black and white image. The binary image is then analyzed using ImageJ (https://imagej.nih.gov, version 1.52a), to examine both the pore area fraction and pore size distribution. The scale bar of each image is used to provide a pixel/mm scaling factor. For the analysis, the automatic thresholding and the analyze particles functions are used to isolate each pore. Output from the analyze function includes the area fraction for the overall image and the pore area and pore perimeter for each individual pore detected.


Average Pore Diameter is defined as DA50: 50% of the total pore area is comprised of pores having equal or smaller hydraulic diameters than the DA50 average diameter.

Hydraulic diameter=‘4*Pore area (m2)/Pore perimeter (m)’.


It is an equivalent diameter calculated to account for the pores not all being circular.


B) Determination of Regional Average Pore Size and Average Cell Wall Thickness


Porosity is the ratio between void-space to the total space occupied by the porous dissolvable solid structure. Porosity can be calculated from μCT scans by segmenting the void space via thresholding and determining the ratio of void voxels to total voxels. Similarly, solid volume fraction (SVF) is the ratio between solid-space to the total space, and SVF can be calculated as the ratio of occupied voxels to total voxels. Both Porosity and SVF are average scalar-values that do not provide structural information, such as, pore size distribution in the height-direction of the porous dissolvable solid structure, or the average cell wall thickness of the porous dissolvable solid structure struts.


To characterize the 3D structure of a porous dissolvable solid structure, samples are imaged using a μCT X-ray scanning instrument capable of acquiring a dataset at high isotropic spatial resolution. One example of suitable instrumentation is the SCANCO system model 50 μCT scanner (Scanco Medical AG, Brüttisellen, Switzerland) operated with the following settings: energy level of 45 kVp at 133 μA; 3000 projections; 15 mm field of view; 750 ms integration time; an averaging of 5; and a voxel size of 3 μm per pixel. After scanning and subsequent data reconstruction is complete, the scanner system creates a 16 bit data set, referred to as an ISQ file, where grey levels reflect changes in x-ray attenuation, which in turn relates to material density. The ISQ file is then converted to 8 bit using a scaling factor.


Scanned samples are normally prepared by punching a core of approximately 14 mm in diameter. The punch is laid flat on a low-attenuating foam and then mounted in a 15 mm diameter plastic cylindrical tube for scanning Scans of the samples are acquired such that the entire volume of all the mounted cut sample is included in the dataset. From this larger dataset, a smaller subvolume of the sample dataset is extracted from the total cross section of the scanned sample, creating a 3D slab of data, where pores can be qualitatively assessed without edge/boundary effects.


To characterize pore-size distribution in the height-direction, and the strut-size, Local Thickness Map algorithm, or LTM, is implemented on the subvolume dataset. The LTM Method starts with a Euclidean Distance Mapping (EDM) which assigns grey level values equal to the distance each void voxel is from its nearest boundary. Based on the EDM data, the 3D void space representing pores (or the 3D solid space representing struts) is tessellated with spheres sized to match the EDM values. Voxels enclosed by the spheres are assigned the radius value of the largest sphere. In other words, each void voxel (or solid voxel for struts) is assigned the radial value of the largest sphere that that both fits within the void space boundary (or solid space boundary for struts) and includes the assigned voxel.


The 3D labelled sphere distribution output from the LTM data scan can be treated as a stack of two dimensional images in the height-direction (or Z-direction) and used to estimate the change in sphere diameter from slice to slice as a function of sample depth. The strut thickness is treated as a 3D dataset and an average value can be assessed for the whole or parts of the subvolume. The calculations and measurements can be done using AVIZO Lite (9.2.0) from Thermo Fisher Scientific and MATLAB (R2017a) from Mathworks.


C) Percent Open Cell Content


The Percent Open Cell Content is measured via gas pycnometry. Gas pycnometry is a common analytical technique that uses a gas displacement method to measure volume accurately. Inert gases, such as helium or nitrogen, are used as the displacement medium. A sample of the porous dissolvable solid structure is sealed in the instrument compartment of known volume, the appropriate inert gas is admitted, and then expanded into another precision internal volume. The pressures before and after expansion are measured and used to compute the volume of the sample.


ASTM Standard Test Method D2856 provides a procedure for determining the percentage of open cells using an older model of an air comparison pycnometer. This device is no longer manufactured. However, one can determine the percentage of open cells conveniently and with precision by performing a test which uses Micromeritics' AccuPyc Pycnometer. The ASTM procedure D2856 describes 5 methods (A, B, C, D, and E) for determining the percent of open cells of foam materials. For these experiments, the samples can be analyzed using an Accupyc 1340 using nitrogen gas with the ASTM formpyc software. Method C of the ASTM procedure is to be used to calculate to percent open cells. This method simply compares the geometric volume as determined using calipers and standard volume calculations to the open cell volume as measured by the Accupyc, according to the following equation:

Open cell percentage=Open cell volume of sample/Geometric volume of sample*100


It is recommended that these measurements be conducted by Micromeritics Analytical Services, Inc. (One Micromeritics Dr, Suite 200, Norcross, Ga. 30093). More information on this technique is available on the Micromeritics Analytical Services web sites (www.particletesting.com or www.micromeritics.com), or published in “Analytical Methods in Fine particle Technology” by Clyde Orr and Paul Webb.


D) Final Moisture Content


Final moisture content of a porous dissolvable solid structure can be obtained by using a Mettler Toledo HX204 Moisture Analyzer (S/N B706673091). A minimum of 1 g of the sample is placed on the measuring tray. The standard program is then executed, with additional program settings of 10 minutes analysis time and a temperature of 110° C.


E) Thickness


Thickness of a porous dissolvable solid structure can be obtained by using a micrometer or thickness gage, such as the Mitutoyo Corporation Digital Disk Stand Micrometer Model Number IDS-1012E (Mitutoyo Corporation, 965 Corporate Blvd, Aurora, Ill., USA 60504). The micrometer has a 1-inch diameter platen weighing about 32 grams, which measures thickness at an application pressure of about 0.09 psi (6.32 gm/cm2).


The thickness of a porous dissolvable solid structure can be measured by raising the platen, placing a section of the sample on the stand beneath the platen, carefully lowering the platen to contact the sample, releasing the platen, and measuring the thickness of the sample in millimeters on the digital readout. The sample should be fully extended to all edges of the platen to make sure thickness is measured at the lowest possible surface pressure, except for the case of more rigid substrates which are not flat.


F) Basis Weight of the Sheet Article


Basis Weight of a porous dissolvable solid structure can be calculated as the weight of the sample per area thereof (grams/m2). The area is calculated as the projected area onto a flat surface perpendicular to the outer edges of the sample. The samples are cut into squares of 10 cm×10 cm, so the area is known. Each of such squares is then weighed, and the resulting weight is then divided by the known area of 100 cm2 to determine the corresponding basis weight.


For a porous dissolvable solid structure of an irregular shape, if it is a flat object, the area is thus computed based on the area enclosed within the outer perimeter of such object. For a spherical object, the area is thus computed based on the average diameter as 3.14×(diameter/2)2. For a cylindrical object, the area is thus computed based on the average diameter and average length as diameter×length. For an irregularly shaped three-dimensional object, the area is computed based on the side with the largest outer dimensions projected onto a flat surface oriented perpendicularly to this side. This can be accomplished by carefully tracing the outer dimensions of the object onto a piece of graph paper with a pencil and then computing the area by approximate counting of the squares and multiplying by the known area of the squares or by taking a picture of the traced area (shaded-in for contrast) including a scale and using image analysis techniques.


G) Density


Density of a porous dissolvable solid structure can be determined by the equation: Calculated Density=Basis Weight of porous solid/(Porous Solid Thickness×1,000). The Basis Weight and Thickness of a porous dissolvable solid structure can be determined in accordance with the methodologies described hereinabove.


H) Specific Surface Area


The Specific Surface Area of a porous dissolvable solid structure can be measured via a gas adsorption technique. Surface Area is a measure of the exposed surface of a solid sample on the molecular scale. The BET (Brunauer, Emmet, and Teller) theory is the most popular model used to determine the surface area and is based upon gas adsorption isotherms. Gas Adsorption uses physical adsorption and capillary condensation to measure a gas adsorption isotherm. The technique is summarized by the following steps; a sample is placed in a sample tube and is heated under vacuum or flowing gas to remove contamination on the surface of the sample. The sample weight is obtained by subtracting the empty sample tube weight from the combined weight of the degassed sample and the sample tube. The sample tube is then placed on the analysis port and the analysis is started. The first step in the analysis process is to evacuate the sample tube, followed by a measurement of the free space volume in the sample tube using helium gas at liquid nitrogen temperatures. The sample is then evacuated a second time to remove the helium gas. The instrument then begins collecting the adsorption isotherm by dosing krypton gas at user specified intervals until the requested pressure measurements are achieved. Samples may then analyzed using an ASAP 2420 with krypton gas adsorption. It is recommended that these measurements be conducted by Micromeritics Analytical Services, Inc. (One Micromeritics Dr, Suite 200, Norcross, Ga. 30093). More information on this technique is available on the Micromeritics Analytical Services web sites (www.particletesting.com or www.micromeritics.com), or published in a book, “Analytical Methods in Fine Particle Technology”, by Clyde Orr and Paul Webb.


Examples


The following examples further exemplify what is described herein. The examples are given solely for the purpose of illustration and are not to be construed as limitations, as many variations thereof are possible without departing from the spirit and scope. All exemplified amounts are concentrations by weight of the total pre-mixture, i.e., wt/wt percentages, unless otherwise specified.


The following surfactant/polymer liquid pre-mixtures are prepared at the indicated weight percentages as described below. The liquid formulations differ in the levels of amounts and types of isethionate primary surfactants (sodium cocoyl isethionate and sodium lauroyl methyl isethionate) anionic co-surfactants (sodium cocoyl glutamate, disodium laureth sulfosuccinate), and amphoteric surfactants (cocamidopropyl betaine, lauramidopropyl betaine, sodium lauroamphoacetate):



















Component
Ex. 1
Ex. 2
Ex. 3
Ex. 4
Ex. 5





Glycerin1
2.8
2.8
2.8
2.8
2.8


Polyvinyl alcohol2
8.3
8.3
8.3
8.3
8.3


Sodium Cocoyl Isethionate3
12.5
7.5
2.5
7.5
7.5


Sodium Lauroyl Methyl


10.0
5.0



Isethionate4







Sodium Lauroamphoacetate







(26% activity)5







Cocamidopropyl betaine







(31% activity)6







Lauramidopropyl betaine
5.0
10.0
2.5
2.5
5.0


(34% activity)7







Sodium Cocoyl Glutamate
2.5
2.5
5.0
5.0
2.5


(39% activity)8







Disodium laureth sulfosuccinate




5.0


(31% activity)9







Citric Acid10
0.50
0.50
0.50
0.50
0.50


Distilled water
Q.S.
Q.S.
Q.S.
Q.S.
Q.S.















Component
Ex. 6
Ex. 7
Ex. 8
Ex. 9
Ex. 10





Glycerin1
2.84
2.84
2.84
3.4
3.4


Polyvinyl alcohol2
8.3
8.3
8.3
10.0
10.0


Sodium Cocoyl Isethionate3
7.5
7.5
7.5
7.0
6.0


Sodium Lauroyl Methyl


5.0




Isethionate4







Sodium Lauroamphoacetate




4.0


(26% activity)5







Cocamidopropyl betaine




4.0


(31% activity)6







Lauramidopropyl betaine
7.5
7.5
7.5
10.0
6.0


(34% activity)7







Sodium Cocoyl Glutamate
5.0
2.5

3.0



(39% activity)8







Disodium laureth sulfosuccinate

2.5





(31% activity)9







Citric Acid10
0.50
0.50
0.50
0.50
0.50


Distilled water
Q.S.
Q.S.
Q.S.
Q.S.
Q.S.














Component
Ex. 11
Ex. 12






Glycerin1
3.4
3.4



Polyvinyl alcohol2
10.0
10.0



Sodium Cocoyl Isethionate3





Sodium Lauroyl Methyl
6.0
3.0



Isethionate4





Sodium Lauroamphoacetate
4.0
4.0



(26% activity)5





Cocamidopropyl betaine





(31% activity)6





Lauramidopropyl betaine
10.0
10.0



(34% activity)7





Sodium Cocoyl Glutamate





(39% activity)8





Disodium laureth sulfosuccinate

3.0



(31% activity)9





Citric Acid10
0.50
0.50



Distilled water
Q.S.
Q.S.






1Superol K, USP FCC EP Glycerin, CAS: 56-81-5, supplier: Procter & Gamble Chemicals




2BP-17 with a viscosity of 21-26 cps and a % hydrolysis of 86-89%, CAS: 9002-89-5, supplier: Liwei Chemical Company LTD, China.




3JORDAPON SCI, CAS: 61789-32-0, supplier: BASF.




4ISELUX, CAS: 928663-45-0, supplier: Innospec Active Chemicals




5MIRANOL ULTRA L-32, CAS: 68608-66-2, supplier: McIntyre Group Ltd, University Park, IL,




6AMPHOSOL HCA-B, supplier: Stepan Company, Northfield, IL.




7MACKAM DAB-ULS, CAS: 4292-10-8, supplier: McIntyre Group Ltd, University Park, IL.




8EVERSOFT UCS-50SG, CAS: 68187-30-4, supplier: Sino Lion, New Jersey.




9MACKANATE EL P, CAS: 68815-56-5, supplier: Solvay,




10Citric Acid Anhydrous Fine Granular 51N, supplier: S.A. Citrique Beige N.V. Pastorijstraat 249, B-3300 Tienen, Belgium







The above liquid pre-mixture compositions can be prepared with the use of a conventional overhead stirrer (IKA® RW20DZM Stirrer available from IKA® Works, Inc., Wilmington, Del.) and a hot plate (Corning Incorporated Life Sciences, Lowell, Mass.). Into an appropriately sized and cleaned vessel, the distilled water and glycerin are added with stirring at 100-150 rpm until homogenous. The polyvinyl alcohol is weighed into a suitable container and slowly added to the main mixture in small increments using a spatula while continuing to stir while avoiding the formation of visible lumps. The mixing speed is adjusted to minimize foam formation. The mixture is slowly heated to 75 to 80° C. after which surfactants are added. The mixture is then heated to 85° C. while continuing to stir and then allowed to cool to room temperature. Additional distilled water is added to compensate for water lost to evaporation (based on the original tare weight of the container).


The porous dissolvable solid structures represented in Examples 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24 are prepared from the surfactant/polymer liquid processing solutions from Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12, respectively, as described below.


Note: for simplicity, the formulations are displayed assuming bone dry conditions (0% relative humidity). However, the porous solids are hydroscopic and absorb moisture depending on the % relative humidity in the air. For example, at 50% relative humidity the below porous solids will comprise approximately 7 to 10% moisture.



















Component
Ex. 13
Ex. 14
Ex. 15
Ex. 16
Ex. 17





Glycerin1

9%


9%


9%


9%


9%



Polyvinyl alcohol2
26.3% 
26.3% 
26.3% 
26.3% 
26.3% 


Sodium Cocoyl Isethionate3
39.6% 
23.7% 
7.9%
23.7% 
23.7% 


Sodium Lauroyl Methyl
0.0%
0.0%
31.6% 
15.8% 
0.0%


Isethionate4







Sodium Lauroamphoacetate
0.0%
0.0%
0.0%
0.0%
0.0%


(26% activity)5







Cocamidopropyl betaine
0.0%
0.0%
0.0%
0.0%
0.0%


(31% activity)6







Lauramidopropyl betaine
15.8% 
31.6% 
7.9%
7.9%
15.8% 


(34% activity)7







Sodium Cocoyl Glutamate
7.9%
7.9%
15.8% 
15.8% 
7.9%


(39% activity)8







Disodium laureth sulfosuccinate
0.0%
0.0%
0.0%
0.0%
15.8% 


(31% activity)9







Citric Acid10
1.6%
1.6%
1.6%
1.6%
1.6%





Component
Ex. 18
Ex. 19
Ex. 20
Ex. 21
Ex. 22





Glycerin1

9%


9%


9%

 10%

10%



Polyvinyl alcohol2
26.2% 
26.2% 
26.2% 
29.5% 
29.5%


Sodium Cocoyl Isethionate3
23.7% 
23.7% 
23.7% 
20.6% 
17.7%


Sodium Lauroyl Methyl
0.0%
0.0%
15.8% 
0.0%
 0.0%


Isethionate4







Sodium Lauroamphoacetate
0.0%
0.0%
0.0%
0.0%
11.8%


(26% activity)5







Cocamidopropyl betaine
0.0%
0.0%
0.0%
0.0%
11.8%


(31% activity)6







Lauramidopropyl betaine
23.7% 
23.7% 
23.7% 
29.5% 
17.7%


(34% activity)7







Sodium Cocoyl Glutamate
15.8% 
7.9%
0.0%
8.8%
 0.0%


(39% activity)8







Disodium laureth sulfosuccinate
0.0%
7.9%
0.0%
0.0%
 0.0%


(31% activity)9







Citric Acid10
1.6%
1.6%
1.6%
1.5%
 1.5%














Component
Ex. 23
Ex. 24






Glycerin1
 10%
 10%



Polyvinyl alcohol2
29.5% 
29.5% 



Sodium Cocoyl Isethionate3
0.0%
0.0%



Sodium Lauroyl Methyl
17.7% 
8.8%



Isethionate4





Sodium Lauroamphoacetate
11.8% 
11.8% 



(26% activity)5





Cocamidopropyl betaine
0.0%
0.0%



(31% activity)6





Lauramidopropyl betaine
29.5% 
29.5% 



(34% activity)7





Sodium Cocoyl Glutamate
0.0%
0.0%



(39% activity)8





Disodium laureth sulfosuccinate
0.0%
8.8%



(31% activity)9





Citric Acid10
1.5%
1.5%









The porous dissolvable solid structures are prepared from the pre-mixture liquid processing solutions as follows. 10 ml of the pre-mixture is transferred at room temperature into an 80 ml graduated plastic beaker. The mixture is aerated using an IKA ULTRA-TURRAX® T 25 High speed mixer (available for instance from Hobart Corporation, Troy, Ohio) at 6,500 RPM until the slurry expands with entrained air to the 40 ml mark on the graduated beaker at a density of 0.25 g/cm3. The resulting aerated mixture is then spread with a spatula into rectangle 40 mm×175 mm aluminum molds with a depth of 1.0 mm with the excess wet foam being removed with the straight edge of a metal spatula that is held at a 45 degree angle and slowly dragged uniformly across the mold surface. The aluminum molds are then placed on a hot plate with a pre-heated surface temperature of 100° C. and then left to dry for up to 30 minutes until the surface is dry to the touch. The molds are allowed to cool to room temperature with the substantially dry porous solid removed from the molds with the aid of a thin spatula and tweezers.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”


Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. A porous dissolvable solid structure, comprising: a. from about 22% to about 41%, by weight of the porous dissolvable solid structure, of an isethionate surfactant selected from the group consisting of sodium cocoyl isethionate, sodium lauroyl methyl isethionate, or a combination thereof;b. from about 7% to about 25%, by weight of the porous dissolvable solid structure, of a non-sulfate anionic surfactant comprising sodium cocoyl glutamate, disodium laureth sulfosuccinate, or a combination thereof;c. from about 5% to about 25%, by weight of the porous dissolvable solid structure, lauramidopropyl betaine;d. from about 18% to about 38%, by weight of the porous dissolvable solid structure, of polyvinyl alcohol;e. from about 4.5% to about 20%, by weight of the porous dissolvable solid structure, of glycerin;wherein said porous dissolvable solid structure has a density of from about 0.05 g/cm3 to about 0.20 g/cm3; andwherein said porous dissolvable solid structure has a strain at break of 20 mm or more.
  • 2. The porous dissolvable solid structure according to claim 1, wherein the isethionate surfactant is from about 22% to about 30%, by weight of the porous dissolvable solid structure; and the non-sulfate anionic surfactant is from about 15% to about 25%, by weight of the porous dissolvable solid structure.
  • 3. The porous dissolvable solid structure according to claim 1, wherein the isethionate surfactant is from about 31% to about 41%, by weight of the porous dissolvable solid structure; and the non-sulfate anionic surfactant is from about 7% to about 18%, by weight of the porous dissolvable solid structure.
  • 4. The porous dissolvable solid structure according to claim 1, wherein the isethionate surfactant is from about 38% to about 41%, by weight of the porous dissolvable solid structure; the non-sulfate anionic surfactant is from about 7% to about 17%, by weight of the porous dissolvable solid structure; and the lauramidopropyl betaine is from about 7% to about 17%, by weight of the porous dissolvable solid structure.
  • 5. The porous dissolvable solid structure according to claim 4, wherein the isethionate surfactant is sodium cocoyl isethionate and the non-sulfate anionic surfactant comprises sodium cocoyl glutamate.
  • 6. The porous dissolvable solid structure according to claim 4, wherein the isethionate surfactant is sodium lauroyl methyl isethionate and sodium cocoyl isethionate and the non-sulfate anionic surfactant comprises sodium cocoyl glutamate.
  • 7. The porous dissolvable solid structure according to claim 1, wherein the isethionate surfactant is from about 22% to about 25%, by weight of the porous dissolvable solid structure and the non-sulfate anionic surfactant is from about 14% to about 17%, by weight of the porous dissolvable solid structure.
  • 8. The porous dissolvable solid structure according to claim 1, wherein the isethionate surfactant is from about 22% to about 25%, by weight of the porous dissolvable solid structure and the non-sulfate anionic surfactant is from about 22% to about 25%, by weight of the porous dissolvable solid.
  • 9. The porous dissolvable solid structure according to claim 8, wherein the isethionate surfactant is sodium cocoyl isethionate and the non-sulfate anionic surfactant comprises sodium cocoyl glutamate and disodium laureth sulfosuccinate.
  • 10. The porous dissolvable solid structure according to claim 7, wherein the isethionate surfactant is sodium cocoyl isethionate and the non-sulfate anionic surfactant comprises sodium cocoyl glutamate.
  • 11. The porous dissolvable solid structure according to claim 1, wherein the porous dissolvable solid structure comprises multiple layers.
  • 12. The porous dissolvable solid of structure according to claim 1, wherein the total surfactant amount is from about 40% to about 70%, by weight of the porous dissolvable solid structure.
  • 13. The porous dissolvable solid structure according to claim 1, wherein the porous dissolvable solid structure is an open celled foam.
  • 14. The porous dissolvable solid structure according to claim 1, further comprising additional non-sulfate anionic surfactants comprising sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, sodium lauroyl glutamate, disodium lauryl sulfosuccinate, sodium cocoyl taurate, sodium lauroyl taurate, sodium lauroyl lactylate, sodium cocoyl lactylate, sodium lauroyl glycinate, sodium cocoyl glycinate, or a combination thereof.
  • 15. The porous dissolvable solid structure according to claim 1, further comprising zwitterionic surfactants comprising cocamidoethyl betaine, cocamidopropylamine oxide, cocamidopropyl betaine, cocamidopropyl dimethylaminohydroxypropyl hydrolyzed collagen, cocamidopropyldimonium hydroxypropyl hydrolyzed collagen, cocamidopropyl hydroxysultaine, cocobetaineamido amphopropionate, coco-betaine, coco-hydroxysultaine, coco/oleamidopropyl betaine, coco-sultaine, lauryl betaine, lauryl hydroxysultaine, lauryl sultaine, or a combination thereof.
  • 16. The porous dissolvable solid structure according to claim 1, further comprising zwitterionic surfactants comprising cocamidopropyl betaine, sodium lauroamphoacetate, sodium cocoamphoacetate, or a combination thereof.
Priority Claims (1)
Number Date Country Kind
PCT/CN2019/119586 Nov 2019 WO international
US Referenced Citations (380)
Number Name Date Kind
1421350 Powell Jun 1922 A
2356168 Mabley Aug 1944 A
2396278 Otto Mar 1946 A
2438091 Lynch Mar 1948 A
2486921 Byerly Nov 1949 A
2486922 Bruce Nov 1949 A
2528378 Mannheimer Oct 1950 A
2613185 Marshall Oct 1952 A
2658072 Milton Nov 1953 A
2694668 Fricke Nov 1954 A
2809971 Jack Oct 1957 A
3152046 Maria Oct 1964 A
3236733 Karsten et al. Feb 1966 A
3321425 Karl-ludwig et al. May 1967 A
3332880 Adriaan et al. Jul 1967 A
3426440 Shen et al. Feb 1969 A
3428478 Donaldson et al. Feb 1969 A
3463308 Deneke Aug 1969 A
3489688 Pospischil Jan 1970 A
3570122 Willimas Mar 1971 A
3589007 Walton Jun 1971 A
3653383 Wise Apr 1972 A
3695989 Albert Oct 1972 A
3753196 Kurtz et al. Aug 1973 A
3761418 Parran Sep 1973 A
3929678 Laughlin Dec 1975 A
3967921 Haberli et al. Jul 1976 A
4020156 Murray et al. Apr 1977 A
4024078 Gilbert et al. May 1977 A
4051081 Jabs et al. Sep 1977 A
4089945 Brinkman et al. May 1978 A
4149551 Benjamin et al. Apr 1979 A
4185125 Kimura et al. Jan 1980 A
4196190 Gehman et al. Apr 1980 A
4197865 Jacquet et al. Apr 1980 A
4206196 Davis Jun 1980 A
4217914 Jacquet et al. Aug 1980 A
4272511 Papantoniou et al. Jun 1981 A
4323683 Bolich, Jr. et al. Apr 1982 A
4345080 Bolich, Jr. Aug 1982 A
D266829 Yoshizawa et al. Nov 1982 S
4379753 Bolich, Jr. Apr 1983 A
4381919 Jacquet et al. May 1983 A
4422853 Jacquet et al. Dec 1983 A
4470982 Winkler Sep 1984 A
4507280 Pohl et al. Mar 1985 A
4529586 De et al. Jul 1985 A
4536361 Torobin Aug 1985 A
4565647 Llenado Jan 1986 A
D286450 Tovey Oct 1986 S
4635351 Koch et al. Jan 1987 A
4663158 Wolfram et al. May 1987 A
4710374 Grollier et al. Dec 1987 A
4727410 Higgins, III Feb 1988 A
4822613 Rodero Apr 1989 A
4885107 Wetzel Dec 1989 A
4976953 Orr et al. Dec 1990 A
4990280 Thorengaard Feb 1991 A
5055384 Kuehnert Oct 1991 A
5061481 Suzuki et al. Oct 1991 A
5062889 Hoehl et al. Nov 1991 A
5062994 Imperatori Nov 1991 A
5094853 Hagarty Mar 1992 A
5098636 Balk Mar 1992 A
5100657 Ansher-jackson et al. Mar 1992 A
5100658 Bolich, Jr. et al. Mar 1992 A
5102129 Roberts Apr 1992 A
5104646 Bolich, Jr. Apr 1992 A
5106609 Bolich, Jr. Apr 1992 A
5166276 Hayama et al. Nov 1992 A
D334420 Copeland et al. Mar 1993 S
5220033 Kamei et al. Jun 1993 A
5261426 Kellett et al. Nov 1993 A
5280079 Allen et al. Jan 1994 A
RE34584 Grote et al. Apr 1994 E
D351345 Geho Oct 1994 S
5391368 Gerstein Feb 1995 A
D357115 Ashley et al. Apr 1995 S
5409703 Mcanalley et al. Apr 1995 A
D358025 Martin et al. May 1995 S
5415810 Lee May 1995 A
5429628 Trinh et al. Jul 1995 A
5455114 Ohmory Oct 1995 A
5457895 Thompson et al. Oct 1995 A
5458433 Stastny Oct 1995 A
5476597 Sakata et al. Dec 1995 A
5501238 Borstel et al. Mar 1996 A
5533638 Reiker Jul 1996 A
5580481 Sakata et al. Dec 1996 A
5582786 Brunskill et al. Dec 1996 A
D378180 Hayes Feb 1997 S
5660845 Trinh et al. Aug 1997 A
5672576 Behrens et al. Sep 1997 A
5673576 Chen et al. Oct 1997 A
5674478 Dodd Oct 1997 A
5750122 Evans May 1998 A
5780047 Kamiya et al. Jul 1998 A
D398847 Wyslotsky Sep 1998 S
D399260 Thimote Oct 1998 S
5849378 Gask Dec 1998 A
D407640 Crapser et al. Apr 1999 S
D408223 Henry Apr 1999 S
5911224 Berger Jun 1999 A
5925603 D'Angelo Jul 1999 A
5955419 Barket, Jr. et al. Sep 1999 A
D416103 Hashmi Nov 1999 S
5976454 Sterzel et al. Nov 1999 A
D418415 Hayes Jan 2000 S
D418750 Blin Jan 2000 S
6010719 Remon et al. Jan 2000 A
6029808 Peck et al. Feb 2000 A
6034043 Fujiwara Mar 2000 A
D427902 Hayes Jul 2000 S
6106849 Malkan et al. Aug 2000 A
6177391 Zafar Jan 2001 B1
6200949 Reijmer et al. Mar 2001 B1
D441869 Bloor et al. May 2001 S
D442353 Macias May 2001 S
D442739 Friesenhahn May 2001 S
D443389 Friesenhahn Jun 2001 S
D448802 Lariviere, Jr. et al. Oct 2001 S
D449881 Mock, Sr. Oct 2001 S
D450378 Minakuchi et al. Nov 2001 S
6365142 Tamura Apr 2002 B1
D462900 Yamada et al. Sep 2002 S
6458754 Velazquez et al. Oct 2002 B1
D465303 Friesenhahn Nov 2002 S
6503521 Atis et al. Jan 2003 B1
6525034 Dalrymple et al. Feb 2003 B2
D479561 Meyer Sep 2003 S
D484749 Garraway Jan 2004 S
D489162 Dings-plooij May 2004 S
6790814 Marin Sep 2004 B1
6800295 Fox Oct 2004 B2
6808375 Kloetzer Oct 2004 B2
6825161 Shefer et al. Nov 2004 B2
6831046 Carew et al. Dec 2004 B2
6846784 Engel et al. Jan 2005 B2
6878368 Ohta et al. Apr 2005 B2
D509935 Burt Sep 2005 S
6943200 Corrand et al. Sep 2005 B1
D515915 Karim Feb 2006 S
7015181 Lambino Mar 2006 B2
7208460 Shefer et al. Apr 2007 B2
D549051 Nordwall Aug 2007 S
7285520 Krzysik Oct 2007 B2
7387787 Fox Jun 2008 B2
D576753 Mukai Sep 2008 S
D577332 Moore Sep 2008 S
D578881 Friedland Oct 2008 S
D588332 Phelan Mar 2009 S
7832552 Newman Nov 2010 B2
7846462 Spadini et al. Dec 2010 B2
7892992 Kamada et al. Feb 2011 B2
7901696 Eknoian et al. Mar 2011 B2
D640921 Caldwell Jul 2011 S
D644541 Schrader et al. Sep 2011 S
D651096 Nakagiri Dec 2011 S
D655154 Amos Mar 2012 S
8197830 Helfman et al. Jun 2012 B2
8268764 Glenn, Jr. et al. Sep 2012 B2
8273333 Glenn, Jr. Sep 2012 B2
8288332 Fossum et al. Oct 2012 B2
8309505 Fossum et al. Nov 2012 B2
8349341 Glenn, Jr. et al. Jan 2013 B2
8349786 Glenn, Jr. et al. Jan 2013 B2
8349787 Glenn, Jr. et al. Jan 2013 B2
8357728 Butler et al. Jan 2013 B2
8367596 Fossum et al. Feb 2013 B2
D680882 Logue Apr 2013 S
8415287 Glenn, Jr. et al. Apr 2013 B2
D682622 Keys May 2013 S
8461090 Glenn, Jr. et al. Jun 2013 B2
8461091 Glenn, Jr. Jun 2013 B2
8466099 Glenn, Jr. et al. Jun 2013 B2
D685436 Menting Jul 2013 S
8476211 Glenn, Jr. et al. Jul 2013 B2
8541081 Ranganathan et al. Sep 2013 B1
8546640 Popovsky et al. Oct 2013 B2
D694621 Mccarthy Dec 2013 S
8723333 Park et al. May 2014 B2
8765170 Glenn, Jr. Jul 2014 B2
D712159 Clerici et al. Sep 2014 S
D712822 Brusaw et al. Sep 2014 S
9062186 Longdon et al. Jun 2015 B2
D739227 Mitchell et al. Sep 2015 S
D740928 Bruining et al. Oct 2015 S
9198838 Glenn, Jr. Dec 2015 B2
D748240 Goode Jan 2016 S
D769522 Venet Oct 2016 S
D771788 Duckwitz Nov 2016 S
D774086 Montes et al. Dec 2016 S
D775198 Montes et al. Dec 2016 S
9539444 Kinoshita et al. Jan 2017 B2
D778026 Roetheli Feb 2017 S
D793025 Slusarczyk et al. Aug 2017 S
D797551 Chatterton Sep 2017 S
D798143 Chatterton Sep 2017 S
D808583 Zietek Jan 2018 S
D811922 Lefave Mar 2018 S
D811935 Hughes Mar 2018 S
D819836 Noël Jun 2018 S
D848102 Carlson et al. May 2019 S
D850041 Endle May 2019 S
10294586 Sivik et al. May 2019 B2
D851344 Carlson et al. Jun 2019 S
D857156 Hani Aug 2019 S
D857242 Darrow et al. Aug 2019 S
D857929 Darrow et al. Aug 2019 S
D862020 Gorrell et al. Oct 2019 S
D863600 Chao Oct 2019 S
D864507 Stoughton et al. Oct 2019 S
D866105 Carlson et al. Nov 2019 S
D866891 Carlson et al. Nov 2019 S
D866892 Hunt et al. Nov 2019 S
D866893 Hunt et al. Nov 2019 S
D867717 Chavez Nov 2019 S
D868159 Swisher et al. Nov 2019 S
D868953 Mckendree Dec 2019 S
10569286 Anderson et al. Feb 2020 B2
D878694 Carlson et al. Mar 2020 S
10694917 Dreher et al. Jun 2020 B2
D901115 Carlson et al. Nov 2020 S
D903152 Chao Nov 2020 S
D906802 Chi Jan 2021 S
D910434 Tan et al. Feb 2021 S
D910457 Lee Feb 2021 S
D921166 Meyers Jun 2021 S
D933095 Heiner et al. Oct 2021 S
20020077264 Roberts et al. Jun 2002 A1
20020081930 Jackson et al. Jun 2002 A1
20020098994 Zafar Jul 2002 A1
20020099109 Dufton et al. Jul 2002 A1
20020177621 Hanada et al. Nov 2002 A1
20020187181 Godbey et al. Dec 2002 A1
20030018242 Hursh et al. Jan 2003 A1
20030032573 Tanner et al. Feb 2003 A1
20030045441 Hsu et al. Mar 2003 A1
20030069154 Hsu et al. Apr 2003 A1
20030080150 Cowan May 2003 A1
20030099691 Lydzinski et al. May 2003 A1
20030099692 Lydzinski et al. May 2003 A1
20030141662 Kost et al. Jul 2003 A1
20030166489 Van et al. Sep 2003 A1
20030180242 Eccard et al. Sep 2003 A1
20030186826 Eccard et al. Oct 2003 A1
20030194416 Shefer Oct 2003 A1
20030199412 Gupta Oct 2003 A1
20030207776 Shefer et al. Nov 2003 A1
20030209166 Vanmaele et al. Nov 2003 A1
20030215522 Johnson et al. Nov 2003 A1
20030232183 Dufton Dec 2003 A1
20040029762 Hensley Feb 2004 A1
20040032859 Miao Feb 2004 A1
20040048759 Ribble et al. Mar 2004 A1
20040048771 Mcdermott Mar 2004 A1
20040053808 Raehse et al. Mar 2004 A1
20040059055 Inada Mar 2004 A1
20040071742 Popplewell Apr 2004 A1
20040071755 Fox Apr 2004 A1
20040108615 Foley Jun 2004 A1
20040110656 Casey et al. Jun 2004 A1
20040118852 Barmore et al. Jun 2004 A1
20040126585 Kerins et al. Jul 2004 A1
20040175404 Shefer Sep 2004 A1
20040180597 Kamada Sep 2004 A1
20040202632 Gott et al. Oct 2004 A1
20040206270 Vanmaele et al. Oct 2004 A1
20040242097 Hasenoehrl Dec 2004 A1
20040242772 Huth et al. Dec 2004 A1
20050069575 Fox Mar 2005 A1
20050118237 Krzysik et al. Jun 2005 A1
20050136780 Clark et al. Jun 2005 A1
20050137272 Gaserod Jun 2005 A1
20050159730 Kathrani et al. Jul 2005 A1
20050202992 Grandio et al. Sep 2005 A1
20050220745 Lu Oct 2005 A1
20050232954 Yoshinari et al. Oct 2005 A1
20050272836 Yaginuma et al. Dec 2005 A1
20050287106 Legendre Dec 2005 A1
20060002880 Peffly et al. Jan 2006 A1
20060013869 Ignatious Jan 2006 A1
20060052263 Roreger et al. Mar 2006 A1
20060064510 Low et al. Mar 2006 A1
20060078528 Yang et al. Apr 2006 A1
20060078529 Uchida et al. Apr 2006 A1
20060128592 Ross Jun 2006 A1
20060159730 Simon Jul 2006 A1
20060228319 Vona et al. Oct 2006 A1
20060274263 Yacktman et al. Dec 2006 A1
20070028939 Mareri et al. Feb 2007 A1
20070099813 Luizzi May 2007 A1
20070110792 Simon May 2007 A9
20070135528 Butler et al. Jun 2007 A1
20070149435 Koenig et al. Jun 2007 A1
20070225388 Cooper et al. Sep 2007 A1
20080019935 Khan Jan 2008 A1
20080035174 Aubrun-sonneville Feb 2008 A1
20080083420 Glenn et al. Apr 2008 A1
20080090939 Netravali et al. Apr 2008 A1
20080131695 Aouad et al. Jun 2008 A1
20080138492 Cingotti Jun 2008 A1
20080152894 Beihoffer et al. Jun 2008 A1
20080153730 Tsaur Jun 2008 A1
20080215023 Scavone et al. Sep 2008 A1
20080276178 Fadell et al. Nov 2008 A1
20080292669 Deng et al. Nov 2008 A1
20080293839 Stobby Nov 2008 A1
20090197787 Venet et al. Aug 2009 A1
20090232873 Glenn, Jr. et al. Sep 2009 A1
20090263342 Glenn, Jr. Oct 2009 A1
20100018641 Branham Jan 2010 A1
20100150976 Schnitzler Jun 2010 A1
20100167971 Glenn, Jr. et al. Jul 2010 A1
20100173817 Glenn, Jr. et al. Jul 2010 A1
20100179083 Glenn, Jr. et al. Jul 2010 A1
20100279905 Glenn, Jr. Nov 2010 A1
20100286011 Glenn, Jr. et al. Nov 2010 A1
20100291165 Glenn, Jr. et al. Nov 2010 A1
20110023240 Fossum Feb 2011 A1
20110027328 Baig et al. Feb 2011 A1
20110028373 Fossum et al. Feb 2011 A1
20110028374 Fossum et al. Feb 2011 A1
20110033509 Simon Feb 2011 A1
20110165110 Kinoshita et al. Jul 2011 A1
20110182956 Glenn, Jr. et al. Jul 2011 A1
20110189246 Glenn, Jr. et al. Aug 2011 A1
20110189247 Glenn, Jr. Aug 2011 A1
20110195098 Glenn, Jr. Aug 2011 A1
20110250256 Hyun-oh et al. Oct 2011 A1
20110287687 Kramer et al. Nov 2011 A1
20120021026 Glenn, Jr. Jan 2012 A1
20120052036 Glenn, Jr. Mar 2012 A1
20120052037 Sivik et al. Mar 2012 A1
20120107534 Wnuk et al. May 2012 A1
20120237576 Gordon Sep 2012 A1
20120270029 Glenn, Jr. et al. Oct 2012 A1
20120288693 Stanley et al. Nov 2012 A1
20120294823 Aramwit Nov 2012 A1
20120321580 Glenn, Jr. Dec 2012 A1
20130236520 Popovsky et al. Sep 2013 A1
20130303419 Glenn, Jr. et al. Nov 2013 A1
20140105946 Glenn, Jr. Apr 2014 A1
20140271744 Glenn, Jr. et al. Sep 2014 A1
20140329428 Glenn, Jr. Nov 2014 A1
20150102307 Tajima et al. Apr 2015 A1
20150297494 Mao Oct 2015 A1
20150313803 Lynch et al. Nov 2015 A1
20150313804 Lynch et al. Nov 2015 A1
20150313805 Lynch et al. Nov 2015 A1
20150313806 Lynch et al. Nov 2015 A1
20150313807 Lynch et al. Nov 2015 A1
20150313808 Lynch et al. Nov 2015 A1
20150313809 Lynch et al. Nov 2015 A1
20150315350 Mao et al. Nov 2015 A1
20160008235 Sivik et al. Jan 2016 A1
20160101026 Pratt Apr 2016 A1
20160101204 Lynch Apr 2016 A1
20160143827 Castan Barberan et al. May 2016 A1
20160250109 Dreher et al. Sep 2016 A1
20160367104 Dreher et al. Dec 2016 A1
20170121641 Smith May 2017 A1
20170335080 Mao et al. Nov 2017 A1
20180110710 Zhao Apr 2018 A1
20180140469 Kane et al. May 2018 A1
20180311135 Chang et al. Nov 2018 A1
20180333339 Hamersky Nov 2018 A1
20180334644 Hamersky et al. Nov 2018 A1
20190015875 Gardner, Jr. et al. Jan 2019 A1
20190282457 Pratt Sep 2019 A1
20190282461 Glassmeyer Sep 2019 A1
20190350819 Hamersky et al. Nov 2019 A1
20200093710 Hamersky Mar 2020 A1
20200214946 Chan et al. Jul 2020 A1
20200308360 Mao et al. Oct 2020 A1
20200405587 Song Dec 2020 A1
20210000733 Hilvert Jan 2021 A1
20210094744 Benson et al. Apr 2021 A1
20210107263 Bartolucci et al. Apr 2021 A1
20210401677 Song Dec 2021 A1
Foreign Referenced Citations (106)
Number Date Country
166297 May 2018 CA
169627 May 2018 CA
1138091 Dec 1996 CN
1219388 Jun 1999 CN
1268558 Oct 2000 CN
1357613 Jul 2002 CN
1454231 Nov 2003 CN
1473194 Feb 2004 CN
1530431 Sep 2004 CN
1583991 Feb 2005 CN
1726074 Jan 2006 CN
3648760 May 2007 CN
102006852 Apr 2011 CN
301666535 Sep 2011 CN
102647973 Aug 2012 CN
103282015 Sep 2013 CN
103735428 Apr 2014 CN
104040061 Sep 2014 CN
304115833 Apr 2017 CN
106726634 May 2017 CN
106728634 May 2017 CN
304537587 Mar 2018 CN
109589279 Mar 2020 CN
19607851 Sep 1997 DE
10331767 Feb 2005 DE
100932 Apr 2018 DE
100938 Apr 2018 DE
101063 May 2018 DE
101100 May 2018 DE
101101 May 2018 DE
0392608 Oct 1990 EP
609808 Aug 1994 EP
0858828 Aug 1998 EP
0948960 Oct 1999 EP
1214879 Jun 2002 EP
1217987 Dec 2004 EP
1574561 Sep 2005 EP
1160311 Mar 2006 EP
1958532 Aug 2008 EP
2085434 Aug 2009 EP
1317916 Oct 2010 EP
2871685 Dec 2005 FR
2886845 Dec 2006 FR
2235204 Feb 1991 GB
2355008 Apr 2001 GB
2378407 Feb 2003 GB
58021608 Feb 1983 JP
S58216109 Dec 1983 JP
S6272609 Apr 1987 JP
S6272610 Apr 1987 JP
S6281432 Apr 1987 JP
H01172319 Jul 1989 JP
H01313418 Dec 1989 JP
H0275650 Mar 1990 JP
H05344873 Dec 1993 JP
H0617083 Jan 1994 JP
0753349 Feb 1995 JP
H0789852 Apr 1995 JP
H08325133 Dec 1996 JP
H09216909 Aug 1997 JP
H10251371 Sep 1998 JP
H11513053 Nov 1999 JP
2000053998 Feb 2000 JP
2000229841 Aug 2000 JP
2001519376 Oct 2001 JP
2001520983 Nov 2001 JP
2002226895 Aug 2002 JP
2003073700 Mar 2003 JP
2003082397 Mar 2003 JP
2004509198 Mar 2004 JP
2004256799 Sep 2004 JP
2004345983 Dec 2004 JP
2005171063 Jun 2005 JP
2005538202 Dec 2005 JP
2006056835 Mar 2006 JP
2007001889 Jan 2007 JP
2007091954 Apr 2007 JP
2007197365 Aug 2007 JP
2007197540 Aug 2007 JP
20020003442 Jan 2002 KR
8301943 Jun 1983 WO
9514495 Jun 1995 WO
9951715 Oct 1999 WO
0042992 Jul 2000 WO
0107194 Feb 2001 WO
0119948 Mar 2001 WO
0125393 Apr 2001 WO
200125322 Apr 2001 WO
2001024770 Apr 2001 WO
2001054667 Aug 2001 WO
0238722 May 2002 WO
2004032859 Apr 2004 WO
2004041991 May 2004 WO
2005003423 Jan 2005 WO
2005070374 Aug 2005 WO
2005075547 Aug 2005 WO
2007033598 Mar 2007 WO
2007093558 Aug 2007 WO
2007102119 Sep 2007 WO
2008104954 Sep 2008 WO
2009019571 Feb 2009 WO
2009095891 Aug 2009 WO
2010077627 Jul 2010 WO
2010085569 Jul 2010 WO
2012120199 Sep 2012 WO
2019001940 Jan 2019 WO
Non-Patent Literature Citations (84)
Entry
All Office Actions; U.S. Appl. No. 17/357,119, filed Jun. 24, 2021.
All Office Actions; U.S. Appl. No. 29/815,500), filed Nov. 15, 2021.
Raymond C Rowe et al., Polyvinyl Alcohol, Handbook of Pharmaceutical Excipients, 2009, Sixth Edition, Pharmaceutical Press, 564-565.
Sahin et al. “A Study on Physical and Chemical Properties of Cellulose Paper Immersed in Various Solvent Mixtures” International Journal Of Molecular Sciences, Jan. 2008; 9(1): 78-88.
All Office Actions; U.S. Appl. No. 29/819,499, filed Dec. 15, 2021.
Color Keeper [online], [site visited Oct. 18, 2021]. Available from internet, URL: https://shopgemz.com/products/color-keeper?variant=13094595002434&utm_source=google&utm_medium=cpc&utm_campaign=Shopping&gclid=Cj0KCQjw5JSLBhCxARIsAHgO2SdAT7LTehpyxM1qTGtnFETDalNuo9_cQSOpPwCmsmmdGA1Y0USekQEaAh0iEALw_wcB (Year: 2021).
Paper Pieces Hexagons, announced 2018 [online], [site visited Oct. 14, 2021]. Available from internet, URL:https://www.amazon.com/Paper-Pieces-HEX100B-Hexagons-1200pc/dp/B07DVYV2HN/(Year: 2018).
Rounded hexagon shape, announced 2016 [online], [site visited Oct. 20, 2021], Available from internet, URL:https://www.vexels.com/png-svg/preview/139199/rounded-hexagon-shape (Year: 2016).
Adhesives Research (Pennsylvania, http://12.4.33.51/news/apresmed.htm).
All final and non-final office actions for U.S. Appl. No. 14/690,593.
All final and non-final office actions for U.S. Appl. No. 15/665,886.
All final and non-final office actions for U.S. Appl. No. 16/431,028.
All final and non-final office actions for U.S. Appl. No. 16/431,115.
All final and non-final office actions for U.S. Appl. No. 16/577,120.
All final and non-final office actions for U.S. Appl. No. 16/589,504.
All final and non-final office actions for U.S. Appl. No. 16/901,548.
All final and non-final office actions for U.S. Appl. No. 16/912,876.
All final and non-final office actions for U.S. Appl. No. 16/918,292.
All final and non-final office actions for U.S. Appl. No. 29/672,822.
All final and non-final office actions for U.S. Appl. No. 29/676,338.
All final and non-final office actions for U.S. Appl. No. 29/707,807.
All final and non-final office actions for U.S. Appl. No. 29/707,809.
All final and non-final office actions for U.S. Appl. No. 29/728,687.
All final and non-final office actions for U.S. Appl. No. 29/728,688.
All final and non-final Office Actions, U.S. Appl. No. 15/979,961.
All final and non-final Office Actions, U.S. Appl. No. 15/981,096.
All Office Actions, U.S. Appl. No. 17/070,205.
All Office Actions, U.S. Appl. No. 29/766,885.
Amerilab Technologies, Inc. (Minnesota, http://www.amerilabtech.comm/).
Anonymous “P8136 Poly(vinyl alcohol)” Internet article, [Online] XP002538935 retrieved from the Internet: URL:hllp/20NWW.sigmaaldrich.com/catalog/ProductDetail.do?D7=0%N25-SEARCH_ CONCAT PNOIBRAND KEY%N4=P8136%7SCIAL%N25=0%QS=ON%F=SPEC retrieved on Jul. 28, 2009.
Briscoe et al. “The effects of hydrogen bonding upon the viscosity of aqueous poly( vinyl alcohol) solutions,” from Polymer, 41 (2000), pp. 3851-3860.
Cardinal Health (Dublin, Ohio, http://spd.cardinal.com/).
Cima Labs, Inc. (Minnesota, http://www.cimalabs.com/).
Design of “Detergent tablets” (Design Registration No. 000634142-0003), (No. of Publicly known information: HH18274488), Registered Community Designs Bulletin, published by EUIPO on Jan. 9, 2007.
Design of “Detergent tablets” (Design Registration No. 000634142-0004), (No. of Publicly known information: HH18274489), Registered Community Designs Bulletin, published by EUIPO on Jan. 9, 2007.
Design of “Soaps” accepted on Jul. 11, 1986, Publishing Office: Korean Intellectual Property Office (KIPO), Document Name: Design Gazette (Application No. 3019850005996), Publication Date: Jun. 9, 1986, (No. of Publicly known information: HG21900612).
Dissolving Soap Strips (Ranir LLC, Michigan, www.ranir.com).
Encyclopedia of Polymer Science and Engineering, vol. 15, 2nd ed., pp. 204 308 Silicones, 1989.
Guerrini et al. “Thermal and Structural Characterization of Nanofibers of Poly( vinyl alcohol) Produced by Electrospinning”, Journal of Applied Polymer Science, vol. 112, Feb. 9, 2009, pp. 1680-1687.
Hexagon 4 ward soap mold, Soap, Cosmetics, NEW Silicon mold, Published on Sep. 29, 2016, Retrieved from Internet : http://candle-box.com/product/%EC%9C%A1%EA%B0%81-4%EA%B5%AC-%EB%B9%84%EB%88%84%EB%AA%B0 %EB%93%9C/2206/?page_4=3#none.
Hildebrand, T., et al. “Quantification of bone microarchitecture with the structure mode index”, Computer Methods in Biomechanics and Biomedical Engineering, vol. 1, Jan. 14, 1997, pp. 15-23.
How Gemz work?, Gemz Hair Care, published on Oct. 1, 2018, retrieved on Apr. 27, 2021, retrieved from the Internet URL: https:// www.youtube.com/watch?v=ts1waYk43g4.
https ://www.craftcuts.com/hexagon-craft-shape. htmlHexagon wood cutouts, www.craftcuts.com, 1 page, reviewed as early as May 2018 (Year: 2018).
Japanese Paper Soap (http://www.wishingfish.com/papersoap.html).
Kuraray: “Mowiol—Technical data sheet”, Jun. 1, 2010 (Jun. 1, 2010),pp. 1-4, XP055119891, Retrieved from the Internet: URL:http://www.kuraray.eu/fileadmin/Downloads/mowiol/TDS_Mowiol_en_20110624.pdf [retrieved on May 23, 2014].
Le Laboratoire du Bain (France, http://www.laboudubain.com/).
M.K. Industries (Gujarat India, http://www.soapstrips.com).
Megulars Car Wash Strips: Megulars Inc. California, http://www.automotivedigesl.com/view_art.asp?articles!D=12414.
Michelle Villett, Why You Need a Sulfate-Free Shampoo, The Skincare Edit, updated date: Jan. 25, 2019, Original publication date: Feb. 22, 2016 (Year: 2016), 7 pages.
MOVA Pharmaceutical and Kosmos (USA, http:/lwww.icon-pr.com/news/news/prinl.cfm?inv_id=256-1).
Okasaka et al., “Evaluation Of Anionic Surfactants Effects On The Skin Barrier Function Based On Skin Permeability”, Pharmaceutical Development and Technology, vol. 24, No. 1, Jan. 23, 2018, pp. 99-104.
Product Review: Gemz Solid Shampoo, Travel As Much, published on Mar. 19, 2019, retrieved on Apr. 27, 2021, retrieved from the Internet URL: https://travelasmuch.com/gemz-solid-shampoo-review/.
Pure Soap Leafz: (Soap UNLTD. Netherlands, http://www.upandunder.com.uk/eshop/catalogue/testbs.asp?Manufacturer_ID=252&Activity_ID=33&Description_ID=157).
Sanipro Sanitary Products (Italy, http://www.sanipro.iit).
Solublon (Toyohashi Japan, http://www.solublon.com).
SPI Pharma (Delaware, http://www.spipharma.com).
Travelers Passport Paper Soap Sheets (http://www.weddingflavornow.com/index.asp?PageAction=VIEWPROD&PROD&ProdID=510).
Vaughan, C.D. “Solubility, Effects in Product, Package, Penetration and Preservation”, Cosmetics and Toiletries, vol. 103, Oct. 1988.
Veslerby, A.: “Star Volume in Bone Research: A Histomorphometric Analysis Of Trabecular Bone Structure UsingVertical Sections”, Anal Rec: Feb. 1993, 232(2), pp. 325-334.
Wenda (China, http://www.wenda.com).
Zhang et al. “Study on Morphology of Electrospun Poly( vinyl alcohol) Mats,” European Polymer Journal 41 (2005), pp. 423-432.
U.S. Appl. No. 29/819,499, filed Dec. 15, 2021, Sharonda Lee Crawford Washington et al.
Definition of Derivative by Merriam Webster Online Dictionary, Year, 2021.
Wermuth et al. Drug Discovery, “Drug Discovery Today, 2006”, vol. 11 7/8, 348-354, Year 2006.
Dow, UCARE™ Polymer LR-400, Technical Data Sheet, Downloaded in Mar. 2022, 4 pages.
Karen Duis et al, “Environmental fate and effects of water-soluble synthetic organic polymers used in cosmetic products”, Environmental Sciences Europe, vol. 33, Article No. 21, Feb. 16, 2021, 78 pages.
U.S. Appl. No. 29/728,688, filed Mar. 20, 2020, Douglas Charles Cook et al.
U.S. Appl. No. 29/728,687, filed Mar. 20, 2020, Douglas Charles Cook et al.
U.S. Appl. No. 29/707,809, filed Oct. 1, 2019, Sharonda Lee Crawford Washington et al.
U.S. Appl. No. 29/707807, filed Oct. 1, 2019, Sharonda Lee Crawford Washington et al.
U.S. Appl. No. 29/766,885, filed Jan. 19, 2021, Wee Hau Tan et al.
PCT International Search Report and Written Opinion for PCT/CN2019/119586 dated Aug. 26, 2020.
“Green Chemistry”, Huazhong University of Science and Technology Press, published on Jun. 30, 2008, pp. 6.
Ni Genshan et al. “Drug Classification and Pharmacology Summary”, PLA Press, published on Apr. 30, 1988, pp. 3.
All Office Actions; U.S. Appl. No. 12/633,228, filed Dec. 8, 2009.
All Office Actions; U.S. Appl. No. 12/633,257, filed Dec. 8, 2009.
All Office Actions; U.S. Appl. No. 12/633,301, filed Dec. 8, 2009.
All Office Actions; U.S. Appl. No. 12/633,335, filed Dec. 8, 2009.
All Office Actions; U.S. Appl. No. 12/633,415, filed Dec. 8, 2009.
All Office Actions; U.S. Appl. No. 12/633,550, filed Dec. 8, 2009.
All Office Actions; U.S. Appl. No. 13/561,298, filed Jul. 30, 2012.
All Office Actions; U.S. Appl. No. 13/915,797, filed Jun. 12, 2013.
Hiroshi Yagi & 4 Others, Research Study of a Frictionprotector for Preventing a Tow Line From Breaking,Working Papers for Fiscal 2006 | Japan | Japan Coast Guard Dec. 2007, pp. 1-8.
Latorre Carmen,Nanotribological Effects of Hair Careproducts and Environment On Human Hair Using Atomic Forcemicroscopy,Journal of Vacuum Science and Technology:Part A, U. S . A, AVS / AI P , Jun. 28, 2005, V2 3 N 4 , p. 10 3 4-1O4 5.
Related Publications (1)
Number Date Country
20210147763 A1 May 2021 US