The present invention relates to a portable antenna and in particular but not limited to a satellite communications antenna designed to be operated whilst carried by a user.
Typically one soldier of a unit on field patrol carries a radio which operates in conjunction with an antenna to provide satellite communication between the unit and a base.
One type of antenna used for satellite communication is of pistol grip form. It is designed to be held in the user's hand and pointed in the direction of the satellite. Pistol grip antenna are not well suited for combat use as it is preferred that both hands of the solider are free to operate a weapon.
Other antenna have been mounted to the soldier's rucksack to keep the soldier's hands free. When erected, the antenna's radial driven members cause the antenna to be unwieldy and liable to snag on passing objects which can lead to the antenna breaking.
Rucksack mounted antenna also make the solider, and consequently the unit as a whole, more conspicuous to the enemy.
These problems can be overcome by collapsing or dismantling the antenna when not in use, though this is time consuming and requires the solider to remove his rucksack each time the antenna is to be collapsed or assembled.
According to a first aspect of the invention there is provided a man-portable antenna assembly suitable for being carried on a soldier's back, the man-portable antenna assembly comprising: an antenna with a driven element mounted to a support, the antenna being configurable between an erect operational arrangement and a collapsed stowed arrangement; and the antenna assembly comprises a mechanism which allows the antenna to be configured by the soldier between the erect operational arrangement and the collapsed stowed arrangement without taking the assembly off the soldier's back.
The invention allows a solider to quickly erect or stow the antenna as necessary.
In a preferred embodiment, the driven element, which when the antenna is erect, extends laterally away from the support, is foldably mounted to the support so that it can fold inwardly towards the support when the antenna is stowed. This enables the antenna to be made more wieldy and less likely to snag on passing objects when stowed.
It is also preferred that the antenna comprises a ground plane which acts as a reflector for the driven element. It is preferred that the ground plane comprises radially extending members which are foldably mounted to the support so that they can fold inwardly towards the support when the antenna is being stowed.
It is preferable that the mechanism comprises means to allow the antenna to be configurable by the solider with one hand. This leaves the soldier's other hand free to operate a weapon.
It is also preferable that the mechanism comprises a mechanical linkage by which the soldier can operate the mechanism, the mechanical linkage is arranged to extend away from the antenna assembly for easier reach by the solider. Preferably the linkage allows remote operation of the mechanism by the soldier.
It is preferred that the driven element is a dipole comprising two elongate members that extend radially away from the support in substantially opposite directions. The antenna may have two dipoles that are orientated perpendicular to one another.
It is preferred that the mechanism comprises a further linkage between the driven element and the ground plane that is arranged to cause them to close and/or open together.
There is favourably a further linkage between each ground plane member and the driven element. Each further linkage may work independently of the others so that if one further linkage breaks or jams the other can still operate.
Preferably the antenna assembly comprises a housing within which the antenna is housed when stowed. It is particularly favourable that the housing acts as a mast for the antenna when in an operational state. This allows the antenna to be held in a higher position when in use to improve transmission/reception, but also provides the benefit that the antenna can be lowered when not in use making it less conspicuous and wieldier.
In a preferred embodiment, the antenna comprises an engaging surface that engages with the housing when the mechanical linkage is operated to cause the driven member and ground plane member to fold inwards towards the support.
In a preferred embodiment, the mechanical linkage comprises a pull-cord operable by the solider to erect and/or collapse the antenna. The end of the pull-cord can for example be placed in easy reaching distance of one or both of the soldier's hands.
It is also preferable that the mechanical linkage comprises means to retract the pull-cord after it has been pulled to operate the linkage. Favourably, the means to retract the pull-cord includes a sprung spool from which the pull-cord is wound or unwound This reduces the chance of the cord becoming snagged. It also means that the end of the pull cord can return to the same place so that the soldier can instinctively reach for it.
The use of the term ‘cord’ within this specification is used to include other flexible elongate members such as, but not limited to, string, rope, cable, chain, strap or webbing, which can be wound around a spool.
It is also preferred that the mechanical linkage comprises a first pull-cord to erect the antenna and a second pull-cord to collapse the antenna. The first and second pull cords may be provided by separate portions of the same cord. Where the first and second pull-cords are separate, cords, it is favourable that the assembly comprises means to retract either pull-cord after it has been pulled. This may comprise two sprung spools associated with the first and second pull-cords, said spools arranged to rotate in opposite directions in order to release or wind the first and second pull-cords, and a biasing means connected between the two spools to provide a return tension to either spool in order to retract either the first or second pull-cords if extended.
A further preferable feature is that the mechanical linkage includes a first engaging member fixed relative to the cord and a second engaging member fixed relative to the antenna. The first and second engaging members are arranged to engage when the pull cord is pulled in order to draw the antenna in and/or out of the housing. This allows the cord to rewind back onto the spool without affecting the configuration of the antenna. Where the mechanism comprises two pull-cords, it is preferred that each has an associated first and second engaging member in order that both can rewind. Alternatively, in a simpler arrangement the mechanical linkage may comprises a linking member that extends through a slot in the housing, the linking member being fixed relative to a pull-cord(s) outside of the housing, and fixed relative to the antenna inside the housing.
According to a further aspect of the invention there is provided an antenna having a driven element mounted to a support, the driven element comprising at least one elongate member radiating from the support; the elongate member being releasably attachable to the support.
Preferably the antenna also includes a ground plane which also comprises one or more elongate member radiating from the support; the elongate member being releasably attachable to the support.
The invention will now be described by example with reference to the following drawings in which:
The
The antenna assembly 1 is designed to be carried on a soldier's S back, preferably mounted in or on a rucksack 100.
The antenna assembly 1 comprises an antenna 1A having driven elements 2 (two dipoles arranged perpendicular to one another) and a ground plane 3 that acts as a reflector for the dipoles. Both the driven elements 2 and ground plane 3 are mounted to a central supporting column 4.
The antenna assembly 1 further comprises a housing into which the antenna 1A can be stowed when not in use. The housing comprises an inner housing 5 (shown most clearly in
The outer housing 7, which is removable, is secured to an upper end cap 9 of the inner housing 5, by thumb screws 11 which locate into threaded apertures 12 defined by the end cap 9.
The two driven elements (dipoles) are comprised from four elongate members 2 that, when in an operating arrangement, extend radially away from the supporting column 4. Each is spaced circumferentially from the next by around 90 degrees.
The ground plane is similarly comprised from four elongate members 3 that extend radially away from the supporting column 4 when in an operating arrangement.
When erect, the driven elements 2 and ground plane members 3 are separated by a distance of substantially a quarter of a wavelength of the intended transmission wavelength as is well known in the art. The ground plane members 3 extend radially further outwards as compared to the driven members 2 so as to improve the transmission properties of the antenna 1A.
The elongate members forming the driven elements 2 and ground plane 3 are comprised from sprung steel (or other conductive material) covered with a synthetic plastics material. In some embodiments the protective casing may be omitted.
The elongate members may be releasably attached to the support. This may be achieved in a number of ways, examples including via a plug-in action similar to that used with an audio jack, or through a screw fitting. This allows any elongate member to be easily replaced should it break.
As illustrated in
As illustrated in
The knuckle 13 of each ground plane member 3 is hingedly connected at 16 through a link bar 17 to the knuckle 14 of the driven member 2 supported above it. As shown in
A torsion spring 18 sits over a mounting hinge 15 between each knuckle 13, 14 and the mounting 4A, 4B to the central supporting column 4. The torsion springs 18 act to bias the knuckles 13, 14 outwardly from the central supporting column 4 into the radial configuration shown in
In order that the driven members 2 and ground plane members 3 can fold inwardly towards the central support 4 without obstructing each other, they are arranged to be slightly offset from a vertical alignment as seen in
The lower mounting 4B defines slots 4C through which the coaxial cables (not shown) pass in order to run up through the central support 4 to the driven members 2.
Mounted to lower mounting 4B are four locking pins 19 (three shown in
As seen in
The end cap 9 also comprises two apertures 9F through which two ends of a pull-cord 40 pass out of the antenna assembly 1.
In a deployed state, the knuckles 13 are housed in corresponding recesses 9D of the end cap 9 with outer portions 13A resting against the camming surfaces 9E, and the ground plane members 3 extending radially away from the central support 4 through slots 9B.
To stow the antenna 1A into the inner housing, a downward force is applied to central support 4. The reactionary force of the camming surfaces 9E against the outer portion 13A of knuckles 13, causes the knuckles 13 to rotate up about mounting hinges 15 (against the action of spring 18) which leads to the driven members 3 moving towards a vertical orientation alongside the central support 4. The rotation of knuckles 13 draws the link bar 17 in a downward direction which in turn causes knuckles 14 to rotate about mounting pivots 15 so that driven members 2 are rotated downwards towards a vertical orientation as illustrated in
Once the knuckles 13 of the ground plane members 3 have been rotated, neither the outer portions 13A, the ground plane members 3 or the driven members 2 extend beyond the outer periphery of the lower mounting 4B, thus allowing the antenna 1A to pass into and be stowed within the lower housing 5 as shown in
The inwardly sloping inner wall 9A acts to guide driven members 2 inwardly towards the central support 4 in the instance that they have not folded inwardly enough to avoid contact with upper cap 9.
When it is wished to deploy the stowed antenna 1A, an upward force exerted on the antenna 1A draws it out of the lower housing 5 through end cap 9. Once the antenna 1A has passed sufficiently out of the inner housing 5, the ground plane knuckles 13 are free to rotate under the biasing action of springs 18, towards a radial orientation until outer portions 13A of the knuckles 13 abut engagement surfaces 9E. The biasing action of springs 18 is sufficiently strong that, once the upward force is removed, the knuckles 13 are prevented from rotating inward by the weight of the antenna 1A so that the antenna 1A remains seated on top of end cap 9.
To provide means to stow and deploy the antenna 1A from the inner housing 5, the antenna assembly 1 is provided with a pull cord mechanism described below.
Provided at the lower end of the inner housing 5 is a bottom cap 10 to which the sealed enclosure 6 is mounted by downwardly extending mounting spigots 20. Also extending between the bottom cap 10 and enclosure 6 are mounting spigots 21 for supporting pulleys 34, 35, 51, 52. Some of these spigot 21 incorporate mounting brackets 22 for pulley wheels 35, 52 arranged to rotate about an axis running normal to the spigot 21. Also provided are guide spigots which act as cord guides 24, and a central spigot 25 shown in
Seated between the end cap 10 and PCB enclosure 6 is spool assembly 30. The spool assembly 30, as illustrated in
In detail, first spool 31 is mounted over spigot 6A which extends upwardly from the PCB housing 6 in vertical alignment to central spigot 25. Spool 31 itself comprises a spigot 31A onto which second spool 32 sits and can rotate relative to the first spool 31 or vice versa. A circumferential flange 35 of second spool 32 extending from a face opposing the first spool 31 provides a housing 36 for spring 33. The spring 33 is retained within the housing by retainer 34.
The outer end 33A of the spiral spring 33 is secured to flange 35. The inner end 33B of spiral 33 is secured, by way of slot 31B to spigot 31A of the first spool 31 which, extends through second spool 32 and into housing 36. With this arrangement, rotation of either the first or the second spool relative to the other, will cause the spring 33 to be tightened or unwound.
To maintain vertical alignment, spool assembly 30 is retained by the central spigot 25 which engages in a vertical opening 31C in spigot 31A.
Onto the first spool 31 is wound a first cord 40 used to deploy the antenna 1A. The cord 40 is held on spool 31 so that both ends of the cord 40 are wound around the spool 31 in the same direction (hand).
A first pulley 34 takes a first end 40A of the cord 40 off the spool 31, a second pulley 35 rotates the cord 40A by ninety degrees, the cord 40A runs upwards parallel with the inner housing 5, through a bead 36, through an aperture 19A of a locking pin 19, and up to third pulley 37 mounted to a top end cap 9 which turns the cord 40A by ninety degrees. The cord 40A passes out of aperture 9F in the upper cap end 9 via a guide tube 38A secured to the upper cap end 9. The guide tube 38A reduces wear and the chance of the cord snagging against the end cap 9.
A substantially identical arrangement (not shown) of pulleys on the other side of the inner casing 5 (not shown in
In an operation to erect the antenna 1A from a stowed configuration, a pulling force on handle 39 (
Once the antenna 1A is erected and the pull handle is released, spring 33 recoils, causing the first spool 31 to rotate to redraw the cord 40. This can be achieved without causing the antenna 1A to withdraw into housing 5 as cord portions 40A, 40B are free to pass through aperture 19A of the locking pins. The cord 40 is redrawn until bead 36 engages against lower end cap 10.
Onto the second spool 32 is wound a second cord 50 used to collapse and stow the antenna 1A into housing 5. The cord 50 is held on spool 32 with both ends of the cord 50 wound around the spool 32 in the same direction (hand). Cords 40 and 50 are wound in opposite directions on their respective spools 31, 32.
A forth pulley 51 takes a first end 50A of second cord 50 off the spool 32, a fifth pulley 52 rotates the cord 50 by about ninety degrees so that it runs upwards towards the upper end cap 9. A sixth pulley 53 mounted to the upper end cap 9 turns the cord 50A through one-hundred-and-eighty degrees. Cord 50 runs back down towards the lower end cap 10 passing though aperture 19A of locking pin 19. A bead 54 is mounted to cord 50 at a point above the locking pin 19. The cord 50 passes through stop 55 through spigot 24, and passes into guide tube 26 which runs through the PCB housing. The cord 50 passes out through the bottom of the PCB housing 6.
A similar arrangement of pulleys (not shown) guides the second portion 50B of the second cord 50 in a likewise fashion on the otherwise of the inner housing 5. The first and second portions of the second cord 50 are brought together by toggle 56. Both ends of the first and second portions of second cord 50 are attached to a fabric looped handle 57 to ease grabbing and pulling of the cord 50.
As illustrated in
In an operation to stow the antenna from a deployed state, a pulling action on handle 57 (
Once the antenna 1A is stowed and the pull handle 57 released, spring 33 recoils causing spool 32 to rotate in the opposite direction to wind the cord 50 back onto the spool 32. During this action the pull handle 57 is drawn back towards the antenna assembly 1. The beads 54 mounted to cord portions 50A 50B travel up until they engage with the upper cap 9 which stops further recoiling of the cord 50.
As mentioned above, running between the PCB housing 6 and the driven members 2 are two coaxial cables (not shown). To ensure the coaxial cables do not interfere with the operation of pull-cord mechanism, they run along the outside of the inner housing 5 through guards 61, 62 spaced between the pairs of cords 40A, 50A and 40B, 50B.
The guards 61, 62 also hold slack co-axial cable when the antenna 1A is in a stowed configuration.
As before, antenna 200 comprises driven members 202, ground plate members 203, both mounted to a central support 4. The design of the antenna 200 differs in that rather than being hinged directly to the central support, each of the driven members 202 are hinged to an annulus 210 which passes round the central support 204. The upper end of each link bar 217 is hingedly mounted to arm 218 which itself is hinged at its inner end to the upper mounting 204A. The opposing end of each arm 218 is connected to a driven member 202 by hinge 219. When the erect antenna 200 is drawn into housing 5 during a stowing operation, the ground plane members 203 are caused to rotate upwardly as before and draw the link bar 217 downwards. The drawing force on the link bar 217 is transferred through arm 218 causing driven members 202 to pivot about hinge 219 such that the annulus 210 slides downwardly along the central mounting 204 towards lower mounting 4B. As the annulus 210 moves downwards, arm 218 rotates about its hinged connection to upper mounting 204A, and hinge 219 is drawn towards the central support 204. The driven members 2 are caused to rotate towards a vertical orientation with the ends that were radially distant of the central support uppermost.
Variations on the above described designs are possible. For example rather than using two ends of a single pull cord 40, each end could be provided by a separate cord, both being anchored to the spool and wrapped around it in the same direction.
Cords 40, 50 could be comprised from other flexible elongate members, examples include, but are not limited to ropes, cables, rods or chains. Similarly the linkage 17 may take forms other than a bar.
The knuckles 13, 14 may instead be integral part of the ground plane members. This arrangement is used in the embodiment shown in
The end cap 309 of inner housing 305 as before has an inwardly sloping wall 309A (seen best in
A part of the lower mounting 304B of antenna 301A provided with diametrically opposed apertures 304C is housed within housing 305. Pins 319A 319B (see
A single pull cord 340 is anchored, at a point intermediate between its ends, to pin 319A within space 308. A first portion 340A of cord 340 runs upwardly from pin 319A, substantially parallel with housing 5A, over a roller pulley 337 mounted to a top part of housing 305 and/or end cap 309, and then out through an aperture of outer housing 307. A second portion 340B of cord 340 extends away from the pin 319A in the opposite direction substantially parallel with outer wall of housing 305A, over a roller pulley 338 (see
In an operation to stow the antenna 301A from a deployed state, a pulling action on the second portion 340B causes the pin 319 to be drawn downwardly along slot 305A. This acts upon the antenna 301A drawing it downwardly into housing 305. The action of the knuckles 313 .against the upper portion 309 of housing 305 causes the antenna 301A to collapse in a manner similar to that afore described.
The arrangement of the antenna 301A is similar to that of
A drawing force on the link bar 317 causes elbow joint 320 to rotated which in turn causes arm 302 to rotate about elbow joint 320. This in turn causes the lateral member 302 to pivot about hinge 319 such that the ring 310 slides downwardly over the stem 304 towards lower mounting 304B. As with the embodiment shown in
The driven elements of the antenna 301A are comprises from directly opposing pairs of arm 318 and corresponding lateral member 302. The coaxial cable extending from the circuitry in housing 306, is electrically connected to the elbow joint 320. The elbow joint 320 and arm 318 are comprised from good electrical conductors, such as nickel, and are in electrical contact. The lateral member 302 has a radially inner portion 302A and a radially outer portion 302B formed from spring metal. The radially outer portion 302B is in electrical contact with arm 318 through hinge 319. The radially inner and outer portions 302A, 302B are interposed by a central portion formed from an electrical insulator. The electrical insulator may be or comprised from a variety of materials, though glass plastics composite is preferred for its mechanical properties.
By electrically insulating the portion of the lateral member 302 which lies substantially directly under the arm 318, i.e. radially inwards of hinge 319, improved antenna performance has been observed. It would be possible to form the whole of radially inner portion 30A from an electrical insulator; however, use of spring metal gives the lateral member greater resilience to breakage.
In an alternative embodiment the first and second cord portions 340A, 340B may be provided by separate cords each anchored to the pin 319.
Variations on the above detailed embodiments are possible. For example, the antenna 1A may comprises more or less than four laterally extending members acting as the driven element(s), and more or less than four ground members.
When used in systems such as TACSAT it is preferred that the antenna has circular polarisation, though the invention may be used with an antenna using other polarisation.
The driven element(s) need not collapse inwardly towards the support. Rather, the support may be substantially drawn into the housing leaving the driven element to remain outside of the housing. This could be particularly beneficial for types of antenna having a shrouded driven element, and/or are mounted to the very top of the support 304A and cannot be collapsed.
The length of the portion 302B of the lateral member 302 radially outward of hinge 319 may vary depending on the radio frequency(s) at which the antenna is to be used. In certain embodiments the lateral member 302 may not appreciably extend radially outwards of the hinge 319.
It will be understood that use of the antenna may not be limited to military applications or used only by soldiers. Although shown mounted on a back pack, the device could equally be mounted on the ground or a vehicle.
Number | Date | Country | Kind |
---|---|---|---|
1223396.1 | Dec 2012 | GB | national |
1223398.7 | Dec 2012 | GB | national |
1223399.5 | Dec 2012 | GB | national |
1223400.1 | Dec 2012 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/075991 | 12/9/2013 | WO | 00 |