The present invention generally relates to porous electrodes useful in the fabrication of electrochemical cells and batteries. The disclosure further provides methods of making the porous electrodes.
Various components useful in the formation of electrochemical cells and redox flow batteries have been disclosed in the art. Such components are described in, for example, U.S. Pat. Nos. 5,648,184, 8,518,572 and 8,882,057.
In one aspect, the present disclosure provides a porous electrode for a liquid flow battery comprising:
a porous electrode material comprising:
a solid film substrate having a first major surface and a second major surface, wherein the solid film substrate includes a plurality of through holes extending from the first major surface to the second major surface; wherein the porous electrode material is disposed on at least the first major surface and within the plurality of through holes of the solid film substrate, wherein the porous electrode has a first major surface, an opposed second major surface, and the plurality of through holes with the porous electrode material provide electrical communication between the first major surface and the opposed second major surface of the porous electrode.
In another aspect, the present disclosure provides membrane-electrode assembly for a liquid flow battery comprising:
an ion exchange membrane having a first surface and an opposed second surface; and
a porous electrode according to any one of the embodiments of the present disclosure, wherein a major surface of the porous electrode is adjacent the first surface of the ion exchange membrane.
In another aspect, the present disclosure provides an electrode assembly for a liquid flow battery comprising:
a first porous electrode according to any one of the embodiments of the present disclosure;
a first microporous protection layer having a first surface and an opposed second surface; wherein a major surface of the first porous electrode is proximate the second surface of the first microporous protection layer and wherein the first microporous protection layer comprises a polymer resin and an electrically conductive carbon particulate and, optionally, a non-electrically conductive particulate.
In another aspect, the present disclosure provides an electrochemical cell for a liquid flow battery comprising a porous electrode according to any one of the porous electrode embodiments of the present disclosure.
In another aspect, the present disclosure provides an electrochemical cell for a liquid flow battery comprising a membrane-electrode assembly according to any one of the membrane-electrode assembly embodiments of the present disclosure.
In another aspect, the present disclosure provides an electrochemical cell for a liquid flow battery comprising an electrode assembly according to any one of the electrode assembly embodiments of the present disclosure.
In another aspect, the present disclosure provides a liquid flow battery comprising at least one porous electrode according to any one of the porous electrode embodiments of the present disclosure.
In another aspect, the present disclosure provides a flow battery comprising at least one membrane-electrode assembly according to any one of the membrane-electrode assembly embodiments of the present disclosure.
In yet another aspect, the present disclosure provides a liquid flow battery comprising at least one electrode assembly according to any one of the electrode assembly embodiments of the present disclosure.
Repeated use of reference characters in the specification and drawings is intended to represent the same or analogous features or elements of the disclosure. The drawings may not be drawn to scale. As used herein, the word “between”, as applied to numerical ranges, includes the endpoints of the ranges, unless otherwise specified. The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range. Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein.
It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art, which fall within the scope and spirit of the principles of the disclosure. All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure. As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the context clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the context clearly dictates otherwise.
Throughout this text, when a surface of one substrate is in “contact” with the surface of another substrate, there are no intervening layer(s) between the two substrates and at least a portion of the surfaces of the two substrates are in physical contact.
Throughout this text, if a surface of a first substrate is “adjacent” to a surface of a second substrate, the two surfaces are considered to be facing one another. They may be in contact with one another or there may not be in contact with one another, an intervening third substrate or substrates being disposed between them. Throughout this text, if a surface of a first substrate is “proximate” a surface of a second substrate, the two surface are considered to be facing one another and to be in close proximity to one another, i.e. to be within less than 500 microns, less than 250 microns, less than 100 microns or even in contact with one another. However, there may be one or more intervening substrates disposed between the substrate surfaces. If a surface of a first substrate is “in contact” with a surface of a second substrate, at least a portion of the two surfaces are in physical contact, i.e. there is no intervening substrate disposed between them.
A single electrochemical cell, which may be used in the fabrication of a liquid flow battery (e.g. a redox flow battery), generally, include two porous electrodes, an anode and a cathode; an ion permeable membrane disposed between the two electrodes, providing electrical insulation between the electrodes and providing a path for one or more select ionic species to pass between the anode and cathode half-cells; anode and cathode flow plates, the former positioned adjacent the anode and the later positioned adjacent the cathode, each containing one or more channels which allow the anolyte and catholyte electrolytic solutions to contact and penetrate into the anode and cathode, respectively. The anode, cathode and membrane of the cell or battery will be referred to herein as a membrane-electrode assembly (MEA). In a redox flow battery containing a single electrochemical cell, for example, the cell would also include two current collectors, one adjacent to and in contact with the exterior surface of the anode flow plate and one adjacent to and in contact with the exterior surface of the cathode flow plate. The current collectors allow electrons generated during cell discharge to connect to an external circuit and do useful work. A functioning redox flow battery or electrochemical cell also includes an anolyte, anolyte reservoir and corresponding fluid distribution system (piping and at least one or more pumps) to facilitate flow of anolyte into the anode half-cell, and a catholyte, catholyte reservoir and corresponding fluid distribution system to facilitate flow of catholyte into the cathode half-cell. Although pumps are typically employed, gravity feed systems may also be used. During discharge, active species, e.g. cations, in the anolyte are oxidized and the corresponding electrons flow though the exterior circuit and load to the cathode where they reduce active species in the catholyte. As the active species for electrochemical oxidation and reduction are contained in the anolylte and catholyte, redox flow cells and batteries have the unique feature of being able to store their energy outside the main body of the electrochemical cell, i.e. in the anolyte. The amount of storage capacity is mainly limited by the amount of anolyte and catholyte and the concentration of active species in these solutions. As such, redox flow batteries may be used for large scale energy storage needs associated with wind farms and solar energy plants, for example, by scaling the size of the reservoir tanks and active species concentrations, accordingly. Redox flow cells also have the advantage of having their storage capacity being independent of their power. The power in a redox flow battery or cell is generally determined by the size and number of electrode-membrane assemblies along with their corresponding flow plates (sometimes referred to in total as a “stack”) within the battery. Additionally, as redox flow batteries are being designed for electrical grid use, the voltages must be high. However, the voltage of a single redox flow electrochemical cell is generally less than 3 volts (difference in the potential of the half-cell reactions making up the cell). As such, hundreds of cells may be required to be connected in series to generate voltages great enough to have practical utility and a significant amount of the cost of the cell or battery relates to the cost of the components making an individual cell.
At the core of the redox flow electrochemical cell and battery is the membrane-electrode assembly (anode, cathode and ion permeable membrane disposed there between). The design of the MEA is critical to the power output of a redox flow cell and battery. Subsequently, the materials selected for these components are critical to performance. Materials used for the electrodes may be based on carbon, which provides desirable catalytic activity for the oxidation/reduction reactions to occur and is electrically conductive to provide electron transfer to the flow plates. The electrode materials may be porous, to provide greater surface area for the oxidation/reduction reactions to occur. Porous electrodes may include carbon fiber based papers, felts, and cloths. When porous electrodes are used, the electrolytes may penetrate into the body of the electrode, access the additional surface area for reaction and thus increase the rate of energy generation per unit volume of the electrode. Also, as one or both of the anolyte and catholyte may be water based, i.e. an aqueous solution, there may be a need for the electrode to have a hydrophilic surface, to facilitate electrolyte permeation into the body of a porous electrode. Surface treatments may be used to enhance the hydrophilicity of the redox flow electrodes. This is in contrast to fuel cell electrodes which typically are designed to be hydrophobic, to prevent moisture from entering the electrode and corresponding catalyst layer/region, and to facilitate removal of moisture from the electrode region in, for example, a hydrogen/oxygen based fuel cell.
Materials used for the ion permeable membrane are required to be good electrical insulators while enabling one or more select ions to pass through the membrane. These material are often fabricated from polymers and may include ionic species to facilitate ion transfer through the membrane. Thus, the material making up the ion permeable membrane may be an expensive specialty polymer.
As hundreds of MEAs may be required per cell stack and battery, the electrodes (anode and cathode) and/or ion permeable membrane may be a significant cost factor with respect to the overall cost of the MEA and the overall cost of a cell and battery. Thus, there is a need for new electrodes that can reduce the cost of the MEAs and the overall cost of a cell and/or battery.
Additionally, as it is desirable to minimize the cost of the MEAs, another approach to minimizing their cost is to reduce the volume of the ion permeable membrane used therein. However, as the power output requirements of the cell help define the size requirements of a given MEA and thus the size of the membrane, with respect to its length and width dimensions (larger length and width, generally, being preferred), it may only be possible to decrease the thickness of the ion permeable membrane, in order to decrease the cost of the MEA. However, by decreasing the thickness of the ion permeable membrane, a problem has been identified. As the membrane thickness has been decreased, it has been found that the relatively stiff fibers, e.g. carbon fibers, used to fabricate the porous electrodes, can penetrate through the thinner membrane and contact the corresponding electrode of the opposite half-cell. This causes detrimental localized shorting of the cell, a loss in the power generated by the cell and a loss in power of the overall battery. Thus, there is a need for improved electrodes useful in membrane-electrode assemblies that can prevent this localized shorting while maintaining the required electrolyte transport through the electrode without inhibiting the required oxidation/reduction reaction of the electrochemical cells and batteries fabricated therefrom.
The present disclosure provides porous electrodes having a new design that includes at least one polymer and at least one conductive carbon particulate. The addition of polymer may reduce the cost of the porous electrode compared to the cost of traditional carbon fiber based electrodes, e.g. carbon papers. The porous electrodes of the present disclosure, may also reduce the localized shorting that has been found to be an issue when the membrane thickness is reduced and may allow for even thinner membranes to be used, further facilitating cost reduction of the MEAs and corresponding cells and batteries made therefrom. The porous electrodes of the present disclosure are useful in the fabrication of MEAs, electrode assemblies, liquid flow, e.g. redox flow, electrochemical cells and batteries. Liquid flow electrochemical cells and batteries may include cells and batteries having a single half-cell being a liquid flow type or both half-cells being a liquid flow type. The electrode may be a component of a MEA or a component of an electrode assembly. An electrode assembly includes a porous electrode and a microporous protection layer. The present disclosure also includes liquid flow electrochemical cells and batteries containing porous electrodes, MEAs and/or electrode assemblies that include at least one porous electrode of the present disclosure. The present disclosure further provides methods of fabricating the porous electrodes, membrane-electrode assemblies and electrode assemblies useful in the fabrication of liquid flow electrochemical cells and batteries.
In one embodiment, the present disclosure provides an electrode for a liquid flow battery including a porous electrode material which includes a polymer and an electrically conductive carbon particulate, wherein the electrode is porous. The electrode further includes a solid film substrate having a first major surface and a second major surface, wherein the solid film substrate includes a plurality of through holes extending from the first major surface to the second major surface and the porous electrode material is disposed on at least the first major surface and within the plurality of through holes of the solid film substrate. The plurality of through holes which contain the porous electrode material may provide electrical communication between the first major surface and the opposed second major surface of the electrode. An electrode is considered “porous” and an electrode material is considered “porous” if it allows a liquid to flow from one exterior surface of a 3-dimensional porous electrode structure containing the porous electrode material to the exterior of an opposing surface of the 3-dimensional structure. Several specific, but non-limiting, embodiments of the porous electrode of the present disclosure are shown in
Referring to
Referring to
In some embodiments, the polymer of the porous electrode material of the porous electrode may be at least one of a polymer particulate and polymer binder resin. In some embodiments, the polymer may be a polymer particulate. In some embodiments, the polymer may be a polymer binder resin. In some embodiments the polymer does not include a polymer particulate. In some embodiments, the polymer does not include a polymer binder resin.
The term “particulate”, with respect to both an electrically conductive carbon particulate and a polymer particulate is meant to include particles, flakes, fibers, dendrites and the like. Particulate particles generally include particulates that have aspect ratios of length to width and length to thickness both of which are between about 1 and about 5. Particle size may be from between about 0.001 microns to about 100 microns, from between about 0.001 microns to about 50 microns, from between about 0.001 to about 25 microns, from between about 0.001 microns to about 10 microns, from about 0.001 microns to about 1 microns, from between about 0.01 microns and about 100 microns, from between about 0.01 microns to about 50 microns, from between about 0.01 to about 25 microns, from between about 0.01 microns to about 10 microns, from about 0.01 microns to about 1 microns, from between about 0.05 microns to about 100 microns, from between about 0.05 microns to about 50 microns, from between about 0.05 to about 25 microns, from between about 0.05 microns to about 10 microns, from about 0.05 microns to about 1 microns, from between about 0.1 microns and about 100 microns, from between about 0.1 microns to about 50 microns, from between about 0.1 to about 25 microns, from between about 0.1 microns to about 10 microns, or even from between about 0.1 microns to about 1 microns. Particles may be spheroidal in shape.
Particulate flakes generally include particulates that have a length and a width each of which is significantly greater than the thickness of the flake. A flake includes particulates that have aspect ratios of length to thickness and width to thickness each of which is greater than about 5. There is no particular upper limit on the length to thickness and width to thickness aspect ratios of a flake. Both the length to thickness and width to thickness aspect ratios of the flake may be between about 6 and about 1000, between about 6 and about 500, between about 6 and about 100, between about 6 and about 50, between about 6 and about 25, between about 10 and about 500, between 10 and about 150, between 10 and about 100, or even between about 10 and about 50. The length and width of the flake may each be from between about 0.001 microns to about 50 microns, from between about 0.001 to about 25 microns, from between about 0.001 microns to about 10 microns, from about 0.001 microns to about 1 microns, from between about 0.01 microns to about 50 microns, from between about 0.01 to about 25 microns, from between about 0.01 microns to about 10 microns, from about 0.01 microns to about 1 microns, from between about 0.05 microns to about 50 microns, from between about 0.05 to about 25 microns, from between about 0.05 microns to about 10 microns, from about 0.05 microns to about 1 microns, from between about 0.1 microns to about 50 microns, from between about 0.1 to about 25 microns, from between about 0.1 microns to about 10 microns, or even from between about 0.1 microns to about 1 microns. Flakes may be platelet in shape.
Particulate dendrites include particulates having a branched structure. The particle size of the dendrites may be the same as those disclosed for the particulate particles, discussed above.
Particulate fibers generally include particulates that have aspect ratios of the length to width and length to thickness both of which are greater about 10 and a width to thickness aspect ratio less than about 5. For a fiber having a cross sectional area that is in the shape of a circle, the width and thickness would be the same and would be equal to the diameter of the circular cross-section. There is no particular upper limit on the length to width and length to thickness aspect ratios of a fiber. Both the length to thickness and length to width aspect ratios of the fiber may be between about 10 and about 1000000, between 10 and about 100000, between 10 and about 1000, between 10 and about 500, between 10 and about 250, between 10 and about 100, between about 10 and about 50, between about 20 and about 1000000, between 20 and about 100000, between 20 and about 1000, between 20 and about 500, between 20 and about 250, between 20 and about 100 or even between about 20 and about 50. The width and thickness of the fiber may each be from between about 0.001 to about 100 microns, from between about 0.001 microns to about 50 microns, from between about 0.001 to about 25 microns, from between about 0.001 microns to about 10 microns, from about 0.001 microns to about 1 microns, from between about 0.01 to about 100 microns, from between about 0.01 microns to about 50 microns, from between about 0.01 to about 25 microns, from between about 0.01 microns to about 10 microns, from about 0.01 microns to about 1 microns, from between about 0.05 to about 100 microns, from between about 0.05 microns to about 50 microns, from between about 0.05 to about 25 microns, from between about 0.05 microns to about 10 microns, from about 0.05 microns to about 1 microns, from between about 0.1 to about 100 microns, from between about 0.1 microns to about 50 microns, from between about 0.1 to about 25 microns, from between about 0.1 microns to about 10 microns, or even from between about 0.1 microns to about 1 microns. In some embodiments the thickness and width of the fiber may be the same.
In some embodiments, some particulates could be non-conductive, high-surface energy and wetting.
The electrically conductive carbon particulate, includes but is not limited to, glass like carbon, amorphous carbon, graphene, graphite, e.g. graphitized carbon, carbon dendrites, carbon nanotubes, branched carbon nanotubes, e.g. carbon nanotrees. In some embodiments, the electrically conductive carbon particulate is at least one of carbon particles, carbon flakes, carbon fibers, carbon dendrites, carbon nanotubes and branched carbon nanotubes, e.g. carbon nanotrees. In some embodiments, the electrically conductive carbon particulate is at least one of graphite particles, graphite flakes, graphite fibers and graphite dendrites. In some embodiments, the graphite may be at least one of graphite particles, graphite flakes, and graphite dendrites. In some embodiments, the electrically conductive carbon particulate carbon does not include carbon fibers.
In some embodiments, the electrically conductive particulate is at least one of carbon nanotubes and branched carbon nanotubes. Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. Carbon nanotubes may be produced with length-to-diameter ratio of up to 132,000,000:1, significantly larger than for any other material, including carbon fiber. Carbon nanotubes may have diameters of from about 1 to 5 nanometers, orders of magnitude smaller than carbon and/or graphite fibers, which may have diameters from 5 to about 10 microns. Carbon nanotubes may have a diameter from about 0.3 nanometers to about 100 nanometers, from about 0.3 nanometers to about 50 nanometers, from about 0.3 nanometers to about 20 nanometers, from about 0.3 nanometers to about 10 nanometers, from about 1 nanometer to about 50 nanometers, from about 1 nanometer to about 20 nanometers, or even from about 1 nanometers to about 10 nanometers. Carbon nanotubes may have a length between about 0.25 microns and about 1000 microns, between about 0.5 microns and about 500 microns, or even between about 1 micron and about 100 microns. Branched carbon nanotubes, e.g. nanotrees may have a diameter from about 0.3 nanometers to about 100 nanometers. Branched carbon nanotubes include multiple, carbon nanotube side branches that are covalently bonded with the main carbon nanotube, i.e. the carbon nanotube stem. Branched carbon nanotubes, with their tree-like, dendritic geometry, may have extensively high surface area. Various synthesis methods have been developed to fabricate such complex structured carbon nanotubes with multiple terminals, including but not limited to the template method, carbon nanotube welding method, solid fiber carbonization, as well as the direct current plasma enhanced chemical vapor deposition (CVD) and several other additive-, catalyst-, or flow fluctuation-based CVD methods. In some embodiments, the diameter of the main carbon nanotube and the diameter of the carbon nanotube side branches of branched carbon nanotubes may be from about 0.3 nanometers to about 100 nanometers, from about 0.3 nanometers to about 50 nanometers, from about 0.3 nanometers to about 20 nanometers, from about 0.3 nanometers.
In some embodiments, the electrically conductive particulate is at least one of carbon nanotubes and branched carbon nanotubes. In some embodiments, the electrically conductive carbon particulate includes or consists essentially of carbon nanotubes and branched carbon nanotubes and the weight fraction of branched carbon nanotubes relative to the total weight of carbon nanotubes and branched carbon nanotubes may be from about 0.1 to about 1, from about 0.1 to about 0.9, from about 0.1 from 0.8, from about 0.2 to about 1, from about 0.2 to about 0.9, from about 0.2 from 0.8, from about 0.3 to about 1, from about 0.3 to about 0.9, from about 0.3 from 0.8, from about 0.4 to about 1, from about 0.4 to about 0.9, from about 0.4 from 0.8, from about 0.5 to about 1, from about 0.5 to about 0.9, or even from about 0.5 from 0.8. The electrically conducive particulate which includes at least one of carbon nanotubes and branched carbon nanotubes and/or which includes carbon nanotubes and branched carbon nanotubes may further comprises graphite particulate. In these embodiments, the weight fraction of graphite particulate to the total weight of electrically conductive carbon particulate may be from about 0.05 to about 1, from about 0.05 to about 0.8, from about 0.05 to about 0.6, from about 0.05 to about 0.5, from about 0.05 to about 0.4, from about 0.1 to about 1, from about 0.1 to about 0.8, from about 0.1 to about 0.6, from about 0.1 to about 0.5, from about 0.1 to about 0.4, from about 0.2 to about 1, from about 0.2 to about 0.8, from about 0.2 to about 0.6, from about 0.2 to about 0.5, or even from about 0.2 to about 0.4.
In some embodiments, the electrically conductive carbon particulate may be surface treated. Surface treatment may enhance the wettability of the electrode to a given anolyte or catholyte or to provide or enhance the electrochemical activity of the electrode relative to the oxidation-reduction reactions associated with the chemical composition of a given anolyte or catholyte. Surface treatments include, but are not limited to, at least one of chemical treatments, thermal treatments and plasma treatments. In some embodiments, the electrically conductive carbon particulate has enhanced electrochemical activity, produced by at least one of chemical treatment, thermal treatment and plasma treatment. The term “enhanced” means that the electrochemical activity of the electrically conductive carbon particulate is increased after treatment relative to the electrochemical activity of the electrically conductive carbon particulate prior to treatment. Enhanced electrochemical activity may include at least one of increased current density, reduced oxygen evolution and reduced hydrogen evolution. The electrochemical activity can be measured by fabricating a porous electrode from the electrically conductive carbon particulate (prior to and after treatment) and comparing the current density generated in an electrochemical cell by the electrode, higher current density indicating enhancement of the electrochemical activity. Cyclic voltammetry can be used to measure activity improvement, i.e. changes in current density. In some embodiments, the electrically conductive particulate is hydrophilic.
In some embodiments, the amount of electrically conductive carbon particulate contained in the electrode, on a weight basis, may be from about 5 to about 99 percent, from about 5 to about 95 percent, from about 5 to about 90 percent, from about 5 to about 80 percent, from about 5 to about 70 percent, from about 10 to about 99 percent, from about 10 to about 95 percent, from about 10 to about 90 percent, from about 10 to about 80 percent, from about 10 to about 70 percent, from about 25 to about 99 percent, 25 to about 95 percent, from about 25 to about 90 percent, from about 25 to about 80 percent, from about 25 to about 70 percent, from about 30 to about 99 percent, from about 30 to about 95 percent, from about 30 to about 90 percent, from about 30 to about 80 percent, from about 30 to about 70 percent, from about 40 to about 99 percent, from about 40 to about 95 percent, from about 40 to about 90 percent, from about 40 to about 80 percent, from about 40 to about 70 percent, from about 50 to about 99 percent, 50 to about 95 percent, from about 50 to about 90 percent, from about 50 to about 80 percent, from about 50 to about 70 percent, from about 60 to about 99 percent, 60 to about 95 percent, from about 60 to about 90 percent, from about 60 to about 80 percent, or even from about 60 to about 70 percent.
The polymer of the porous electrode material of the porous electrode may be at least one of a polymer particulate and polymer binder resin. In some embodiments of the present disclosure, the polymeric particulate may be at least one of polymer particles, polymer flakes, polymer fibers and polymer dendrites. In some embodiments, the polymer is fused polymer particulate. Fused polymer particulate may be formed from polymer particulates that are brought to a temperature to allow the contact surfaces of adjacent polymer particulates to fuse together. After fusing the individual particulates that formed the fused polymer particulate can still be identified. A fused polymer particulate is porous. Fused polymer particulate is not particulate that has been completely melted to form a solid substrate, i.e. a non-porous substrate. In some embodiments, the polymer particulate may be fused at a temperature that is not less than about 30 degrees centigrade, not less than about 20 degrees centigrade or even not less than about 10 degrees centigrade lower than the lowest glass lowest transition temperature of the polymer particulate. The polymer particulate may have more than one glass transition temperatures, if, for example, it is a block copolymer or a core-shell polymer. In some embodiments, the polymer particulate may be fused at a temperature that is below the highest melting temperature of the polymer particulate or, when the polymer particulate is an amorphous polymer, no greater than 50 degrees centigrade, no greater than 30 degrees centigrade or even no greater than 10 degrees centigrade above the highest glass transition temperature of the polymer particulate.
In some embodiments of the present disclosure, the polymer may be a polymer binder resin and the polymer binder resin may be derived from a polymer precursor liquid. A polymer precursor liquid may be at least one of a polymer solution and a reactive polymer precursor liquid, each capable of being at least one of polymerized, cured, dried and fused to form a polymer binder resin. A polymer solution may include at least one polymer dissolved in at least one solvent. A polymer solution may be capable of being at least one of polymerized, cured, dried and fused to form a polymer binder resin. In some embodiments, the polymer solution is dried to form a polymer binder resin. A reactive polymer precursor liquid includes at least one of liquid monomer and liquid oligomer. The monomer may be a single monomer or may be a mixture of at least two different monomers. The oligomer may be a single oligomer or a mixture at least two different oligomers. Mixtures of one or more monomers and one or more oligomers may also be used. The reactive polymer precursor liquid may include at least one, optional, solvent. The reactive polymer precursor liquid may include at least one, optional, polymer, which is soluble in the liquid components of the reactive polymer precursor liquid. The reactive polymer precursor liquid may be capable of being at least one of polymerized, cured, dried and fused to form a polymer binder resin. In some embodiments, the reactive polymer precursor liquid is cured to form a polymer binder resin. In some embodiments, the reactive polymer precursor liquid is polymerized to form a polymer binder resin. In some embodiments, the reactive polymer precursor liquid is cured and polymerized to form a polymer binder resin. The terms “cure”, “curing”, “cured” and the like are used herein to refer to a reactive polymer precursor liquid that is increasing its molecular weight through one or more reactions that include at least one crosslinking reaction. Generally, curing leads to a thermoset material that may be insoluble in solvents. The terms “polymerize”, “polymerizing”, “polymerized and the like, generally refer to a reactive polymer precursor liquid that is increasing its molecular weight through one or more reactions that do not include a crosslinking reaction. Generally, polymerization leads to a thermoplastic material that may be soluble in an appropriate solvent. A reactive polymer precursor liquid that is reacting by at least one crosslinking reaction and at least one polymerization reaction may form either a thermoset or thermoplastic material, depending on the degree of polymerization achieved and the amounted crosslinking of the final polymer. Monomers and/or oligomers useful in the preparation of a reactive polymer precursor liquid include, but are not limited to, monomers and oligomers conventionally used to form the polymers, e.g. thermosets, thermoplastics and thermoplastic elastomers, described herein (below). Polymers useful in the preparation of a polymer solution include, but are not limited to the thermoplastic and thermoplastic elastomer polymers described herein (below).
In the some embodiments of the present disclosure, the electrically conductive carbon particulate may be adhered to the polymer, polymer particulate and/or polymer binder resin. In some embodiments of the present disclosure, the electrically conductive carbon particulate may be adhered to the surface of the polymer particulate. In some embodiments of the present disclosure, the electrically conductive carbon particulate may be adhered to the surface of the fused polymer particulate.
The polymer of the electrode may be selected to facilitate the transfer of select ion(s) of the electrolytes through the electrode. This may be achieved by allowing the electrolyte to easily wet a given polymer. The material properties, particularly the surface wetting characteristics of the polymer may be selected based on the type of anolyte and catholyte solution, i.e. whether they are aqueous based or non-aqueous based. As disclosed herein, an aqueous based solution is defined as a solution wherein the solvent includes at least 50% water by weight. A non-aqueous base solution is defined as a solution wherein the solvent contains less than 50% water by weight. In some embodiments, the polymer of the electrode may be hydrophilic. This may be particularly beneficial when the electrode is to be used in conjunction with aqueous anolyte and/or catholyte solutions. In some embodiments the polymer may have a surface contact angle with water, catholyte and/or anolyte of less than 90 degrees. In some embodiments, the polymer may have a surface contact with water, catholyte and/or anolyte of between about 85 degrees and about 0 degrees, between about 70 degrees and about 0 degrees, between about 50 degrees and about 0 degrees, between about 30 degrees and about 0 degrees, between about 20 degrees and about 0 degrees, or even between about 10 degrees and about 0 degrees.
Polymer of the electrode, which may be a polymer particulate or a polymer binder resin, may include thermoplastic resins (including thermoplastic elastomer), thermoset resins (including glassy and rubbery materials) and combinations thereof. Useful thermoplastic resins include, but are not limited to, homopolymers, copolymers and blends of at least one of polyalkylenes, e.g. polyethylene, high molecular weight polyethylene, high density polyethylene, ultra-high molecular weight polyethylene, polypropylene, high molecular weight polypropylene; polyacrylates; polymethacrylates, styrene and styrene based random and block copolymers, e.g. styrene-butadiene-styrene; polyesters, e.g. polyethylene terephtahalate; polycarbonates, polyamides, polyamide-amines; polyalkylene glycols, e.g. polyethylene glycol and polypropylene glycol; polyurethanes; polyethers; chlorinated polyvinyl chloride; fluoropolymers including perfluorinated fluoropolymers, e.g. polytetrafluoroethylene (PTFE) and partially fluorinated fluoropolymer, e.g. polyvinylidene fluoride, each of which may be semi-crystalline and/or amorphous; polyimides, polyetherimides, polysulphones; polyphenylene oxides; and polyketones. Useful thermoset resins include, but are not limited to, homopolymer, copolymers and/or blends of at least one of epoxy resin, phenolic resin, polyurethanes, urea-formadehyde resin and melamine resin.
In some embodiments, the polymer has a softening temperature, e.g. the glass transition temperature and/or the melting temperature of between about 20 degrees centigrade and about 400 degrees centigrade, between about 20 degrees centigrade and about 350 degrees centigrade, between about 20 degrees centigrade and about 300 degrees centigrade, between about 20 degrees centigrade and about 250 degrees centigrade, between about 20 degrees centigrade and about 200 degrees centigrade, between about 20 degrees centigrade and about 150 degrees centigrade, between about 35 degrees centigrade and about 400 degrees centigrade, between about 35 degrees centigrade and about 350 degrees centigrade, between about 35 degrees centigrade and about 300 degrees centigrade, between about 35 degrees centigrade and about 250 degrees centigrade, between about 35 degrees centigrade and about 200 degrees centigrade, between about 35 degrees centigrade and about 150 degrees centigrade, between about 50 degrees centigrade and about 400 degrees centigrade, between about 50 degrees centigrade and about 350 degrees centigrade, between about 50 degrees centigrade and about 300 degrees centigrade, between about 50 degrees centigrade and about 250 degrees centigrade, between about 50 degrees centigrade and about 200 degrees centigrade, between about 50 degrees centigrade and about 150 degrees centigrade, between about 75 degrees centigrade and about 400 degrees centigrade, between about 75 degrees centigrade and about 350 degrees centigrade, between about 75 degrees centigrade and about 300 degrees centigrade, between about 75 degrees centigrade and about 250 degrees centigrade, between about 75 degrees centigrade and about 200 degrees centigrade, or even between about 75 degrees centigrade and about 150 degrees centigrade.
In some embodiments, the polymer particulate is composed of two or more polymers and has a core-shell structure, i.e. an inner core comprising a first polymer and an outer shell comprising a second polymer. In some embodiments the polymer of the outer shell, e.g. second polymer, has a softening temperature, e.g. the glass transition temperature and/or the melting temperature that is lower than softening temperature of the first polymer. In some embodiments, the second polymer has a softening temperature, e.g. the glass transition temperature and/or the melting temperature of between about 20 degrees centigrade and about 400 degrees centigrade, between about 20 degrees centigrade and about 350 degrees centigrade, between about 20 degrees centigrade and about 300 degrees centigrade, between about 20 degrees centigrade and about 250 degrees centigrade, between about 20 degrees centigrade and about 200 degrees centigrade, between about 20 degrees centigrade and about 150 degrees centigrade, between about 35 degrees centigrade and about 400 degrees centigrade, between about 35 degrees centigrade and about 350 degrees centigrade, between about 35 degrees centigrade and about 300 degrees centigrade, between about 35 degrees centigrade and about 250 degrees centigrade, between about 35 degrees centigrade and about 200 degrees centigrade, between about 35 degrees centigrade and about 150 degrees centigrade, between about 50 degrees centigrade and about 400 degrees centigrade, between about 50 degrees centigrade and about 350 degrees centigrade, between about 50 degrees centigrade and about 300 degrees centigrade, between about 50 degrees centigrade and about 250 degrees centigrade, between about 50 degrees centigrade and about 200 degrees centigrade, between about 50 degrees centigrade and about 150 degrees centigrade, between about 75 degrees centigrade and about 400 degrees centigrade, between about 75 degrees centigrade and about 350 degrees centigrade, between about 75 degrees centigrade and about 300 degrees centigrade, between about 75 degrees centigrade and about 250 degrees centigrade, between about 75 degrees centigrade and about 200 degrees centigrade, or even between about 75 degrees centigrade and about 150 degrees centigrade.
The polymer of the electrode may be an ionic polymer or non-ionic polymer. Ionic polymer include polymer wherein a fraction of the repeat units are electrically neutral and a fraction of the repeat units have an ionic functional group, i.e. an ionic repeat unit. In some embodiments, the polymer is an ionic polymer, wherein the ionic polymer has a mole fraction of repeat units having an ionic functional group of between about 0.005 and about 1. In some embodiments, the polymer is a non-ionic polymer, wherein the non-ionic polymer has a mole fraction of repeat units having an ionic functional group of from less than about 0.005 to about 0. In some embodiments, the polymer is a non-ionic polymer, wherein the non-ionic polymer has no repeat units having an ionic functional group. In some embodiments, the polymer consists essentially of an ionic polymer. In some embodiments, the polymer consists essentially of a non-ionic polymer. Ionic polymer includes, but is not limited to, ion exchange resins, ionomer resins and combinations thereof. Ion exchange resins may be particularly useful.
As broadly defined herein, ionic resin include resin wherein a fraction of the repeat units are electrically neutral and a fraction of the repeat units have an ionic functional group. In some embodiments, the ionic resin has a mole fraction of repeat units with ionic functional groups between about 0.005 and 1. In some embodiments, the ionic resin is a cationic resin, i.e. its ionic functional groups are negatively charged and facilitate the transfer of cations, e.g. protons, optionally, wherein the cationic resin is a proton cationic resin. In some embodiments, the ionic resin is an anionic exchange resin, i.e. its ionic functional groups are positively charged and facilitate the transfer of anions. The ionic functional group of the ionic resin may include, but is not limited, to carboxylate, sulphonate, sulfonamide, quaternary ammonium, thiuronium, guanidinium, imidazolium and pyridinium groups. Combinations of ionic functional groups may be used in an ionic resin.
Ionomer resin include resin wherein a fraction of the repeat units are electrically neutral and a fraction of the repeat units have an ionic functional group. As defined herein, an ionomer resin will be considered to be a resin having a mole fraction of repeat units having ionic functional groups of no greater than about 0.15. In some embodiments, the ionomer resin has a mole fraction of repeat units having ionic functional groups of between about 0.005 and about 0.15, between about 0.01 and about 0.15 or even between about 0.3 and about 0.15. In some embodiments the ionomer resin is insoluble in at least one of the anolyte and catholyte. The ionic functional group of the ionomer resin may include, but is not limited, to carboxylate, sulphonate, sulfonamide, quaternary ammonium, thiuronium, guanidinium, imidazolium and pyridinium groups. Combinations of ionic functional groups may be used in an ionomer resin. Mixtures of ionomer resins may be used. The ionomers resin may be a cationic resin or an anionic resin. Useful ionomer resin include, but are not limited to NAFION, available from DuPont, Wilmington, Del.; AQUIVION, a perfluorosulfonic acid, available from SOLVAY, Brussels, Belgium; FLEMION and SELEMION, fluoropolomer ion exchange resin, from Asahi Glass, Tokyo, Japan; FUMASEP ion exchange resin, including FKS, FKB, FKL, FKE cation exchange resins and FAB, FAA, FAP and FAD anionic exchange resins, available from Fumatek, Bietigheim-Bissingen, Germany, polybenzimidazols, and ion exchange materials and membranes described in U.S. Pat. No. 7,348,088, incorporated herein by reference in its entirety.
Ion exchange resin include resin wherein a fraction of the repeat units are electrically neutral and a fraction of the repeat units have an ionic functional group. As defined herein, an ion exchange resin will be considered to be a resin having a mole fraction of repeat units having ionic functional groups of greater than about 0.15 and less than about 1.00. In some embodiments, the ion exchange resin has a mole fraction of repeat units having ionic functional groups of greater than about 0.15 and less than about 0.90, greater than about 0.15 and less than about 0.80, greater than about 0.15 and less than about 0.70, greater than about 0.30 and less than about 0.90, greater than about 0.30 and less than about 0.80, greater than about 0.30 and less than about 0.70 greater than about 0.45 and less than about 0.90, greater than about 0.45 and less than about 0.80, and even greater than about 0.45 and less than about 0.70. The ion exchange resin may be a cationic exchange resin or may be an anionic exchange resin. The ion exchange resin may, optionally, be a proton ion exchange resin. The type of ion exchange resin may be selected based on the type of ion that needs to be transported between the anolyte and catholyte through the ion permeable membrane. In some embodiments the ion exchange resin is insoluble in at least one of the anolyte and catholyte. The ionic functional group of the ion exchange resin may include, but is not limited, to carboxylate, sulphonate, sulfonamide, quaternary ammonium, thiuronium, guanidinium, imidazolium and pyridinium groups. Combinations of ionic functional groups may be used in an ion exchange resin. Mixtures of ion exchange resins resin may be used. Useful ion exchange resins include, but are not limited to, fluorinated ion exchange resins, e.g. perfluorosulfonic acid copolymer and perfluorosulfonimide copolymer, a sulfonated polysulfone, a polymer or copolymer containing quaternary ammonium groups, a polymer or copolymer containing at least one of guanidinium or thiuronium groups a polymer or copolymer containing imidazolium groups, a polymer or copolymer containing pyridinium groups. The polymer may be a mixture of ionomer resin and ion exchange resin.
In some embodiments, the amount of polymer contained in the electrode, on a weight basis, may be from about 1 to about 95 percent, from about 5 to about 95 percent, from about 10 to about 95 percent, from about 20 to about 95 percent, from about 30 to about 95 percent, from about 1 to about 90 percent, from about 5 to about 90 percent, from about 10 to about 90 percent, from about 20 to about 90 percent, from about 30 to about 90 percent, from about 1 to about 75 percent, from about 5 to about 75 percent, from about 10 to about 75 percent, from about 20 to about 75 percent, from about 30 to about 75 percent, from about 1 to about 70 percent, from about 5 to about 70 percent, from about 10 to about 70 percent, from about 20 to about 70 percent, from about 30 to about 70 percent, from about 1 to about 60 percent, from about 5 to about 60, from about 10 to about 60 percent, from about 20 to about 60 percent, from about 30 to about 60 percent, from about 1 to about 50 percent, 5 to about 50 percent, from about 10 to about 50 percent, from about 20 to about 50 percent, from about 30 to about 50 percent, from about 1 to about 40 percent, 5 to about 40 percent, from about 10 to about 40 percent, from about 20 to about 40 percent, or even from about 30 to about 40 percent.
In some embodiments, the electrodes of the present disclosure may contain a non-electrically conductive, inorganic particulate. Non-electrically conductive, inorganic particulate include, but is not limited to, minerals and clays known in the art. In some embodiments the non-electrically conductive inorganic particulate may be a metal oxide. In some embodiments the non-electrically conductive, inorganic particulate include at least one of silica, alumina, titania, and zirconia.
The polymer and electrically conductive particulate are fabricated into a porous electrode by mixing the polymer and electrically conductive particulate to form an electrode blend, i.e. a porous electrode material, coating the electrode blend onto a solid film substrate having plurality of through holes, filling the holes with the electrode blend, and providing at least one of a fusing, curing, polymerizing and drying treatment to form an electrode, wherein the electrode is porous. The porous electrode may be in the form of a sheet. After drying or during drying, the temperature may be such that the temperature is near, at or above the softening temperature of the polymer, e.g. the glass transition temperature and/or the melting temperature of the polymer, which may aid in the adhering of carbon particulate to the polymer and/or further fuse the polymer.
In one embodiment, polymer particulate and electrically conductive carbon particulate may be mixed together as dry components, forming a dry blend. Milling media, e.g. milling beads may, be added to the dry blend to facilitate the mixing process and/or to at least partially embed the electrically conductive carbon particulate into the surface of the polymer particulate. The dry blend may then be coated, using conventional techniques, including but not limited to knife coating and electrostatic coating, on a solid film substrate, e.g. a liner or release liner, having a plurality of through holes. The coating, which fills the through holes, may then be heat treated at temperatures near, at or above the softening temperature of the polymer particulate, e.g. the glass transition temperature and/or the melting temperature of the polymer particulate, to fuse at least a portion of the polymer particulate/carbon particulate dry blend into a unitary, porous material, thereby forming a porous electrode. The porous electrode may be in the form of a sheet. The thermal treatment may also aid in adhering the electrically conductive carbon particulate to the surface of the polymer particulate. The thermal treatment may be conducted under pressure, e.g. in a heated press or between heated rolls. The press and or heated rolls may be set to provide a specific desired gap, which will facilitate obtaining a desired electrode thickness. The dry coating and fusing processes may be combined into a single step using a roll coating technique, wherein the rolls are set at a desired gap, correlated to the desired electrode thickness, and the rolls are also heated to the desired fusing temperature, thus coating and thermal treatment is conducted simultaneously.
In an alternative embodiment, the dry blend or the individual particulates may be added to an appropriate liquid medium, i.e. a solvent, and mixed, using conventional techniques, e.g. blade mixing or other agitation, forming a polymer particulate/carbon particulate dispersion. Milling media, e.g. milling beads, may be added to the dispersion to facilitate the mixing process and/or to at least partially embed the electrically conductive carbon particulate into the surface of the polymer particulate. If milling media is employed, agitation is usually achieved by shaking or rolling the container holding the dry blend. The dispersion may be coated on a solid film substrate, e.g. a liner or release liner, having a plurality of through holes, using conventional techniques, e.g. knife coating, which fills the through holes with dispersion. The coating may then be dried, via heat treatment at elevated temperatures, to remove the liquid medium and to fuse at least a portion of the polymer particulate/carbon particulate blend into a unitary, porous material, thereby forming a porous electrode. The porous electrode may be in the form of a sheet. The thermal treatment may also aid in adhering the electrically conductive carbon particulate to the surface of the polymer particulate. The heat treatment used to dry the dispersion, i.e. evaporate the liquid medium, and to fuse at least a portion of the polymer particulate may be at the same or different temperatures. Vacuum may be used to remove the liquid medium or aid in the removal of the liquid medium. In another embodiment, the polymer particulate may be obtained as a dispersion, e.g. the dispersion resulting from a suspension or emulsion polymerization, and the electrically conductive carbon particulate may be added to this dispersion. Mixing, coating, drying and fusing may be conducted as described above.
In yet another alternative embodiment, the dry blend or the individual particulates may be added to an appropriate liquid medium, i.e. polymer precursor liquid, and mixed, using conventional techniques, e.g. blade mixing or other agitation, forming a polymer particulate/carbon particulate dispersion. Milling media, e.g. milling beads, may be added to the dispersion to facilitate the mixing process and/or to at least partially embed the electrically conductive carbon particulate into the surface of the polymer particulate. If milling media is employed, agitation is usually achieved by shaking or rolling the container holding the dispersion. The dispersion may be coated on a solid film substrate, e.g. a liner or release liner, having a plurality of through holes, using conventional techniques, e.g. knife coating, which fills the through holes with dispersion. The coating may then be at least one of dried, cured, polymerized and fused, forming a binder resin and transforming at least a portion of the polymer particulate/carbon particulate blend into a unitary, porous material, thereby forming a porous electrode. The porous electrode may be in the form of a sheet. If thermal treatment is used to form the polymer binder resin or a secondary thermal treatment is applied to the polymer binder resin, the temperature may be such that the temperature is near, at or above the softening temperature of the polymer binder resin, e.g. the glass transition temperature and/or the melting temperature of the polymer binder resin, which may aid in the adhering of carbon particulate to the binder resin and/or further fuse the binder resin.
In another embodiment, an electrically conductive carbon particulate may be dispersed in a polymer precursor liquid and mixed using conventional techniques, e.g. blade mixing or other agitation. Milling media, e.g. milling beads, may be added to the dispersion to facilitate the mixing process. If milling media is employed, agitation is usually achieved by shaking or rolling the container holding the dispersion. The resulting dispersion may be coated on a solid film substrate, e.g. a liner or release liner, having a plurality of through holes using conventional techniques, e.g. knife coating, which fills the through holes with dispersion. The polymer precursor liquid coating may then be at least one of dried, cured, polymerized and fused, forming a binder resin and a corresponding unitary, porous material, i.e. a porous electrode. The porous electrode may be in the form of a sheet. If a thermal treatment is used to form the polymer binder rein or a secondary thermal treatment is applied to the polymer binder resin, the temperature may be such that the temperature is near, at or above the softening temperature of the polymer binder resin, e.g. the glass transition temperature and/or the melting temperature of the polymer binder resin, which may aid in the adhering of carbon particulate to the binder resin and/or further fuse the binder resin.
In some embodiments, the polymer precursor liquid is a polymer solution, e.g. at least one polymer dissolved in at least one solvent, and the electrically, conductive carbon particulate is dispersed in the polymer solution. Milling media, e.g. milling beads, may be added to the dispersion to facilitate the mixing process. The resulting dispersion may be coated on a solid film substrate, e.g. a liner or release liner, having a plurality of through holes, using conventional techniques, e.g. knife coating, which fills the through holes with dispersion. The dispersion coating may be dried, forming a polymer binder resin and a corresponding, unitary, porous material, i.e. a porous electrode. The porous electrode may be in the form of a sheet. After drying or during drying, the temperature may be such that the temperature is near, at or above the softening temperature of the polymer binder resin, e.g. the glass transition temperature and/or the melting temperature of the polymer binder resin, which may aid in the adhering of carbon particulate to the binder resin and/or further fuse the binder resin.
The solvent used in the polymer solution is not particularly limited, except that the polymer that will form the polymer binder resin must be soluble in it. The solvent may be selected based on the chemical structure of the polymer and the solubility of the polymer in the solvent. The optional solvent used in the reactive polymer precursor liquid is not particularly limited, except that the at least one of a liquid monomer and a liquid oligomer is soluble in the solvent. Useful solvents include, but are not limited to, water, alcohols (e.g. methanol, ethanol and propanol), acetone, ethyl acetate, alkyl solvents (e.g. pentane, hexane, cyclohexane, heptane and octane), methyl ethyl ketone, ethyl ethyl ketone, dimethyl ether, petroleum ether, toluene, benzene, xylenes, dimethylformamide, dimethylsulfoxide, chloroform, carbon tetrachloride, chlorobenzene and mixtures thereof.
In some embodiments, the polymer precursor liquid is a reactive polymer precursor liquid, e.g. at least one of a liquid monomer and a liquid oligomer, and the electrically conductive carbon particulate is dispersed in the reactive polymer precursor solution. The reactive polymer precursor may optionally include at least one solvent and may optionally include at least one polymer that soluble in the liquid components of the reactive polymer precursor liquid. Milling media, e.g. milling beads, may be added to the dispersion to facilitate the mixing process. The resulting dispersion may be coated on a solid film substrate, e.g. a liner or release liner, having a plurality of through holes, using conventional techniques, e.g. knife coating, which fills the through holes with dispersion. The reactive polymer precursor liquid coating may then be at least one of dried, cured, polymerized and fused, forming a polymer binder resin and a corresponding unitary, porous material, i.e. a porous electrode. The porous electrode may be in the form of a sheet. If a thermal treatment is used to form the polymer binder rein or a secondary thermal treatment is applied to the polymer binder resin, the temperature may be such that the temperature is near, at or above the softening temperature of the polymer binder resin, e.g. the glass transition temperature and/or the melting temperature of the polymer binder resin, which may aid in the adhering of carbon particulate to the binder resin and/or further fuse the binder resin.
When the polymer precursor liquid is a reactive polymer precursor liquid, the reactive polymer precursor liquid may include appropriate additives to aid in the curing and/or polymerization of the reactive polymer precursor liquid. Additives include, but are not limited to catalysts, initiators, curatives, inhibitors, chain transfer agents and the like. Curing and/or polymerization may be conducted by at least one of thermal and radiation. Radiation may include actinic radiation, including UV and visible radiation. Upon curing, the reactive polymer precursor liquid may form a B-stage polymer binder resin, i.e. capable of a second step cure. If B-stageable polymer binder resins are desired, the first cure may be a thermal cure, and the second cure may be a radiation cure, both curing steps may be thermal cure, for example, at two different cure temperatures, both cures may be radiation cure, at two different wavelengths, or the first cure may be a radiation cure and the second cure a thermal cure.
The solid film substrates of the present disclosure are not particularly limited and may include conventional liners and release liners, e.g. polymer films that may or may not have a low surface energy coating. The polymer of the solid film substrate may be at least one of a thermoplastic polymer and a thermoset polymer. Thermoplastic polymers, include, but are to limited to, polyalkylenes; e.g. polyethylene and polypropylene; polyurethane; polyamide; polycarbonates; polysulfones; polystrenes; polyester, e.g. polyethylene terephthalate and polybutylene terephthalate; polybutadiene; polyisoprene; polyalkylene oxides, e.g. polyethylene oxide; ethylene vinyl acetate; cellulose acetate; ethyl cellulose and block copolymers of any of the proceeding polymers. Thermoset polymers include, but are not limited to, polyimide, polyurethanes, polyesters, epoxy resins, phenol-formaldehyde resins, urea formaldehyde resins and rubber. In some embodiments, the solid film substrate is a dielectric polymer, solid film substrate. The polymer of the solid film substrate may be a polymer blend. The solid film substrate may include topography, and the porous electrodes may conform to the topography, forming the same general topography of the solid film substrate. In some embodiments, the solid film substrate of the porous electrode may include at least one precisely shaped topographical feature. In some embodiments, the solid film substrate of the porous electrode may include a plurality of precisely shaped topographical features. “Precisely shaped” refers to a topographical feature, having a molded shape that is the inverse shape of a corresponding mold cavity, said shape being retained after the topographical feature is removed from the mold. A precisely shaped topographical feature may still be considered precisely shaped, even though it may undergo some shrinkage related to curing, drying or other thermal treatments, as it retains the general shape of the mold cavity from which it was originally produced. The at least one precisely shaped topographical feature may be made by a precision fabrication processes known in the art, e.g. molding and/or embossing. In some embodiments, the topography of the film substrate may include one or more channels. In some embodiments, at least a portion of the channels are interconnected. In some embodiments, at least a portion of the plurality of the through-holes are included in the topography, e.g. in the channels. In some embodiments, the plurality of through holes are included in the topography, e.g. in the channels. In some embodiments, the porous electrode material may fill the topography, producing a porous electrode material with the negative image of the solid film substrate topography. The depth and/or height of the topography may be limited by the thickness of the solid film substrate. In some embodiments, the depth and/or height of the topography is less than the thickness of the solid film substrate.
In some embodiments, the solid film substrate may be a conductive substrate, e.g. a conductive metal including but not limited to at least one of gold, silver, and aluminum. In these embodiments, the conductive substrate may act as a current collector, and replace the current collector within an electrochemical cell or may be positioned adjacent a current collector in a typical liquid flow cell. The solid film substrate includes a plurality of through holes. The plurality of through holes may be filled with the dispersions of the porous electrode material and a porous electrode material may be formed therein. The solid film substrate is part of the electrode, as the holes containing the porous electrode material allow electrical communication from one major surface of the porous electrode to its opposed major surface.
The thickness of the solid film substrate is not particularly limited. The thickness of the solid film substrate may be from about 5 microns to about 200 microns, from about 5 microns to about 150 microns, from about 5 microns to about 100 microns, from about 10 microns to about 200 microns, from about 10 microns to about 150 microns, from about 10 microns to about 100 microns, from about 20 microns to about 200 microns, from about 20 microns to about 150 microns, or even from about 20 microns to about 100 microns.
The size, shape, number and areal density of the plurality of through holes is not particularly limited. In some embodiments, the ratio of the surface area of the plurality of through holes, i.e. the sum of the projected surface of each through hole onto the surface (first or second major surface) of the solid film substrate, to the surface area of the solid film substrate (first or second major surface) is from about 0.01 to about 0.90, from about, 0.01 to about 0.80 from about 0.01 to about 0.70, from about 0.05 to about 0.90, from about, 0.05 to about 0.80 from about 0.05 to about 0.70, from about 0.1 to about 0.90, from about, 0.1 to about 0.80 from about 0.1 to about 0.70, from about 0.2 to about 0.90, from about, 0.2 to about 0.80 from about 0.2 to about 0.70, from about 0.3 to about 0.90, from about, 0.3 to about 0.80 ore even from about 0.3 to about 0.70. In some embodiments, the width, Wi, and/or length, of the individual through holes of the plurality of through holes is from about 5 microns to about 5 mm, from about 5 microns to about 2.5 mm, from about 5 microns from about 1 mm, from about 5 microns to about 500 microns, from about 25 microns to about 5 mm, from about 25 microns to about 2.5 mm, from about 25 microns to about 1 mm, from about 25 microns to about 500 microns, from about 50 microns to about 5 mm, from about 50 microns to about 2.5 mm, from about 50 microns to about 1 mm, from about 50 microns to about 500 microns, from about 100 microns to about 5 mm, from about 100 microns to about 2.5 mm, from about 100 microns to about 1 mm or even from about 5 microns to about 100 microns. In some embodiments, the plurality of through holes may be in the form of a pattern. The pattern of the plurality of though holes is not particularly limited and may include, but is no limited to, at least one of square grid array, rectangular grid array and a hexagonal array.
The electrodes of the present disclosure may be washed using conventional techniques to remove loose carbon particulate. The washing technique may include and appropriate solvent, e.g. water, and/or surfactant to aid in the removal of loose carbon particulate. The electrodes of the present disclosure may be made by a continuous roll to roll process, the electrode sheet being wound to form a roll good.
In some embodiments, the electrode may be hydrophilic. This may be particularly beneficial when the porous electrode is to be used in conjunction with aqueous anolyte and/or catholyte solutions. Uptake of a liquid, e.g. water, catholyte and/or anolyte, into the pores of a liquid flow battery electrode may be considered a key property for optimal operation of a liquid flow battery. In some embodiments, 100 percent of the pores of the electrode may be filled by the liquid, creating the maximum interface between the liquid and the electrode surface. In other embodiments, between about 30 percent and about 100 percent, between about 50 percent and about 100 percent, between about 70 percent and about 100 percent or even between about 80 percent and 100 percent of the pores of the electrode may be filled by the liquid. In some embodiments the porous electrode may have a surface contact angle with water, catholyte and/or anolyte of less than 90 degrees. In some embodiments, the microporous protection layer may have a surface contact with water, catholyte and/or anolyte of between about 85 degrees and about 0 degrees, between about 70 degrees and about 0 degrees, between about 50 degrees and about 0 degrees, between about 30 degrees and about 0 degrees, between about 20 degrees and about 0 degrees, or even between about 10 degrees and about 0 degrees.
In some embodiments, the electrode may be surface treated to enhance the wettability of the electrode to a given anolyte or catholyte or to provide or enhance the electrochemical activity of the electrode relative to the oxidation-reduction reactions associated with the chemical composition of a given anolyte or catholyte. Surface treatments include, but are not limited to, at least one of chemical treatments, thermal treatments and plasma treatments.
Surfactants may be used in the electrode dispersion/coating solutions, for example, to improve wetting and/or aid in dispersing of the electrically conductive carbon particulate. Surfactants may include cationic, anionic and nonionic surfactants. Surfactants useful in the electrode dispersion/coating solutions include, but are not limited to TRITON X-100, available from Dow Chemical Company, Midland, Mich.; DISPERSBYK 190, available from BYK Chemie GMBH, Wesel, Germany; amines, e.g. olyelamine and dodecylamine; amines with more than 8 carbons in the backbone,e.g. 3-(N,N-dimethyldodecylammonio) propanesulfonate (SB12); SMA 1000, available from Cray Valley USA, LLC, Exton, Pa.; 1,2-propanediol, triethanolamine, dimethylaminoethanol; quaternary amine and surfactants disclosed in U.S. Pat. Publ. No. 20130011764, which is incorporated herein by reference in its entirety. If one or more surfactants are used in the dispersions/coating solutions, the surfactant may be removed from the electrode by a thermal process, wherein the surfactant either volatilizes at the temperature of the thermal treatment or decomposes and the resulting compounds volatilize at the temperature of the thermal treatment. In some embodiments, the electrode is substantially free of surfactant. By “substantially free” it is meant that the electrodes contains, by weight, from 0 percent to 0.5 percent, from 0 percent to 0.1 percent, from 0 percent to 0.05 percent or even from 0 percent to 0.01 percent surfactant. In some embodiments, the electrode layer contains no surfactant. The surfactant may be removed from the electrode by washing or rinsing with a solvent of the surfactant. Solvents include, but are not limited to water, alcohols (e.g. methanol, ethanol and propanol), acetone, ethyl acetate, alkyl solvents (e.g. pentane, hexane, cyclohexane, heptane and octane), methyl ethyl ketone, ethyl ethyl ketone, dimethyl ether, petroleum ether, toluene, benzene, xylenes, dimethylformamide, dimethylsulfoxide, chloroform, carbon tetrachloride, chlorobenzene and mixtures thereof.
The thickness of the electrode may be from about 10 microns to about 5000 microns, from about 10 microns to about 1000 microns, from about 10 microns to about 500 microns, from about 10 microns to about 250 microns, from about 10 microns to about 100 microns, from about 25 microns to about 5000 microns, from about 25 microns to about 1000 microns, from about 25 microns to about 500 microns, from about 25 microns to about 250 microns, or even from about 25 microns to about 100 microns. The porosity of the porous electrodes, on a volume basis, may be from about 5 percent to about 95 percent, from about 5 percent to about 90 percent, from about 5 percent to about 80 percent, from about 5 percent to about 70 percent, from about 10 percent to about 95 percent, from about 10 percent to 90 percent, from about 10 percent to about 80 percent, from about 10 percent to about 70 percent, from about 10 percent to about 70 percent, from about 20 percent to about 95 percent, from about 20 percent to about 90 percent, from about 20 percent to about 80 percent, from about 20 percent to about 70 percent, from about 20 percent to about 70 percent, from about 30 percent to about 95 percent, from about 30 percent to about 90 percent, from about 30 percent to about 80 percent, or even from about 30 percent to about 70 percent.
The electrode may be a single layer or multiple layers. When the porous electrode includes multiple layers, there is no particular limit as to the number of layers that may be used. However, as there is a general desire to keep the thickness of electrode and membrane assembly as thin as possible, the electrode may include from about 2 to about 20 layers, from about 2 to about 10 layers, from about 2 to about 8 layer, from about 2 to about 5 layers, from about 3 to about 20 layers, from about 3 to about 10 layers, from about 3 to about 8 layers, or even from about 3 to about 5. In some embodiments, when the electrode includes multiple layers, the electrode material of each layer may be the same electrode material, i.e. the composition of the electrode material of each layer is the same. In some embodiments, when the electrode includes multiple layers, the electrode material of at least one, up to including all of the layers, may be different, i.e. the composition of the electrode material of at least one, up to and including all layers, differs from the composition of the electrode material of another layer.
The porous electrodes of the present disclosure may have an electrical resistivity of from about 0.1 μOhm m to about 10000 μOhm m, from about 1 μOhm m to about 10000 μOhm m, from 10 μOhm m to about 10000 μOhm m, from about 0.1 μOhm m to about 1000 μOhm m, from about 1 μOhm m to about 1000 μOhm m, from 10 μOhm m to about 1000 μOhm m, from about 0.1 μOhm m to about 100 μOhm m, from about 1 μOhm m to about 100 μOhm m, or even from 10 μOhm m to about 100 μOhm m.
In another embodiment, of the present disclosure, the porous electrodes of the present disclosure may be used to form membrane-electrode assemblies, for use in, for example, liquid flow batteries. A membrane-electrode assembly includes an ion exchange membrane, having a first surface and an opposed second surface, and a porous electrode according to any one of the embodiments of the present disclosure, wherein a major surface of the porous electrode is adjacent the first surface of the ion exchange membrane. In some embodiments a major surface of the porous electrode is proximate the first surface of the ion exchange membrane. In some embodiments a major surface of the porous electrode is in contact with the first surface of the ion exchange membrane. The membrane-electrode assembly may further include a second porous electrode according to any one of the porous electrodes of the present disclosure, wherein a major surface of the second porous electrode is adjacent the opposed second surface of the ion exchange membrane. In some embodiments of the membrane-electrode assembly, only the first major surface of the first porous electrode has porous electrode material disposed thereon and the second major surface of the first porous electrode is adjacent or in contact with the first surface of the ion exchange membrane. In other embodiments of the membrane-electrode assembly, which includes a first and a second porous electrode, only the first major surface of the first porous electrode has porous electrode material disposed thereon and the second major surface of the first porous electrode is adjacent or in contact with the first surface of the ion exchange membrane, and only the first major surface of the second porous electrode has porous electrode material disposed thereon and the second major surface of the second porous electrode is adjacent or in contact with the second surface of the ion exchange membrane. Several specific, but non-limiting, embodiments of the membrane-electrode assemblies of the present disclosure are shown in
The membrane-electrode assemblies of the present disclosure include an ion exchange membrane (element 20, of
The ion exchange membranes of the present disclosure may be obtained as free standing films from commercial suppliers or may be fabricated by coating a solution of the appropriate ion exchange membrane resin in an appropriate solvent, and then heating to remove the solvent. The ion exchange membrane may be formed from an ion exchange membrane coating solution by coating the solution on a release liner and then drying the ion exchange membrane coating solution coating to remove the solvent. The first surface of the resulting ion exchange membrane can then be laminated to a first surface of an electrode using conventional lamination techniques, which may include at least one of pressure and heat, forming membrane-electrode assembly as shown in
Any suitable method of coating may be used to coat the ion exchange membrane coating solution on either a release liner or an electrode. Typical methods include both hand and machine methods, including hand brushing, notch bar coating, fluid bearing die coating, wire-wound rod coating, fluid bearing coating, slot-fed knife coating, and three-roll coating. Most typically three-roll coating is used. Advantageously, coating is accomplished without bleed-through of the ion exchange membrane coating from the coated side of the electrode to the uncoated side. Coating may be achieved in one pass or in multiple passes. Coating in multiple passes may be useful to increase coating weight without corresponding increases in cracking of the ion exchange membrane.
The amount of solvent, on a weight basis, in the ion exchange membrane coating solution may be from about 5 to about 95 percent, from about 10 to about 95 percent, from about 20 to about 95 percent, from about 30 to about 95 percent, from about 40 to about 95 percent, from about 50 to about 95 percent, from about 60 to about 95 percent, from about 5 to about 90 percent, from about 10 to about 90 percent, from about 20 percent to about 90 percent, from about 30 to about 90 percent, from about 40 to about 90 percent, from about 50 to about 90 percent, from about 60 to about 90 percent, from about 5 to about 80 percent, from about 10 to about 80 percent from about 20 percent to about 80 percent, from about 30 to about 80 percent, from about 40 to about 80 percent, from about 50 to about 80 percent, from about 60 to about 80 percent, from about 5 percent to about 70 percent, from about 10 percent to about 70 percent, from about 20 percent to about 70 percent, from about 30 to about 70 percent, from about 40 to about 70 percent, or even from about 50 to about 70 percent.
The amount of ion exchange resin, on a weight basis, in the ion exchange membrane coating solution may be from about 5 to about 95 percent, from about 5 to about 90 percent, from about 5 to about 80 percent, from about 5 to about 70 percent, from about 5 to about 60 percent, from about 5 to about 50 percent, from about 5 to about 40 percent, from about 10 to about 95 percent, from about 10 to about 90 percent, from about 10 to about 80 percent, from about 10 to about 70 percent, from about 10 to about 60 percent, from about 10 to about 50 percent, from about 10 to about 40 percent, from about 20 to about 95 percent, from about 20 to about 90 percent, from about 20 to about 80 percent, from about 20 to about 70 percent, from about 20 to about 60 percent, from about 20 to about 50 percent, from about 20 to about 40 percent, from about 30 to about 95 percent, from about 30 to about 90 percent, from about 30 to about 80 percent, from about 30 to about 70 percent, from about 30 to about 60 percent, or even from about 30 to about 50 percent.
The electrodes, membranes, e.g. ion exchange membranes, membrane-electrode assemblies and the electrochemical cells and liquid flow batteries of the present disclosure may include one or more microporous protection layers. Microporous protection layers are layers that may be coated or laminated on at least one of the electrode and membrane or may be place between the membrane and electrode for the purpose of preventing puncture of the membrane by the materials of the electrode. By preventing puncture of the membrane by the conductive electrode, the corresponding localized shorting of a cell or battery may be prevented. Microporous protection layers are disclosed in U.S. Provisional Patent Application Ser. No. 62/137,504, entitled “Membrane Assemblies, Electrode Assemblies, Membrane-Electrode Assemblies and Electrochemical Cells and Liquid Flow Batteries Therefrom”, which is hereby incorporated herein by reference in its entirety.
The membrane-electrode assemblies of the present disclosure may further include a microporous protection layer disposed between the porous electrode and the ion exchange membrane. In some embodiments, in membrane-electrode assemblies that include a first porous electrode and a second porous electrode, the membrane-electrode assembly may further include a first microporous protection layer disposed between the ion exchange membrane and the first porous electrode and a second microporous protection layer disposed between the ion exchange membrane and the second porous electrode. The microporous protection layers may comprises a polymer resin and an electrically conductive carbon particulate and, optionally, a non-electrically conductive particulate. The composition of the microporous protection layer differs from the composition of the porous electrodes. In some embodiments, the polymer resin of the first microporous protection layer and second microporous protection layer, if present, includes an ionic resin. Several specific, but non-limiting, embodiments of the membrane-electrode assemblies of the present disclosure are shown in
Any of the membrane assemblies of the present disclosure may include one or more microporous protecting layers disposed between the ion exchange membrane and the porous electrode. In membrane-electrode assemblies that include a first porous electrode and a second porous electrode, e.g. the membrane-electrode assemblies of
The present disclosure further provides an electrode assembly for a liquid flow battery. The electrode assembly includes a first porous electrode according to any one of the porous electrodes of the present disclosure and a first microporous protection layer. The first electrode includes a first major surface and an opposed second major surface, and the first microporous protection layer includes a first surface and an opposed second surface. A major surface of the first porous electrode is adjacent, proximate or in contact with the second surface of the first microporous protection layer. In some embodiments, the first major surface of the first porous electrode is adjacent, proximate or in contact with the second surface of the first microporous protection layer. In some embodiments, the second major surface of the first porous electrode is adjacent, proximate or in contact with the second surface of the first microporous protection layer. In some embodiments, the first microporous protection layer comprises a polymer resin and an electrically conductive carbon particulate and, optionally, a non-electrically conductive particulate. The composition of the microporous protection layer differs from the composition of the porous electrode. In some embodiments, the polymer resin of the first microporous protection is an ionic resin, the ionic resin may be as previously described with respect to the ionic resin of the polymer of the porous electrode material. Several specific, but non-limiting, embodiments of electrode assemblies of the present disclosure are shown in
Referring to
Referring to
The electrically conductive carbon particulate of the microporous protection layer may be at least one of include particles, flakes, fibers, dendrites and the like. These particulates types have previously been defined with respect to both an electrically conductive carbon particulate and a polymer particulate and the same definition is use for electrically conductive carbon particulate of the microporous protection layer. Electrically conductive particulate of the microporous protection layers may include metals, metalized dielectrics, e.g. metalized polymer particulates or metalize glass particulates, conductive polymers and carbon, including but not limited to, glass like carbon, amorphous carbon, graphene, graphite, carbon nanotubes and carbon dendrites, e.g. branched carbon nanotubes, for example carbon nanotrees. Electrically conductive particulate of the microporous protection layer may include semi-conductor materials, e.g. BN, AlN and SiC. In some embodiments, the microporous protection layer is free of metal particulate.
In some embodiments, the electrically conductive particulate of the microporous protection layer may be surface treated to enhance the wettability of the microporous protection layer to a given anolyte or catholyte or to provide or enhance the electrochemical activity of the microporous protection layer relative to the oxidation-reduction reactions associated with the chemical composition of a given anolyte or catholyte. Surface treatments include, but are not limited to, at least one of chemical treatments, thermal treatments and plasma treatments. In some embodiments, the electrically conductive particulate of the microporous protection layer is hydrophilic.
In some embodiments, the amount of electrically conductive particulate contained in the resin of the microporous protection layer, on a weight basis, may be from about 5 to about 95 percent, from about 5 to about 90 percent, from about 5 to about 80 percent, from about 5 to about 70 percent, from about 10 to about 95 percent, from about 10 to about 90 percent, from about 10 to about 80 percent, from about 10 to about 70 percent, 25 to about 95 percent, from about 25 to about 90 percent, from about 25 to about 80 percent, from about 25 to about 70 percent, from about 30 to about 95 percent, from about 30 to about 90 percent, from about 30 to about 80 percent, from about 30 to about 70 percent, 40 to about 95 percent, from about 40 to about 90 percent, from about 40 to about 80 percent, from about 40 to about 70 percent, 50 to about 95 percent, from about 50 to about 90 percent, from about 10 to about 80 percent, or even from about 50 to about 70 percent.
Non-electrically conductive particulate of the microporous protection layer include, but is not limited to non-electrically conductive inorganic particulate and non-electrically conductive polymeric particulate. In some embodiments, the non-electrically conductive particulate of the microporous protection layer comprises a non-electrically conductive inorganic particulate. Non-electrically conductive inorganic particulate include, but is not limited to, minerals and clays known in the art. In some embodiments the non-electrically conductive inorganic particulate include at least one of silica,alumina, titania, and zirconia. In some embodiments, the non-electrically conductive particulate may be ionically conductive, e.g. a polymeric ionomer. In some embodiments, the non-electrically conductive particulate comprises a non-electrically conductive polymeric particulate. In some embodiments, the non-electrically conductive polymeric particulate is a non-ionic polymer, i.e. a polymer free of repeat units having ionic functional groups. Non-electrically conductive polymers include, but are not limited to, epoxy resin, phenolic resin, polyurethanes, urea-formadehyde resin, melamine resin, polyesters, polyamides, polyethers, polycarbonates, polyimides, polysulphones, polyphenylene oxides, polyacrylates, polymethacylates, polyolefin, e.g. polyethylene and polypropylene, styrene and styrene based random and block copolymers, e.g. styrene-butadiene-styrene, polyvinyl chloride, and fluorinated polymers, e.g. polyvinylidene fluoride and polytetrafluoroethylene. In some embodiments, the non-electrically conducive particulate is substantially free of a non-electrically conductive polymeric particulate. By substantially free it is meant that the non-electrically conductive particulate contains, by weight, between about 0% and about 5%, between about 0% and about 3%, between about 0% and about 2%, between about 0% and about 1%, or even between about 0% and about 0.5% of a non-electrically conductive polymeric particulate.
In some embodiments, the amount of non-electrically conductive particulate contained in the resin of the microporous protection layer, on a weight basis, may be from about 1 to about 99 percent, from about 1 to about 95 percent, from about 1 to about 90 percent, from about 1 to about 80 percent, from about 1 to about 70 percent, from about 5 to about 99 percent, from about 5 to about 95 percent, from about 5 to about 90 percent, from about 5 to about 80 percent, from about 5 to about 70 percent, from about 10 to about 99 percent, from about 10 to about 95 percent, from about 10 to about 90 percent, from about 10 to about 80 percent, from about 10 to about 70 percent, from about 25 to about 99 percent, from about 25 to about 95 percent, from about 25 to about 90 percent, from about 25 to about 80 percent, from about 25 to about 70 percent, from about 30 to 99 percent, from about 30 to about 95 percent, from about 30 to about 90 percent, from about 30 to about 80 percent, from about 30 to about 70 percent, from about 40 to about 99 percent, from about 40 to about 95 percent, from about 40 to about 90 percent, from about 40 to about 80 percent, from about 40 to about 70 percent, from about 50 to 99 percent, from about 50 to about 95 percent, from about 50 to about 90 percent, from about 10 to about 80 percent, or even from about 50 to about 70 percent.
In some embodiments, the amount of electrically conductive particulate and non-electrically conductive particulate, i.e. the total amount of particulate, contained in the resin of the microporous protection layer, on a weight basis, may be from about 1 to about 99 percent, from about 1 to about 95 percent, from about 1 to about 90 percent, from about 1 to about 80 percent, from about 1 to about 70 percent, from about 5 to about 99 percent, from about 5 to about 95 percent, from about 5 to about 90 percent, from about 5 to about 80 percent, from about 5 to about 70 percent, from about 10 to about 99 percent, from about 10 to about 95 percent, from about 10 to about 90 percent, from about 10 to about 80 percent, from about 10 to about 70 percent, from about 25 to about 99 percent, 25 to about 95 percent, from about 25 to about 90 percent, from about 25 to about 80 percent, from about 25 to about 70 percent, from about 30 to about 99 percent, from about 30 to about 95 percent, from about 30 to about 90 percent, from about 30 to about 80 percent, from about 30 to about 70 percent, from about 40 to about 99 percent, from about 40 to about 95 percent, from about 40 to about 90 percent, from about 40 to about 80 percent, from about 40 to about 70 percent, from about 50 to about 99 percent, from about 50 to about 95 percent, from about 50 to about 90 percent, from about 50 to about 80 percent, or even from about 50 to about 70 percent.
In some embodiments, the ratio of the weight of the resin of the microporous protection layer to total weight of particulate (sum of the electrically conductive particulate and non-electrically conductive particulate) is from about 1/99 to about 10/1, from about 1/20 to about 10/1, from about 1/10 to about 10/1, from about 1/5 to about 10/1, from about 1/4 to about 10/1, from about 1/3 to about 10/1, from about 1/2 to about 10/1, from about 1/99 to about 9/1, from about 1/20 to about 9/1, from about 1/10 to about 9/1, from about 1/5 to about 9/1, from about 1/4 to about 9/1, from about 1/3 to about 9/1, from about 1/2 to about 9/1, from about 1/99 to about 8/1, from about 1/20 to about 8/1, from about 1/10 to about 8/1, from about 1/5 to about 8/1, from about 1/4 to about 8/1, from about 1/3 to about 8/1, from about 1/2 to about 8/1, from about 1/99 to about 7/1, from about 1/20 to about 7/1, from about 1/10 to about 7/1, from about 1/5 to about 7/1, from about 1/4 to about 7/1, from about 1/3 to about 7/1, from about 1/2 to about 7/1, from about 1/99 to about 6/1, from about 1/20 to about 6/1, from about 1/10 to about 6/1, from about 1/5 to about 6/1, from about 1/4 to about 6/1, from about 1/3 to about 6/1, or even from about 1/2 to about 6/1.
Microporous protection layers, electrode assemblies and methods of making them are disclosed in U.S. Provisional Patent Application Ser. No. 62/137,504, entitled “Membrane Assemblies, Electrode Assemblies, Membrane-Electrode Assemblies and Electrochemical Cells and Liquid Flow Batteries Therefrom”, which has previously been incorporated herein by reference in its entirety. Electrode assemblies may be fabricated, for example, by laminating a major surface of a previously formed porous electrode to a previously formed surface of a microporous protection layer, heat and or pressure may be used to facilitate the laminating process) or by coating at least one major surface of a porous electrode with a microporous protection layer coating, then curing and/or drying the coating to form a microporous protection layer and, subsequently, an electrode assembly.
The porous electrodes, membrane-electrode assemblies and electrode assemblies of the present disclosure may provide improved cell short resistance and cell resistance. Cell short resistance is a measure of the resistance an electrochemical cell has to shorting, for example, due to puncture of the membrane by conductive fibers of the electrode. In some embodiments, a test cell, which includes at least one of an electrode or membrane-electrode assembly of the present disclosure may have a cell short resistance of greater than 1000 ohm-cm2, greater than 5000 ohm-cm2 or even greater than 10000 ohm-cm2. In some embodiments the cell short resistance may be less than about 10000000 ohm-cm2. Cell resistance is a measure of the electrical resistance of an electrochemical cell through the membrane assembly, i.e. laterally across the cell, shown in
In some embodiments of the present disclosure, the liquid flow battery may be a redox flow battery, for example, a vanadium redox flow battery (VRFB), wherein a V3+/V2+ sulfate solution serves as the negative electrolyte (“anolyte”) and a V5+/V4+ sulfate solution serves as the positive electrolyte (“catholyte”). It is to be understood, however, that other redox chemistries are contemplated and within the scope of the present disclosure, including, but not limited to, V2+/V3+ vs. Br−/ClBr2, Br2/Br− vs. S/S2−, Br−/Br2 vs. Zn2+/Zn, Ce4+/Ce3+ vs. V2+/V3+, Fe3+/Fe2+ vs. Br2/Br−, Mn2+/Mn3+ vs. Br2/Br−, Fe3+/Fe2+ vs. Ti2+/Ti4+ and Cr3+/Cr2+, acidic/basic chemistries. Other chemistries useful in liquid flow batteries include coordination chemistries, for example, those disclosed in U.S. Pat. Appl. Nos. 2014/028260, 2014/0099569, and 2014/0193687 and organic complexes, for example, U.S. Pat. Publ. No. 2014/370403 and international application published under the patent cooperation treaty Int. Publ. No. WO 2014/052682, all of which are incorporated herein by reference in their entirety.
Methods of making membrane-electrode assemblies include laminating the exposed surface of a membrane, e.g. and ion exchange membrane, to a first major surface of a porous electrode according to any one of the porous electrode embodiments of the present disclosure. This may be conducted by hand or under heat and/or pressure using conventional lamination equipment. Additionally, the membrane-electrode assembly may be formed during the fabrication of an electrochemical cell or battery. The components of the cell may be layered on top of one another in the desired order, for example, a first porous electrode, membrane, i.e. an ion exchange membrane, and a second porous electrode. The components are then assembled between, for example, the end plates of a single cell or bipolar plates of a stack having multiple cells, along with any other required gasket/sealing material. The plates, with membrane assembly there between, are then coupled together, usually by a mechanical means, e.g. bolts, clamps or the like, the plates providing a means for holding the membrane assembly together and in position within the cell.
In another embodiment, the present disclosure provides an electrochemical cell including at least one porous electrode according to any one of the porous electrodes of the present disclosure. In yet another embodiment, the present disclosure provides an electrochemical cell including a membrane-electrode assembly according to any one of the membrane-electrode assemblies of the present disclosure. In another embodiment, the present disclosure provides an electrochemical cell including at least one electrode assembly according to any one of the electrode assemblies of the present disclosure.
The electrochemical cells of the present disclosure may include multiple electrode-membrane assemblies fabricated from at least one of the porous electrode embodiments of the present disclosure. The membrane-electrode assemblies may include a microporous protection layer, thus a membrane electrode assembly that includes a microporous protection layer will inherently have an electrode assembly, which includes a porous electrode and microporous protection layer. In one embodiment of the present disclosure, an electrochemical cell is provided including at least two membrane-electrode assemblies, according to any one of the membrane-electrode assemblies described herein.
The porous electrodes of the present disclosure may be used to fabricate a liquid flow battery, e.g. a redox flow battery. In some embodiments, the present disclosure provides a liquid flow battery that include at least one porous electrode according to any one of the porous electrode embodiments of the present disclosure. The number of porous electrode of the liquid flow battery, which may correlate to the number of cells in a stack, is not particularly limited. In some embodiments, the liquid flow battery includes at least 1, at least 2, at least 5, at least 10 or even at least 20 porous electrodes. In some embodiments the number of porous electrodes of the liquid flow battery ranges from 1 to about 500, 2 to about 500, from 5 to about 500, from 10 to about 500 or even from 20 to about 500. In another embodiment, the present disclosure provides a liquid flow battery including at least one membrane-electrode assembly according to any one of the membrane-electrode assembly embodiments of the present disclosure. The number of membrane-electrode assemblies of the liquid flow battery, which may correlate to the number of cells in a stack, is not particularly limited. In some embodiments, the liquid flow battery includes at least 1, at least 2, at least 5, at least 10 or even at least 20 membrane-electrode assemblies. In some embodiments the number of membrane-electrode assemblies of the liquid flow battery ranges from 1 to about 500, 2 to about 500, from 5 to about 500, from 10 to about 200 or even from 20 to about 500. In yet another embodiment, the present disclosure provides a liquid flow battery including at least one electrode assembly according to any one of the electrode assembly embodiments of the present disclosure. The number of electrode assemblies of the liquid flow battery, which may correlate to the number of cells in a stack, is not particularly limited. In some embodiments, the liquid flow battery includes at least 1, at least 2, at least 5, at least 10 or even at least 20 electrode assemblies. In some embodiments the number of assemblies of the liquid flow battery ranges from 1 to about 500, 2 to about 500, from 5 to about 500, from 10 to about 500 or even from 20 to about 500.
Select embodiments of the present disclosure include, but are not limited to, the following:
In a first embodiment, the present disclosure provides a porous electrode for a liquid flow battery comprising:
a porous electrode material comprising:
a solid film substrate having a first major surface and a second major surface, wherein the solid film substrate includes a plurality of through holes extending from the first major surface to the second major surface; wherein the porous electrode material is disposed on at least the first major surface and within the plurality of through holes of the solid film substrate, wherein the porous electrode has a first major surface, an opposed second major surface, and the plurality of through holes with the porous electrode material provide electrical communication between the first major surface and the opposed second major surface of the porous electrode, and, optionally, wherein the solid film substrate is a dielectric polymer, solid film substrate.
In a second embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to the first embodiment, wherein the polymer is fused polymer particulate.
In a third embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to the second embodiment, wherein the polymer particulate is at least one of polymer particles, polymer flakes, polymer fibers and polymer dendrites.
In a fourth embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to the first embodiment, wherein the polymer is a polymer binder resin derived from a polymer precursor liquid.
In a fifth embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to the fourth embodiment, wherein the polymer precursor liquid is at least one of a polymer solution and a reactive polymer precursor liquid.
In a sixth embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to any one the first through fifth embodiments, wherein the electrically conductive carbon particulate is at least one of carbon particles, carbon flakes, carbon dendrites, carbon nanotubes and branched carbon nanotubes.
In a seventh embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to any one the first through fifth embodiments, wherein the electrically conductive carbon particulate is at least one of graphite particles, graphite flakes, graphite fibers and graphite dendrites.
In an eighth embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to any one the first through fifth embodiments, wherein the electrically conductive carbon particulate is at least one of carbon nanotubes and branched carbon nanotubes.
In a ninth embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to the eighth embodiment, wherein the electrically conductive carbon particulate is carbon nanotubes and branched carbon nanotubes and wherein the weight fraction of branched carbon nanotubes relative to the total weight of carbon nanotubes and branched carbon nanotubes is from about 0.4 to about 1.
In a tenth embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to the ninth embodiment, wherein the electrically conducive particulate further comprises graphite particulate and wherein the weight fraction of graphite particulate to the total weight of electrically conductive carbon particulate is from about 0.05 to about 1.
In an eleventh embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to any one the first through tenth embodiments, wherein the electrically conductive carbon particulate has enhanced electrochemical activity, produced by at least one of chemical treatment, thermal treatment and plasma treatment.
In a twelfth embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to any one the first through eleventh embodiments, wherein the first major surface of the solid film substrate includes at least one precisely shaped topographical feature.
In a thirteenth embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to any one the first through twelfth embodiments, wherein the thickness of the solid film substrate is from about 5 micron to about 200 microns.
In a fourteenth embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to any one the first through thirteenth embodiments, wherein the porous electrode material is disposed on the second major surface of the solid film substrate.
In a fifteenth embodiment, the present disclosure provides a porous electrode for a liquid flow battery according to any one the first through fourteenth embodiments, wherein the composition of the porous electrode material disposed on the first major surface of the solid film substrate differs from the composition of the electrode material disposed on the second major surface of the solid film substrate.
In a sixteenth embodiment, the present disclosure provides a membrane-electrode assembly for a liquid flow battery comprising:
an ion exchange membrane having a first surface and an opposed second surface; and
a porous electrode according to any one of the first through fifteenth embodiments, wherein a major surface of the porous electrode is adjacent the first surface of the ion exchange membrane.
In a seventeenth embodiment, the present disclosure provides a membrane-electrode assembly for a liquid flow battery according to the sixteenth embodiment further comprising a second porous electrode according to any one of the first through fifteenth embodiments, wherein a major surface of the second porous electrode is adjacent the second surface of the ion exchange membrane.
In an eighteenth embodiment, the present disclosure provides a membrane-electrode assembly for a liquid flow battery according to the sixteenth or seventeenth embodiments, further comprising a first microporous protection layer disposed between the ion exchange membrane and the first porous electrode, wherein the first microporous protection layer comprises a polymer resin and an electrically conductive carbon particulate and, optionally, a non-electrically conductive particulate.
In an nineteenth embodiment, the present disclosure provides a membrane-electrode assembly for a liquid flow battery according to the seventeenth embodiment further comprising a first microporous protection layer disposed between the ion exchange membrane and the first porous electrode and a second microporous protection layer disposed between the ion exchange membrane and the second porous electrode, wherein the first and second microporous protection layers each comprise a polymer resin and an electrically conductive carbon particulate and, optionally, a non-electrically conductive particulate.
In a twentieth embodiment, the present disclosure provides a membrane-electrode assembly for a liquid flow battery according to the eighteenth or nineteenth embodiments, wherein the polymer resin of the first microporous protection layer and second microporous protection layer, if present, is an ionic resin.
In a twenty-first embodiment, the present disclosure provides a membrane-electrode assembly for a liquid flow battery according to any one the sixteenth through twentieth embodiments, wherein only the first major surface of the first porous electrode has porous electrode material disposed thereon and the second major surface of the first porous electrode is adjacent the first surface of the ion exchange membrane.
In a twenty-second embodiment, the present disclosure provides a membrane-electrode assembly for a liquid flow battery according to the seventeenth or nineteenth embodiments, wherein only the first major surface of the first porous electrode has porous electrode material disposed thereon and the second major surface of the first porous electrode is adjacent the first surface of the ion exchange membrane and only the first major surface of the second porous electrode has porous electrode material disposed thereon and the second major surface of the second porous electrode is adjacent the second surface of the ion exchange membrane.
In a twenty-third embodiment, the present disclosure provides an electrode assembly for a liquid flow battery comprising:
a first porous electrode according to any one of the first through fifteenth embodiments;
a first microporous protection layer having a first surface and an opposed second surface; wherein a major surface of the first porous electrode is proximate the second surface of the first microporous protection layer and wherein the first microporous protection layer comprises a polymer resin and an electrically conductive carbon particulate and, optionally, a non-electrically conductive particulate.
In a twenty-fourth embodiment, the present disclosure provides an electrode assembly for a liquid flow battery according to the twenty-third embodiment, wherein the polymer resin of the first microporous protection is an ionic resin.
In a twenty-fifth embodiment, the present disclosure provides an electrochemical cell for a liquid flow battery comprising: a porous electrode according to anyone of the first through fifteenth embodiments.
In a twenty-sixth embodiment, the present disclosure provides an electrochemical cell for a liquid flow battery comprising: a membrane-electrode assembly according to anyone of the sixteenth through twenty-second embodiments.
In a twenty-seventh embodiment, the present disclosure provides an electrochemical cell for a liquid flow battery comprising: an electrode assembly according to the twenty-third or twenty-fourth embodiments.
In a twenty-eighth embodiment, the present disclosure provides a liquid flow battery comprising: at least one porous electrode according to anyone of the first through fifteenth embodiments.
In a twenty-ninth embodiment, the present disclosure provides a flow battery comprising: at least one membrane-electrode assembly according to any one of the sixteenth through twenty-second embodiments.
In a thirtieth embodiment, the present disclosure provides a liquid flow battery comprising: at least one electrode assembly according to the twenty-third or twenty-fourth embodiments.
Porous electrodes-separator assemblies were prepared using coating and laminating methods. The resultant electrode assembly's provide improved cell resistance as shown in the following examples.
These examples are merely for illustrative purposes only and are not meant to be limiting on the scope of the appended claims. All parts, percentages, ratios, etc. in the examples and the rest of the specification are by weight, unless noted otherwise. Solvents and other reagents used were obtained from Sigma-Aldrich Chemical Company, St. Louis, Mo. unless otherwise noted. All water used was DI water.
Electrode Making Procedure with Substrate
A 100 micron thick polypropylene film (substrate) (Polypropylene 3576X from Total Petrochemical USA Inc.) was prepared by laser drilling 1 mm diameter holes using a CO2 laser. The holes were spaced 3 mm apart in both X and Y directions, forming a square grid pattern of holes in the polypropylene film. The film was then cut into a 110 mm diameter disk.
A 110 mm ceramic Buchner funnel FB-966 -G was connected to a 500 ml side arm flask. For each sample, a new piece of #4 qualitative circle 110 mm cat no 1004 110 filter paper, (commercially available from GE Healthcare Company, Little Chalfont, Buckinghamshire, United Kingdom) was placed on top of the perforated holes in the Buchner funnel. Next the laser drilled polypropylene film was placed on top of the filter paper disk. An acrylic tube was placed on top of the filter paper and polypropylene film, inside the Buchner funnel, this tube prevented overflow of the material when the electrode was formed. The tube had an inside diameter of 3.9 (9.9. cm) inches and was 6 inches (9.9 cm) in length.
Formulation Mixing Procedure
The electrode formulation was mixed with following method. The Examples were made for a total of 2 grams of solids.
60 grams of Water was weighed out into a 250 ml glass jar which included a Teflon magnetic stir bar. The jar was placed on a magnetic stir plate and turned on to a medium setting.
The formulation was poured into the funnel on top of the polypropylene film and filter paper. A disk was then fitted inside the acrylic tube where the disk forms an air tight seal. The vacuum was then turned on using a vacuum pump from KnF Lab, LabOport Trenton, N.J., USA
The vacuum pulled the water through the holes and filter paper, dewatering the electrode. As the vacuum continued to draw the remaining liquid out of the electrode, the disk slides down the acrylic tube until it contacted the electrode. Once this happened, the vacuum was turned off, and the sample was removed. The electrode/substrate and filter paper was then placed in an oven and dried for 30 minutes at 100 degrees centigrade.
Examples 1A, 1B, and 1C, replicates, were produced with this procedure. Examples 2A, 2B, and 2C, also replicates, were produced with this procedure, but after drying a second electrode layer was added on the opposite side of the substrate. The second layer was produced using the same procedure used for the first side electrode layer. This produced an electrode with a polymeric substrate in the middle of the electrode.
Conductivity Test Procedure:
The Example electrodes were then cut into 7cm×7cm squares for conductivity testing. The electrodes were placed between two graphite plates that have serpentine flow channels. The flow plates of the test cell were commercially available quad serpentine flow channel with 25 cm2 active area, available from Fuel Cell Technologies, Albuquerque, N. Mex. They were then squeezed to 20%, 40%, 60%, and 80% compressions using gaskets that set the gap to achieve the target compression levels. Using power supply TDK-Lambda ZUP 10-40, a constant 35A current was applied across the sample, and the voltage between the two plates was measured using a KEITHLEY 197 A Autoranging microvolt DMM. The potential across the samples are in Table 1 below. Conductivity was measured as a voltage drop across the sample, at constant current.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/023517 | 3/22/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62137563 | Mar 2015 | US | |
62183429 | Jun 2015 | US |