This application claims the benefit of Japanese Patent Application No. 2009-255581, filed on Nov. 6, 2009, the entire disclosure of which is incorporated by reference herein.
This application relates generally to a portable abrasive tool used in abrasive operation, and more particularly, to a portable electric abrasive tool having a flat motor.
As disclosed in Unexamined Japanese Patent Application KOKAI Publication No. 2005-279891, a portable abrasive tool such as a sander and polisher works with the pad supporting an abrasive sheet such as a sanding paper being driven by a motor. Generally, the motor used in a portable abrasive tool is composed of a rotor consisting of a coil wound around a columnar iron core extending in the axial direction of the output shaft of the motor and a cylindrical stator enclosing the rotor. Then, the motor is accommodated in the housing of a portable abrasive tool that is held by the user.
In a portable abrasive tool having the motor as described above, the rotor and stator are elongated in the axial direction of the output axis of the motor. Therefore, the housing of a portable abrasive tool is governed by the motor in shape and it is difficult to produce a portable abrasive tool compact in the axial direction of the motor output shaft. As the dimension in the axial direction of the motor output shaft is increased, the abrasive surface and the gravity center of the abrasive tool are more separated. Then, a problem is that the abrasive surface is easily tilted during abrasive operation, making the abrasive operation difficult to handle.
The present invention is made in view of the above problem and an exemplary object of the present invention is to provide a portable abrasive tool having a reduced dimension in the axial direction of the motor output shaft so as to be excellent in operability.
In order to achieve the above object, the portable abrasive tool of the present invention comprises a flat motor composed of a rotor having an output shaft and a stator wherein one of the rotor and stator has a coil disk in the form of a disk on which multiple coil pieces are arranged in the circumferential direction about the output shaft when seen in the axial direction of the output shaft and the other of the rotor and stator has a magnetic flux generation unit generating a magnetic flux passing through the coil disk in the axial direction of the output shaft; and an abrasive part connected to one end of the output shaft of the flat motor.
Furthermore, the coil disk may be provided to the rotor; the stator may constitute a housing which rotatably supports the output shaft and encloses the coil disk; the magnetic flux generation unit may comprise magnets; a handle may be provided to the housing; and the flat motor may be provided between the handle and abrasive part.
Furthermore, the coil disk may be provided to the rotor; the stator may constitute a housing which rotatably supports the output shaft and encloses the coil disk; the magnetic flux generation unit may comprise magnets; the housing may have a flat part nearly parallel to the disk surface of the coil disk on the side where the other end of the output shaft is situated, and a nearly columnar protrusion protruding from the flat part nearly coaxially with the output shaft and having a diameter smaller than the diameter of the coil disk; and a handle for the operator to hold may be provided at the end of the protrusion that is away from the flat part.
Furthermore, the handle may have a facing-the-housing part facing the flat part of the housing and having an outer peripheral edge outside the outer diameter of the protrusion when seen in the axial direction of the output shaft; and a control switch for controlling the operation of the flat motor may be provided on the facing-the-housing part of the handle.
Furthermore, the coil disk may be provided to the rotor; the stator may constitute a housing which rotatably supports the output shaft and encloses the coil disk; the housing may have a flat part nearly parallel to the disk surface of the coil disk on the side where the other end of the output shaft is situated; and a handle for the operator to hold may be provided on the flat part, the handle having a handle protrusion protruding from the flat part in the axial direction of the output shaft and a handle grip extending from the end of the handle protrusion that is away from the flat part nearly in parallel to the flat part.
Furthermore, a control switch for controlling the operation of the flat motor may be provided on the handle grip at a position facing the flat part.
Furthermore, a power cord protrusion protruding in the direction nearly perpendicular to the axial direction of the output shaft and in which a power cord for feeding the flat motor runs may be provided to the housing; and the handle grip of the handle may pass through nearly the center of the output shaft when seen in the axial direction of the output shaft and extend nearly in parallel to the power cord protrusion.
Furthermore, possibly, the coil disk may be provided to the rotor; the stator may constitute a housing which rotatably supports the output shaft and encloses the coil disk; the housing may have a flat part nearly parallel to the disk surface of the coil disk on the side where the other end of the output shaft is situated; and a side handle for the operator to hold may be provided to the housing, the side handle protruding from the housing in the direction nearly perpendicular to the axial direction of the output shaft when seen in the axial direction of the output shaft.
Furthermore, the magnets may be provided in the housing in the manner that they face one of the disk surfaces of the coil disk.
Furthermore, the housing may have an outer peripheral wall facing the circumference of the coil disk; and multiple cooling holes communicating with the interior of the housing accommodating the coil disk may be formed in the outer peripheral wall.
Furthermore, the rotor may have an outer diameter radially larger than a diameter of the abrasive part.
Using a flat motor, the present invention can reduce the dimension in the axial direction of the output shaft of the motor of a portable abrasive tool and reduce the distance between the abrasive surface and the gravity center of the portable abrasive tool, improving the operability.
A more complete understanding of this application can be obtained when the following detailed description is considered in conjunction with the following drawings, in which:
Embodiment 1 of the present invention will be described hereafter with reference to
As shown in
The housing 2 contains multiple magnets 21 such as permanent magnets or electromagnets facing the lower disk surface 20 of the coil disk 10 and spaced in the circumferential direction and an annular iron yoke 22 so that the magnetic flux passes through the coils of the coil disk 10 in the direction of the axis line 16 (the axial direction) of the output shaft 6. The housing 2 further contains an annular iron yoke 24 facing the upper disk surface 23 of the coil disk 10 at the opposite position to the iron yoke 22 across the coil disk 10 when seen in the direction of the axis line 16 of the output shaft 6. The magnets 21 and iron yokes 22 and 24 constitute a magnetic flux generation unit. Here, the magnetic flux generation unit is not confined to this structure as long as the magnetic flux passes through the coils of the coil disk 10 in the direction of the axis line 16 of the output shaft 6. For example, the magnetic flux generation unit can consists of multiple permanent magnets, electromagnets, or coils only. The housing 2 in which the magnets 21 and iron yokes 22 and 24 are provided constitutes a stator. The housing 2 further contains a brush 25 making contact with the upper disk surface 23 of the coil disk 10 to feed the coils of the coil disk 10. The coil disk 10 secured to the output shaft 6, which serves as a rotor, the magnets 21 and iron yokes 22 and 24, which serve as a stator, and brush 25 constitute a flat direct-current commutator motor (flat motor).
As shown in
As shown in
The conductor pattern in the coil region 90a on the top surface of the coil/commutator disk 62 forms multiple coil segments 92a arranged radially about the axis line 16. The inner end of each coil segment 92a is directly connected to the corresponding commutator segment 82. The outer end of each coil segment 92a is bent in a given direction about the axis line 16. Multiple through-holes 93a running through the coil/commutator disk 62 are formed at the outer end of each coil segment 92a.
Nearly the same conductor pattern as the one in the coil region 90a shown in
As shown in
Nearly the same conductor pattern as the one in the coil regions 90a and 90b of the coil/commutator disk 62 is formed in the coil regions 90c and 90d of the coil disk parts 63. Multiple coil segments 92c are arranged radially about the axis line 16 in the coil region 90c on the top surface 90a of the coil disk part 63 as shown in
The conductor patterns in the commutator region 80 and coil region 90a of the coil/commutator disk 62 are formed on the same printed wiring. Furthermore, the conductor patterns in the commutator region 80 and coil region 90a of the coil/commutator disk 62 have a larger thickness than a thickness of the coil region 90b and the coil regions 90c and 90d of the coil disk parts 63 in order to prevent damage from abrasion by the brush 25.
The coil/commutator disk 62 and coil disk parts 63 are laminated with not-shown insulating layers between the coil/commutator disk 62 and coil disk part 63 and between multiple coil disk parts 63 in the manner that, for example, the coils 91a and 91c overlap each other when seen in the direction of the axis line 16 or the coils 91a and 91c are arranged at a given angle about the axis line 16.
As shown in
As shown in
Furthermore, as shown in
In the portable abrasive tool 1 having the above structure, a given voltage is applied to the brush 25 when the trigger switch 30 on the handle 5 is turned on. The voltage applied to the brush 25 is applied to the coils 91a and 91c formed on the coil disk 10 via the commutator 81. A current flows through the coils 91a and 91c to which the voltage is applied nearly radially on the coil disk 10 and in the direction perpendicular to the axis line 16 of the output shaft 6. The direction of the current flow is controlled by the commutator 81. On the other hand, the magnetic flux generated by the magnets 21 passes through the coil disk 10 perpendicular to the current in the direction of the axis line 16 of the output shaft 6. Then, a torque occurs on the coil disk 10 in the circumferential direction of the coil disk 10 about the axis line 16. Then, the output shaft 6 rotates together with the coil disk 10.
As the output shaft 6 rotates, the fan 15 rotates. The motor-cooling fan blades 12 formed on the fan 15 sucks the air in the internal space 33 of the housing 2 via the cooling air passage 35. Then, ambient air enters the internal space 33 from the cooling through-holes 34 communicating with the internal space 33. The entered ambient air cools the coil disk 10. On the other hand, the dust-collecting fan blades 14 formed on the fan 15 sucks dust generated during abrasive operation and sends it into the dust bag 38 through the dust passage 40 via the dust bag mount 39. Furthermore, the pad 4 attached via the eccentric shaft 7, third bearing 18, and bearing cover 19 is driven by the rotation of the output shaft 6 so that the abrasion-target surface is abraded by the abrasive sheet 3 attached to the pad 4.
Using a flat motor comprising coils in the disks of the coil disk 10 for the portable abrasive tool 1, the rotor 60 is light-weighted and activated sooner compared with a motor having coils wound around a core. Then, the dimension in the direction of the axis line 16 of the output shaft 6 of the motor can significantly be reduced and the portable abrasive tool 1 can further be downsized. Furthermore, the reduced dimension in the direction of the axis line 16 results in reducing the distance from the gravity center of the handle 5 of the portable abrasive tool 1 and the portable abrasive tool 1 to the abrasive surface of the pad 4 on which the abrasive sheet 3 is attached. Therefore, the abrasive surface is not easily tilted with respect to the abrasion-target surface during the operation, improving the operability.
Furthermore, the housing 2 has the flat part 26 and the protrusion 27 protruding from the flat part 26 on the opposite side to the pad 4. Therefore, the operator can hold the flat part 26 and protrusion 27 of the housing 2 in addition to the handle 5 during abrasive operation, improving the operability. Particularly, the protrusion 27 is smaller in diameter than the coil disk 10 (or the flat part 26) and has a columnar shape nearly coaxial with the output shaft 6. Then, the operator can place his/her hand on the flat part 26 around the protrusion 27. Then, the operator can more easily hold the housing 2, improving the workability. Furthermore, the motor is not placed within the handle 5 and, therefore, the degree of freedom in designing the handle 5 is significantly increased; for example, a handle 5 easier to hold can be provided. Furthermore, the trigger switches 30 controlling the rotation of the output shaft 6 of the motor are provided on the part of the handle 5 that faces the flat part 26 of the housing 2. Then, the operator can operate the trigger switches 30 while holding the handle 5 with a palm, further improving the operability. Furthermore, two trigger switches 30 are provided on either side of the axis line 16. Then, the operator can operate one of the trigger switches 30 that is easier to use depending on how he/she is holding the handle 5, further possibly improving the operability.
Furthermore, the cooling through-holes 34 are formed in the outer peripheral wall 32 of the housing 2. The cooling through-holes 34 are not easily closed up by the operator during the operation and the motor can efficiently be cooled. Furthermore, with the coils 91a and 91c being provided in the flat disks of the coil disk 10, a large heat discharging area is ensured for the coils 91a and 91c through which a current runs. Therefore, the coils 91a and 91c can efficiently be cooled along with the cooling through-holes 34.
Furthermore, the coil disk 10 is so designed as to increase the rotation diameter of the rotor 60. The coil disk 10 has an outer diameter radially larger than an outer diameter of the pad 4 and abrasive sheet 3. Therefore, increased stability allows for operation with excellent operability. Furthermore, the magnets 21 face the disk surface of the coil disk 10. The dimension in the direction perpendicular to the output shaft 6 of the portable abrasive tool 1 can be reduced.
A portable abrasive tool 1001 according to Embodiment 2 of the present invention will be described hereafter with reference to
As shown in
The portable abrasive tool 1001 having the above structure has the above-described advantageous effects as a result of using a flat motor. In addition, the handle protrusion 1015 creates a space between the handle grip 1025 of the handle 1005 and the flat part 26 of the housing 1002. Then, the operator can hold the flat part 26 of the housing along with the handle grip 1025 of the handle 1005, improving the operability. Furthermore, the protrusion 1027 is formed on the flat part 26 of the housing 1002. Then, the operator can place his/her hand on the flat part 26 around the protrusion 1027 below the handle grip 1025. The operator can more easily hold the housing 1002, improving the workability. Furthermore, the trigger switch 30 is provided on the handle 1005 at a position facing the flat part 26 of the housing 1002. Then, the operator can operate the trigger switch 30 while holding the handle grip 1025 of the handle 1005, further improving the operability. Furthermore, the handle grip 1025 extends nearly in parallel to the direction in which the cord armor 37 extends. The power cord 36 does not easily interfere with the abrasive operation. Furthermore, the handle grip 1025 passing through the center of the output shaft 6 facilitates the identification of the abrasive surface position, improving the workability.
A portable abrasive tool 2001 according to Embodiment 3 of the present invention will be described hereafter with reference to
As shown in
The portable abrasive tool 2001 having the above structure has the above-described advantageous effects as a result of using a flat motor. In addition, the side handle 2030 extends from the outer peripheral wall 32 of the housing 2002 in the direction nearly perpendicular to the axis line 16 when seen in the direction of the axis line 16 in addition to the handle 2005. Then, the distance from the gravity center of the handle 2005 of the portable abrasive tool 2001 and the portable abrasive tool 2001 to the abrasive surface of the pad 4 to which the abrasive sheet 3 is attached is reduced. The abrasive surface is not easily tilted with respect to the abrasion-target surface during the operation, improving the operability. Furthermore, the operator can use the hand that is not holding the handle 2005 to hold the flat part 2026 and protrusion 2027 instead of holding the side handle 2030. Then, the operator can choose the best way of holding the portable abrasive tool 2001 depending on the operation state, further improving the operability. Furthermore, the motor is not placed in the handle, the degree of freedom in designing the handle is increased and a handle easier to hold can be provided.
The above-described Embodiments 1 to 3 comprise the commutator 81 consisting of multiple commutator segments 82 arranged radially about the axis line 16 on the disk surface of the coil/commutator disk 62 constituting the coil disk 10. Then, the brush 25 makes contact with the commutator 81 in the direction of the axis line 16 (the direction perpendicular to the disk surface). However, the structure of the commutator and brush is not confined to the above structure. For example, in a modification of the portable abrasive tool 1 of Embodiment 1 as shown in
When the commutator 181 and brush 125 having the above structure are provided, the brush 125 makes contact with the commutator 181 in the direction perpendicular to the axis line 16 of the output shaft 6. Therefore, the coil disk 110 is not easily subject to side runout, ensuring current supply from the brush 125 to the coil. Furthermore, the individual commutator segments of the commutator 181 can easily be increased in thickness. Then, the commutator 181 can be more durable and the portable abrasive tool 1, 1001, or 2001 can have a longer life.
The above-described embodiments all utilize a flat motor having the coil disk 10 rotating as a part of the rotor and the magnets 21 secured to the housing 2, 1002, or 2002 as the stator. However, the portable abrasive tools 1, 1001, and 2001 are not confined to this. For example, a flat motor unit having an independent motor housing in which the rotor and stator of a flat motor are housed with the output shaft 6 protruding from it can be prepared. Then, the flat motor unit is installed in the housing of the portable abrasive tool. Furthermore, a flat brushless motor in which magnets constitute a stator rotating together with the output shaft 6 and a coil disk constitutes a stator secured to the housing can be utilized. Furthermore, the coil disk does not necessarily consist of printed wiring boards. The motor can comprise a coil disk consisting of, for example, multiple coils arranged in the form of a disk as long as the coil disk is flat and compact.
Further, the embodiments are explained above as having a portable abrasive tool connected to an alternating current source. However, instead, a rechargeable battery may be detachably connected to the device, and the device may be battery-driven. In this case, the battery may be located above the motor to allow, in operation, a user to grip the tool by the periphery of the battery, instead of the handles 5 and 1005 omitted in this case. This structure is advantageous because the overall length of the device is shortened due to absence of the cord armor 37 etc., that may be a cause of the elongated overall length of the tool. Also, this structure is advantageous because the flat motor shape can allow locating the battery above the motor in a compressed size in the latitudinal direction of the tool. Moreover, in this structure, the battery, which is a comparatively weighty element in the device, can locate above the abrasive surface. Therefore, as compared to the structure in which the battery is positioned away from the abrasive surface, the stability of the tool in operation can be increased, and the abrasive surface can be prevented from tilting, to improve the workability.
Having described and illustrated the principles of this application by reference to one or more preferred embodiments, it should be apparent that the preferred embodiments may be modified in arrangement and detail without departing from the principles disclosed herein and that it is intended that the application be construed as including all such modifications and variations insofar as they come within the spirit and scope of the subject matter disclosed herein.
Number | Date | Country | Kind |
---|---|---|---|
2009-255581 | Nov 2009 | JP | national |