A field of the invention is orthotics.
During normal gait, the ankle joint, shank, and foot play important roles in all aspects of locomotion, including shock absorption, stance stability, energy conservation and propulsion. For example,
Pathology or injury that affects the ankle joint can significantly impact quality of life by impairing some or all functional aspects of gait. Both dorsiflexor and plantarflexor muscle groups of the ankle-foot complex are critical to normal walking, and undesirable compensatory gait patterns result from weakened or impaired muscles of either type. Other causes of lower limb gait deficiencies include, but are not limited to, trauma, incomplete spinal cord injuries, stroke, multiple sclerosis, muscular dystrophies, and cerebral palsy.
The dorsiflexors (e.g., shin muscles) lie anterior to the ankle joint and include the tibialis anterior, extensor digitorum longus, and extensor hallucius longus. Weak dorsiflexors affect both stance and swing phases of gait, causing clearance issues during swing phase and uncontrolled deceleration of the foot at initial stance. Swing is affected because the foot does not effectively clear the ground due to weak or absent dorsiflexor muscles, which results in a steppage-type gait pattern that is commonly called foot drop. Steppage gait is a compensatory walking pattern characterized by increased knee and hip flexion during the swing phase so that the toe clears the ground during walking. The weak or absent dorsiflexors also prevent the controlled deceleration of the foot shortly after heel strike. This lack of control results in an often audible foot slap that impacts stance initialization.
The plantarflexors (e.g., calf muscles) lie posterior to the ankle joint and include the gastrocnemius, soleus, and the peroneal and posterior tibial muscles. From heel strike to middle stance, the ankle plantarflexors concentrically contract to stabilize the knee and ankle and restrict forward rotation of the tibia. At the end of stance, the plantarflexors concentrically contract and generate torque that accelerates the leg into swing and contributes to forward progression.
Weak plantarflexors primarily affect stance phase by reducing stability and propulsive power of the individual, particularly during limb support. Individuals with impaired ankle plantarflexors compensate by reducing walking speed and shortening contralateral step length. Reduced walking speed results in a corresponding reduction in torque needed for forward progression. The shortened contralateral step is thought to increase stability by limiting anterior movement of the center of pressure with respect to the ankle. Impaired individuals may maintain a fast walking pace by using their hip flexors to compensate for weak plantarflexor muscles.
Ankle foot orthoses (also referred to herein as orthoses or AFOs) can be used to ameliorate the impact to gait of impairments and injuries to the lower limb neuromuscular motor system. AFOs can be used for rehabilitation, diagnostic, or training devices, for example, to assist walking function, direct measurement of joint motion and force, and to perturb gait. Existing technologies for AFOs include passive devices with fixed and articulated joints with or without spring assist, semi-active devices that modulate the spring or damping about the joint, and active devices with various technologies to produce power and to move the joint.
Passive devices generally limit the foot angle to the neutral position (i.e., 90° between leg and foot), which can produce an unnatural gait but prevents further damage or injury and provides limited mobility to people that use them. Passive orthoses do not provide direct assistance during the propulsive phase of gait. Commercial passive devices improve gait deficiencies using motion control. The control of passive AFO elements relies on the activation of springs, valves, or switches in an open-loop manner as the individual walks. This type of AFO has limited robustness and does not adapt to changing walking conditions.
Semi-active devices can store energy, such as in a spring, and provide braking assistance but do not add energy into the system to aid propulsion. Active devices provide assistance in propulsive movements necessary for normal gait. Particular active devices that provide assistance in propulsive phases of gait have been developed for clinical or laboratory settings and are tethered to power sources. Such devices cannot be used outside the clinic or laboratory. Typical active and semi-active devices use large electromechanical actuators that are cumbersome and unattractive.
Compactness and weight are critical to daily use, and current commercial orthoses are all passive as a result. These include passive articulated or non-articulated orthoses, which are made from materials including metal and leather systems, thermoplastics, composites, and hybrid systems. Traditional metal and leather systems have articulated hinge joints with various types of mechanical steps used to limit motion. Some orthoses include springs to resist or assist movement. Common passive devices inhibit motion at undesirable times. Common and more newly developed semi-active devices can also stop or resist motion at undesirable points and only store energy provided by a user, which may not be ideal for treating many gait impairments.
Embodiments of the present invention provide, among other things, a portable active pneumatically-powered ankle foot orthosis. An example device comprises a lower leg mount and a foot bed pivotally coupled to the lower leg mount at or proximate to an ankle position. A pneumatically powered rotary actuator is configured to receive power from a portable (e.g., wearable) fluid power source and provide controlled force and/or resistance to aid or inhibit relative rotation of the foot bed and the lower leg mount. Embedded sensors are used to provide feedback from the orthosis to actively assist gait of a user.
Additional embodiments of the invention provide a portable active pneumatically powered ankle foot orthosis comprising a lower leg mount, a foot bed pivotally coupled to the lower leg mount at or proximate to an ankle position, and at least one sensor for determining a phase of a user's gait. A pneumatically powered rotary actuator is coupled to the leg mount and to the foot bed. The rotary actuator is configured to receive power from a wearable fluid power source and to provide controlled force and/or resistance to aid or inhibit relative rotation of the foot bed and the lower leg mount. At least one valve is integrated with the rotary actuator. A controller is provided for receiving data from the at least one sensor and controlling the pneumatically powered rotary actuator by controlling the at least one valve to actively assist gait of a user. Preferably, the actuator and the controller are both disposed on a support structure to provide a subassembly integrating the actuator, controller, and valve(s). This subassembly can be coupled to the leg mount.
Embodiments of the invention provide a portable active pneumatically powered ankle foot orthosis. Example devices of the invention are pneumatically powered by a self-contained and portable (e.g., wearable) fluid power source, such as a container (e.g., bottle, cylinder, cartridge, etc.) of CO2 or other suitable fluid. CO2 containers that may be used include, as nonlimiting examples, containers used in the power tool industry. The CO2 or other fluid container can be worn on a belt or another area of the body. The fluid power source is coupled to a rotary actuator at or proximate to the ankle joint that is controlled by an on-board controller, e.g., a microcontroller having a microprocessor and memory. The torque generated by the actuator can be used for both motion control of the foot and to provide supplemental torque for the individual during gait.
A compact and lightweight structure attaches to the lower leg of a user, for instance around the leg, to provide a lower leg mount, and a pivotally attached foot bed attaches to the user's foot. The foot bed includes at least one sensor for determining a stage during gait, such as one or more force sensors that communicate with the on-board controller. A rotational sensor preferably monitors the angle between foot and lower leg and also communicates with the on-board controller. Pressure regulators can be used in example embodiments to manage the torque produced by the rotary actuator, and valves can be used to control the actuator by directing the fluid power to the actuator. Control and sensing of the actuator are accomplished through use of the force and/or angle sensor, as well as the on-board controller. In an example operation, the pneumatically powered rotary actuator provides active assistance under direction of the on-board controller via fluid control valves based upon information that the controller receives from the force sensors to provide active ankle torque assistance, either dorsiflexor torque or plantarflexor torque.
Advantageously, in preferred embodiments, the fluid power source can be a low power source, e.g., having a power of 10-100 W. Example devices have a weight of about 2 kg or less excluding the power source. It is also contemplated for devices to have a weight of 1 kg or less. The power source is preferably belt worn and adds about an additional 1.2 kg for an example CO2 portable bottle, but can provide a significant operational range; as a nonlimiting example, ˜40 minutes of continuous use, and longer depending upon conditions, level of assistance, and amount of use. Operating temperature preferably is below 100° F. Use can be extended easily by simply inserting a recharged gas cylinder or other changeable power source.
A preferred embodiment orthosis using a low power CO2 fluid power source includes a rotary actuator that provides up to about 10 Nm of torque, though rotary actuators providing more than 10 Nm are also contemplated, such as for providing more than partial assist. A compact, lightweight lower leg and foot bed structural shell of carbon fiber or other suitable material can be custom molded to an individual user to be unobtrusive and work with normal clothing and footwear. A small battery or other suitable power source, such as but not limited to a 9V battery, 2×AA batteries, or equivalent secondary battery, provides power for the on-board controller. In an example fitting session, the controller includes software (or firmware or hardware) that can receive information about the individual and the individual's condition, and the amount of assistance in propulsive gait and in braking can be tailored by adjustment of control parameters. While an example orthosis of the invention can rely upon a uniform resistive force for braking, example controllers and actuators can also provide active braking.
The active nature of example devices of the invention provides the flexibility to assist both the plantarflexor and dorsiflexor muscle groups in approaching their functional objectives during gait. An example rotary actuator can control the velocity of the foot during initial contact to prevent foot-slap, provide torque at the end of stance for propulsion, support the foot in the neutral (or 90°) position during swing to prevent foot-drop, and allow free range of motion during the rest of the cycle. Timing and magnitude of the assistance can be determined uniquely for each user through the electronic controller and/or mechanical adjustments. For example, tuning can be accomplished using feedback from the sensors on the device, measurements from lab equipment, observation from the investigators, and/or feedback from the participant to determine a subject specific control scheme that is downloaded to the microprocessor embedded in the example on-board controller.
An example operation assists impaired gait by determining a phase in a gait cycle and providing controlled resistance or assistance. For example, at heel strike, an example orthosis can control forefoot velocity to prevent foot slap by providing eccentric dorsiflexor assistance. At the end of stance, the example device can provide modest assistive torque for propulsion and stability by providing concentric plantarflexor assistance. During swing, the example device can support the user's foot in the neutral position during swing to prevent foot drop by providing concentric dorsiflexor assistance. During other parts of the gait cycle, the example device can allow free range of motion.
Preferred embodiments will now be discussed with respect to the drawings. The drawings include schematic figures that may not be to scale, which will be fully understood by skilled artisans with reference to the accompanying description. Features may be exaggerated for purposes of illustration. From the preferred embodiments, artisans will recognize additional features and broader aspects of the invention.
The actuator 26 is configured to receive power from a portable fluid power source and provided controlled force and/or resistance to aid or inhibit relative motion between the lower leg mount 22 and the foot bed 24. As shown in
The lower leg mount 22 (which generally refers to any structure suitable for at least partially holding and supporting a part of a user's lower leg or shank during gait) in the example device 20 includes a cuff 40, or all or part of a sleeve, configured for accommodating and at least partially supporting a lower leg of the user. The cuff 40 should be as lightweight as possible, while providing sufficient support for the lower leg and for any components of the device 20 that are attached thereto. For example, in the device 20, the controller 30 is attached to a rear portion of the lower leg mount 22. The lower leg mount 22 preferably includes a light, fairly rigid inner frame, e.g., carbon fiber or carbon composite, light metal, or plastic, which is lined and padded for user comfort. A strap 42 fits a front plate 44 to a shin of the user (e.g., see
The foot bed 24 in the example device 20 (generally, any structure suitable for at least partially holding and supporting a part of a user's foot during gait), which can be configured for a right or left foot and be sized according to an individual user, includes a base 45 having an inner frame of a sturdy, lightweight material (e.g., carbon fiber or carbon composite (such as but not limited to pre-impregnated carbon composite laminate material), light metal, or plastic), which is preferably lined and/or padded. A bottom plate 46 of the foot bed 24 supports the user's foot, which can be held within the foot bed 24 by one or more straps 48. The straps 42, 48 may be any suitable strap, including but not limited to straps fastened by suitable fasteners, e.g., buckles or hook-and-loop fasteners (such as VELCRO® fasteners). A sole 49, preferably with suitable padding, is provided underneath the bottom plate 46 to provide an interface with the ground and for cushioning during walking. As a nonlimiting example, a standard shoe sole could be used. The foot bed 24 can vary in terms of, as nonlimiting examples, height of the heel relative to the metatarsal heads, angle (pitch) of a toe section, etc. It is also contemplated that the foot bed 24 could be configured to fit inside a (e.g., modified) running or walking shoe, with the sole 49 being provided by the sole of the shoe.
For coupling to the actuator 26 and to the foot bed 24, the lower leg mount 22 also includes a pair of laterally opposed rigid lower members such as struts 50, 51 which preferably are made of a rigid material (e.g., a light metal). The struts 50, 51 may be integrally formed with the inner frame of the lower leg mount 22, or may be separate components rigidly coupled to the inner frame, as shown in
Similarly, the foot bed 24 includes a pair of laterally opposed rigid upper members such as extensions 54, 55 (best seen in
The example pneumatically powered rotary actuator 26 shown in
As shown in
So that the valves 60 can selectively control fluid flow to the example actuator 26, fluid couplings, e.g., lines 64, 65, 66, couple the actuator and the valves. Particularly, fluid line 64 is disposed between an output 72 of one of the valves 60 and an input 70 of the actuator 26, directly coupling the valve and the actuator. Additionally, fluid line 65 is disposed between an output 68 of another of the valves 60 and an input 74 of the pressure regulator 63, and fluid line 66 is disposed between an output 76 of the pressure regulator and another input 78 of the actuator, providing an indirect fluid coupling between the valves 60 and the actuator 26. The fluid lines 64, 65, 66 may be any suitable opening sealed with fluid tubing, and the inputs 70, 74, 78 and the outputs 68, 72, 76 may be any suitable fluid caps or seals with passages for the fluid lines.
It is preferred that the fluid lines 64, 65, 66, inputs 70, 74, 78, and the outputs 68, 72, 76 are of a lightweight material, such as lightweight tubing material, to minimize weight of the overall device 20. Those in the art will appreciate that various individual or combined components may be used for the fluid lines 64, 65, 66, inputs 70, 74, 78 and outputs 68, 72, 76. A nonlimiting example weight for the device 20, without the CO2 or other fluid container 28, is 1.9 kg.
Inputs 80, 82 of the valves 60 (suitably sealed and/or capped) are in turn coupled to an output of the fluid power source, e.g., the CO2 container 28. In a nonlimiting example embodiment, the output of the CO2 container 28 is input to the first fluid regulator 62 and then output via line 84 (
The example solenoid valves 60 are configured to be selectively controlled by the on-board controller 30. In an example embodiment, the direction of the torque can be switched between dorsiflexor and plantarflexor by controlling the two solenoid valves 60. Suitable leads 88 electrically couple an input/output connection 90 of the on-board controller 30 to the valves 60 for operating the solenoids.
As best seen in
The circuit board 94 includes a microprocessor 96 (with suitable memory), power source (as nonlimiting examples, a 9V battery, 2×AA batteries, etc.) 98, an input (of the input/output connection 90) for electrically coupling to the sensors 32, 34, 36, and an output for coupling to the valves 60. A nonlimiting example controller is eZ430-F2013 microcontroller, Texas Instruments, Dallas, Tex. Example controllers 30, including the microprocessor 96, the circuit board 94, etc., can be commercially obtained or custom made to reduce size, weight, power requirements, etc. As a nonlimiting example, a customized chip may be provided in place of one or more components. Coupling between the on-board controller 30 and the sensors 32, 34, 36 can be wired or wireless. The microcontroller preferably is configured, e.g., programmed, via suitable hardware, firmware, or software, to control the valves 60 and thus the actuator 26 based on input from one or more of the sensors 32, 34, 36, according to methods of the present invention.
The sensors 32, 34, 36 are disposed in or on the device 20 to allow feedback for input to the controller 30. In an example embodiment the rear sensor 34 is disposed in or on the base 45, foot plate 46, sole 49, or elsewhere in or on the foot bed 24 to receive pressure information at or near the heel of the foot bed. Similarly, the fore foot sensor 32 is disposed in or on the base 45, foot plate 46, sole 49, or elsewhere, and preferably is placed under the metatarsal head of the foot bed, to receive pressure information near the front of the foot bed, e.g., at or near the toe of the user's foot. A nonlimiting example placement for the sensors 32, 34 is between the foot plate 46 and the sole 49. As nonlimiting examples, the sensors 32, 34 may be force-sensitive resistors. The example angle (e.g., rotary) sensor, in the example embodiment shown in
The controller 30 then outputs (e.g., via input/output connection 90) control signals for selectively operating the solenoid valves. The valves are supplied with fluid pressure by the coupling with the fluid power source. One of the valves 72, selectively controlled by the controller 30, outputs pressure directly to the pneumatically powered rotary actuator 26 via the input 70. The other valve 80, also selectively controlled by the controller, outputs fluid to the second pressure regulator 63, which in turn provides pressure to the other input 78 of the actuator 26. The pneumatic power provided by the selectively controlled valves 80, 82 provides controlled torque and/or resistance for the pneumatically powered actuator 26 to aid or inhibit relative rotation of the lower leg mount 22 and the foot bed 24.
Generally, to control the device in a first example method, the controller 30 determines the occurrence of particular phases or events within the user's gait cycle, such as by using the readings of the heel sensor 34 and fore foot sensor 32, and accordingly provides assistance or resistance by switching control of the valves to change direction of torque between dorsiflexor and plantarflexor, provide an appropriate amount of dorsiflexor and/or plantarflexor torque, or allow free range of motion (or substantially free range of motion with mild resistance). An example control scheme is illustrated in
Initial contact (loading response) is defined from heel strike until the foot is flat on the ground. During this state the orthosis 20 provides dorsiflexor assistance to control the velocity of the foot as it travels from heel strike to foot flat, increasing joint impedance to avoid foot slap. Mid-stance lasts from foot flat until the heel comes off the ground, and during this state the orthosis 20 allows (for example) free range of motion at the ankle joint. Terminal stance begins when the heel has come off the ground, and ends when the foot is no longer in contact with the floor, after toe off. Plantarflexor torque (preferably modest torque) is applied during this state to provide assistance at the end of stance for propulsion, as well as stability. Swing, or limb advancement, begins at toe-off and lasts until the heel again makes contact with the ground. Dorsiflexor torque is applied by the orthosis 20 to support the foot in the neutral (or 90 deg) position to maintain clearance during swing and prevent foot drop. Preferably, the sensors 32, 34, 36 and programming in the controller can also detect an altered gait, for instance, corresponding to stair climbing or running, by providing suitable feedback.
In example embodiments, the timing of the four states described above and the magnitude of the torque assistance provided can be determined uniquely for each individual and for each condition to be addressed. This can be accomplished in example embodiments using feedback from sensors of the device, e.g., the rear (e.g., heel) sensor 34, the fore foot sensor 32, and in some example embodiments the angle sensor 36, as well as (for instance) measurements from lab equipment, observation from the investigators, and feedback from the participant. Once these values have been determined, a subject specific control scheme can be created and installed, e.g., downloaded, to the microcontroller and memory in the on-board controller 30.
A tuning scheme preferably is provided to determining the timing and magnitude of the device 20 assistance for each user. For example, pressure sensor thresholds can be adjusted for each user to determine event boundaries during the gait cycle. Adjusting sensor thresholds modifies the event boundaries that are determined. In example embodiments, redundant triggers are avoided by maintaining a threshold large enough to exceed the noise level of the unloaded sensors 32, 34. Robustness of the determined thresholds may vary, as a nonlimiting example, based on the user or the intended manner of use of the device 20. Once the sensor thresholds are determined, these can be downloaded to the controller 30.
In some example devices and methods, dorsiflexor and plantarflexor torque are controlled in a binary manner; i.e., either the torque is provided or not. In other example embodiments, dorsiflexor and/or plantarflexor torque can be provided in various intermediate levels. Providing intermediate levels of assistance or resistance allows, among other things, more precise torque assistance, robustness to changing walking conditions, and improved power efficiency and duration.
In an example device according to another embodiment of the invention, the solenoid valves 60 are replaced with one or more high speed proportional solenoid valves (not shown) (one nonlimiting example is LS-V05s; Enfield Technologies, Trumbull, Conn., USA) to allow varying torque assistance. Further, to provide additional robustness and improve pneumatic power efficiency, feedback control, in the form of proportional-integral-derivative (PID) controllers, can be provided.
As shown in the example control system of
where kp is the proportional gain, ki is the integral gain and kd is the derivative gain. These gains can be determined through heuristic tuning for each of the functional tasks. For example, task 1 can be to track a target velocity reference to control the motion of the foot during loading response, task 2 can be to track a reference force profile during stance for propulsion and stability, and task 3 can be to track an ankle angle reference during swing to control the motion of the foot. In the example shown in
Example devices provide untethered active ankle foot orthoses that are light weight and small size. A preferred embodiment ankle foot orthosis controls and assists ankle motion using plantarflexor and dorsiflexor torque at the ankle joint, employing pneumatically-powered actuators to provide active ankle torque assistance during gait. Pneumatic power provides high force/weight and force/volume for example actuators, the ability to actuate a joint without a transmission, and the ability to transport pressurized fluid to the actuator through (for example) flexible hoses that can be placed where a shaft from a traditional motor would not reach, among other benefits.
The embedded controller 30 controls the actuation of the foot, and example devices provide the flexibility to modulate the direction (dorsal or plantar), timing, and magnitude of the assistance provided to the user. Advantageously, example devices are flexible enough to accommodate both plantar and dorsiflexor weakness and provide an excellent assistive technology for the compensation of muscle weakness.
Those of ordinary skill in the art will appreciate that various modifications, modifications, substitutions, and alternatives are possible. For example, instead of the pneumatic actuator 26 shown, an orthosis device according to another embodiment of the invention can include a more compact rotary actuator having integrated conduits and valves, for reducing the overall size of the device and/or increasing device efficiency. Additionally, the controller can be an integrated controller, with a suitable power supply and input/outputs. This controller is preferably sufficiently small as to be disposed with the rotary actuator on a portion of a support structure such as a strut to provide a modular subassembly. The controller in such embodiments can be configured to operate according to any of the example methods described herein, or according to other methods. An electronic connection between an integrated controller and the fluid power valves can be provided in particular embodiments. Additionally, an integrated sensor such as a non-contact rotary encoder (e.g., mounted to the actuator) could be provided in place of the belt potentiometer in the device 20. In addition to control electronics, example controllers can include, as nonlimiting examples, signal processing electronics, data logging capabilities, wireless communication for remote program changes and monitoring, etc.
For example,
The orthosis device 200 includes a lower leg or tibial mount component or assembly (lower leg mount) 204 pivotally coupled (e.g., attached) via the rotary actuator 202 to a foot bed component or assembly (foot bed) 206 for relative rotating motion. As with the device 20, the rotary actuator 202 is disposed at or proximate to an ankle position of a user, e.g., at or near the user's ankle joint. To reduce size and weight of the orthosis device 200, the free motion ankle joint in the device 20 laterally opposing the rotary actuator 202 is preferably omitted, though in other embodiments, a free motion ankle joint can be provided. The rotary actuator is controlled via an on-board controller, e.g., a microcontroller 208, disposed on and integrated with the lower leg mount 204.
As with the lower leg mount 22, the lower leg mount 204 includes a cuff 210, or all or part of a sleeve, for accommodating and at least partially supporting a lower leg of the user. The frame of the cuff 210 preferably is as lightweight as possible, while providing sufficient support for the lower leg, and in an example embodiment is composed of a carbon-fiber composite shell, though various other materials can be used (e.g., light metal or plastic). The shell can be integrated with noise and vibration abatement. A strap or straps 212, e.g., VELCRO® straps or other suitable straps, can be provided for holding the lower leg mount 204 around the user's lower leg. A front plate 213, as shown in
The foot bed 206 can be configured for a right or left foot and includes a frame 214 of a sturdy, lightweight material such as carbon-fiber composite, light metal, or plastic. Padding 216 can be provided to line the foot bed 206. One or more straps 218, e.g. VELCRO® straps or other suitable straps, preferably are provided for holding the user's foot within the foot bed 206. A sole 220 (
To reduce overall size and weight of the orthosis device 200, both the actuator 202 and the controller 208 are integrated into a subassembly 230 incorporated in a support structure for the orthosis device 200. The example subassembly 230 includes a support structure embodied in a superior-lateral support strut (strut) 232 composed of a rigid and preferably lightweight material (e.g., a light metal). This strut 232 is preferably pivotally coupled to a rigid upper member such as extension 233, best viewed in
The actuator 202 includes a back plate 234 (best viewed in
As best seen in
To provide relative rotation between the lower leg mount 204 and the foot bed 206 the triple vane 241 includes a rotatable central shaft 242, which is fixedly coupled to the foot bed, for instance mounted to a portion of extension 233. The triple vane 241 further includes three disposed vanes 243, 244, 245, each of which divide openings in the housing 240 to define first chambers 246a, 248a, 250a and second chambers 246b, 248c, 250c on respective opposing sides of the vanes.
An upper portion 252 of the housing 240 is preferably formed with the housing to be unitary with the housing, but alternatively it may be a separate component that is mounted to the housing. Generally, the upper portion 252 includes integrated conduits and valves for selectively transporting fluid to the first chambers 246a, 248a, 250a and the second chambers 246b, 248c, 250c. For example, the upper portion 252 includes a front inlet port and a rear inlet port 256a, 256b (in
Front and rear valves, e.g., solenoid valves 260a, 260b are provided for controlling operation of the actuator 202. The solenoid valves 260a, 260b, as best viewed in
The fluid power source (not shown in
For supplying fluid power to the actuator 202, the actuator housing 240 includes a front channel 264a and a rear channel 264b disposed in the housing. The front channel 264a fluidly couples the front inlet port 254a to the first chambers 246a, 248a, 250a. Similarly, the rear channel 264b fluidly couples the rear inlet port 254b to the second chambers 246b, 248b, 250b. The use of the valves (solenoid or proportional) enables the selective introduction of pressurized fluid to the actuator 202. The valving is used to control the torque supplied by the actuator by varying the relative fluid pressure between the first chambers 246a, 248a, 250a and the second chambers 246b, 248b, 250b. The differential pressure across the vane blades 243, 244, 245, generates torque at the shaft used to provide assistance with the device. Seals around the edges of the vane reduce leakage, but still allow vane movement. Operation of the valves 260a, 260b via the controller 208 can be performed as described above with respect to the device 20. The first chambers 246a, 248a, 250a and the second chambers 246b, 248b, 250b are also coupled to exit channels that are in turn coupled to the front and rear outlet ports 254a, 254b, respectively.
The shaft 242 is disposed in a bearing 270 for controlled rotation. Further, the housing 240 includes stops 271, 272, 273 symmetrically disposed within the housing to restrict clockwise and counterclockwise rotation of the triple vane 241 beyond a predetermined range. These stops 271, 272, 273 also at least partially define outer boundaries of the first and second chambers 246a, 248a, 250a, 246b, 248b, 250b.
Additionally, the face of the actuator body 240 is used to directly seal with the structural subassembly 230. The body of the actuator 240 can be fastened to the structural subassembly 230 via suitable fasteners 278. A seal, for example a silicone seal, may be disposed between the actuator body 240 and the structural subassembly 230.
The front cover 276 preferably further includes an outer front plate 280 (see
Thus, in the example orthosis device 200, the solenoid valves 260a, 260b, metering valves with silencers, 255a, 255b, with suitable conduits, fluid outputs 257a, 257b, and the angle sensor 282 are integrated directly into the actuator housing 240. The electrical connections between the controller 208 and the solenoid valves 260a, 260b can also be disposed at least partially on or in the actuator housing 240. Further, the actuator 202 preferably is integrated directly into the structural sub-assembly 230, such as by incorporating a portion of the strut 232 for a back plate or by otherwise mounting a thin back plate to the strut. Thus, the example orthosis device 200 can weigh less and be smaller than other comparable devices, while also exhibiting increased efficiency.
The controller 208 is provided in an example embodiment on a circuit board 300 (e.g., a printed circuit board (PCB)) that is made sufficiently small as to be disposed on (and preferably fit entirely within) the surface of the strut plate 232. This circuit board 300 preferably is generally enclosed in a casing that is provided by a rear plate 302 (best viewed in
Circuit components for the controller 208, including a microprocessor 316, and suitable electrical components 312, 314, 318 as well as the switch 310 and the input/output port 264, are integrated on the circuit board 300 as will be appreciated by one of ordinary skill in the art. Other components, for instance, for data logging capabilities, wireless communication for remote program changes and monitoring, etc., can also be provided. It will also be understood that the particular selection and arrangement of the circuit components for the controller 208 can vary, and the present invention is not intended to be limited to the particular controller shown.
The input/output port 264 mounted on the circuit board 300 provides output control signals to the integrated solenoid valves 260a, 260b via the leads 262. The input/output port 264 also receives input signals from the angle sensor 282 via leads 286. Further, leads 330 are provided for electrically coupling the input/output port 264 to force sensors such as the sensors 32, 34, 36 in the orthosis device 20. It is also contemplated that the signal leads 262, 330 could be omitted if the signals are transmitted wirelessly. It will further be appreciated that the input/output port 264 could include separate or integrated input and output ports.
As with the device 20, timing and magnitude for the orthosis device 200 can be determined uniquely for each participant through electronic and mechanical methods and devices/systems. For example, this can be accomplished using feedback from sensors, measurements from lab equipment, observation from investigators, and/or feedback from the participant to determine a subject specific control scheme that is downloaded to the microprocessor 312 embedded on the circuit board 300.
By providing a compact electronics package for the controller 208, the controller, the actuator 202, the solenoid valves 260a, 260b, the fluid regulators 255a, 255b, and the angle sensor 282, with suitable fluid conduits and signal couplings, can be integrated onto the strut 232 to provide the single, integrated subassembly 230. This complete subassembly 230 according to embodiments of the present invention can provide all aspects of the device's 200 functionality (e.g., other than the force sensing taking place underneath the user's foot) when provided with power for the controller 208 and fluid power for the actuator 202, yet this subassembly is lighter (as a nonlimiting example, 18 grams less) and thinner (as a nonlimiting example, 17% narrower) than some commercial rotary actuators. The subassembly 230, supported by the strut 232, also provides a modular solution for the active orthosis device 200, and could be integrated into other overall orthosis devices to provide controlled, active assistance. Operation of the orthosis device 200 is also made more efficient, and thus can be made more powerful, by integrating the components as shown and described in example embodiments. A nonlimiting example embodiment rotary actuator 202 produces 6.2 Nm of output torque given an input of 50 psi pneumatic pressure.
Example devices of the invention are lightweight and are configured, dimensioned, and arranged to be useable with many types of normal footwear and clothing. The lightweight design and compact, close-fitting nature of example devices also minimize the energetic impact to a user. Orthoses according to example embodiments of the invention are well-suited for at-home therapy and also for daily wear usage, because the devices are untethered and preferably lightweight. Example orthoses provide a treatment modality to improve the functional outcome of rehabilitation, diagnostic or training services, and/or laboratory studies.
While various embodiments of the present invention have been shown and described, it should be understood that other modifications, substitutions, and alternatives are apparent to one of ordinary skill in the art. Such modifications, substitutions, and alternatives can be made without departing from the spirit and scope of the invention, which should be determined from the appended claims.
Various features of the invention are set forth in the appended claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/452,523, filed Mar. 14, 2011, under 35 U.S.C. §119. This application is a continuation-in-part of U.S. patent application Ser. No. 12/898,519, filed Oct. 5, 2010.
This invention was made with Government support under Contract No. 0540834 awarded by the National Science Foundation. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3639092 | Sauvaget | Feb 1972 | A |
5170777 | Reddy | Dec 1992 | A |
5215508 | Bastow | Jun 1993 | A |
5961541 | Ferrati | Oct 1999 | A |
7628766 | Kazerooni | Dec 2009 | B1 |
20060069336 | Krebs | Mar 2006 | A1 |
20060211956 | Sankai | Sep 2006 | A1 |
20070049858 | Agrawal | Mar 2007 | A1 |
20070056592 | Angold | Mar 2007 | A1 |
20070156252 | Jonsson | Jul 2007 | A1 |
20070249457 | Tesar | Oct 2007 | A1 |
20090222105 | Clausen | Sep 2009 | A1 |
20100094185 | Amundson | Apr 2010 | A1 |
20110112447 | Hsiao-Wecksler | May 2011 | A1 |
20110166489 | Angold | Jul 2011 | A1 |
Entry |
---|
Au et al. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Networks, Mar. 7, 2008. Elsevier, p. 654-666. |
A. M. Dollar and H. Herr, “Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art,” Robotics. IEEE Transactions on. vol. 24, pp. 144-158, 2008. |
S. Yamamoto, M. Ebina, S. Kubo, T. Hayashi, Y. Akita, and Y. Hayakawa, “Development of an ankle-foot orthosis with dorsiflexion assist, part 2: structure and evaluation,” Journal of Prosthetics and Orthotics, vol. II, pp. 24-28, 1999. |
R. Chin, E. T. Hsiao-Wecksler, E. Loth, G. Kogler, S. D. Manwaring, S.N. Tyson, K. A. Shorter, and J. N. Gilmer, “A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop,” Journal of NeuroEngineering and Rehabilitation, vol. 6, 2009. |
H. Hirai, R. Ozawa, S. Goto, H. Fujigaya, S. Yamasaki, Y. Hatanaka, and A. Kawamura, “Development of an ankle-foot orthosis with a pneumatic passive element,” In the 15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield, UK, 2006, pp. 220-225. |
M. Takaiwa and T. Noritsugu, “Development of pneumatic walking support shoes using potential energy of human,” in 7th JFPS International Symposium on Fluid Power, Toyama, Japan, 2008, pp. 781-786. |
O. Yokoyama, H. Sashika. A. Hagiwara, S. Yamamoto, and T. Yasui, “Kinematic effects on gait of a newly designed ankle-foot orthosis with oil damper resistance: A case series of 2 patients with hemiplegia,” Archives of Physical Medicine and Rehabilitation, vol. 86, pp. 162-166, 2005. |
J. Furusho, T. Kikuchi, M. Tokuda, T. Kakehashi, K. Ikeda, S. Morimoto, Y. Hashimoto, H. Tomiyama, A. Nakagawa, and Y. Akazawa, “Development of shear type compact MR brake for the intelligent ankle-foot orthosis and its control; research and development in NEDO for practical application of human support robot.” in IEEE 10th International Conference on Rehabilitation Robotics, 2007, Noordwijk, the Netherlands, 2007, pp. 89-94. |
J. A. Blaya and H. Herr, “Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait,” Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 12, pp. 24-31, 2004. |
A. W. Boehler, K. W. Hollander, T. G. Sugar, and D. Shin, “Design, implementation and test results of a robust control method for a powered ankle foot orthosis CAFO),” in IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, 2008, pp. 2025-2030. |
D. P. Ferris, J. M. Czerniecki, and B. Hannaford, “An ankle-foot orthosis powered by artificial pneumatic muscles,” Journal of Applied Biomechanics, vol. 21, pp. 189-197, 2005. |
M. Noel, B. Cantin, S. Lambert, C. M. Gosselin, and L. J. Bouyer, “An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking,” Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 16, pp. 390-399,2008. |
K. Bharadwaj, T. G. Sugar, J. B. Koeneman, and E. J. Koeneman, “Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation,” vol. 127, 2005. |
A. Roy, H. 1. Krebs, S. L. Patterson, T. N. Judkins, I. Khanna, L. W. Forrester, R. M. Macko, and N. Hogan, “Measurement of human ankle stiffness using the Anklebot,” in IEEE 10th International Conference on Rehabilitation Robotics, 2007. ICORR 2007, Noordwijk, The Netherlands, 2007, pp. 356-363. |
H. I. Krebs and N. Hogan, “Therapeutic robotics: a technology push,” Proceedings of the IEEE, vol. 94, pp. 1727-1738, Sep. 2006. |
W. Durfee and Z. Sun, “Fluid power system dynamics,” University of Minnesota, 2009. |
A. Beasley, Fluid Power: Naval Education and Training Program Management Support Activity, 1990. |
S. Yamamoto, A. Hagiwara, T. Mizobe, O. Yokoyama, and T. Yasui, “Development of an ankle—foot orthosis with an oil damper,” Prosthetics and Orthotics International, vol. 29, pp. 209-219, 2005. |
L. Tian, D. Kittelson, and W. Durfee, “Miniature HCCI free-piston engine compressor for orthosis application,” in Proceedings of the 15th Small Engine Technology Conference, 2009. |
Krebs, H., et al., “A paradigm shift for rehabilitation robotics,” Eng. Med. Biol. Mag, IEEE, 2008. |
CCEFP 4th Annual Report, vol. 2, Mar. 16, 2010. |
Remmers, Richard, et al., “Use of Additive Manufacturing to Create Functional Fluid Power Component” CCEFP Annual Meeting, Purdue University, Jun. 14-15, 2010, 1 page. |
Number | Date | Country | |
---|---|---|---|
20120289870 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61452523 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12898519 | Oct 2010 | US |
Child | 13419958 | US |