The present invention relates generally to apparatus for the treatment of end stage renal disease. More specifically, the present invention relates to portable apparatus the performance of peritoneal dialysis.
Dialysis to support a patient whose renal function has decreased to the point where the kidneys no longer sufficiently function is well known. Two principal dialysis methods are utilized: hemodialysis; and peritoneal dialysis.
In hemodialysis, the patient's blood is passed through an artificial kidney dialysis machine. A membrane in the machine acts as an artificial kidney for cleansing the blood. Because the treatment is extracorporeal, it requires special machinery and a visit to a center, such as in a hospital, that performs the treatment.
To overcome this disadvantage associated with hemodialysis, peritoneal dialysis (hereafter “PD”) was developed. PD utilizes the patient's own peritoneum (a membranous lining of the abdominal body cavity) as a semi-permeable membrane. With its good perfusion, the peritoneum is capable of acting as a natural semi-permeable membrane.
PD periodically infuses sterile aqueous solution into the peritoneal cavity. This aqueous solution is called PD solution, or dialysate for short. Diffusion and osmosis exchanges take place between the solution and the blood stream across the peritoneum. These exchanges remove the waste products that the kidneys normally excrete. The waste products typically consist of solutes like urea and creatinine. The kidneys also function to maintain the proper levels of other substances, such as sodium and water, which also need to be regulated by dialysis. The diffusion of water and solutes across the peritoneal membrane during dialysis is called ultrafiltration.
In continuous ambulatory PD, a dialysis solution is introduced into the peritoneal cavity utilizing a catheter, normally placed into position by a visit to a doctor. An exchange of solutes between the dialysate and the blood is achieved by diffusion.
In many prior art PD machines, removal of fluids is achieved by providing a suitable osmotic gradient from the blood to the dialysate to permit water outflow from the blood. This allows a proper acid-base, electrolyte and fluid balance to be achieved in the body. The dialysis solution is simply drained from the body cavity through the catheter. The rate of fluid removal is dictated by height differential between patient and machine.
A preferred PD machine is one that is automated. These machines are called cyclers, designed to automatically infuse, dwell, and drain PD solution to and from the patient's peritoneal cavity. A cycler is particularly attractive to a PD patient because it can be used at night while the patient is asleep. This frees the patient from the day-to-day demands of continuous ambulatory PD during his/her waking and working hours.
The treatment typically lasts for several hours. It often begins with an initial drain cycle to empty the peritoneal cavity of spent dialysate. The sequence then proceeds through a succession of fill, dwell, and drain phases that follow one after the other. Each phase is called a cycle.
Unlike hemodialysis machines, which are operated by doctors or trained technicians, PD machines may be operated by the patient. Therefore the most commonly used touch screen user interface has to be simple and be free of many of the confusing touch screen menu trees common in prior art hemodialysis and PD machines. Furthermore, many PD patients travel, which means taking their PD apparatus with them in a car, train or plane. It is not always convenient in a hotel, for example, to have the PD equipment in a position above or below the patient. Often the best place for the equipment is on a nightstand next to the bed, which may be at approximately the same level as the patient.
Thus, it is desirable that the PD equipment be rugged, lightweight and portable, and be capable of use in many locations relative to the patient, such as at the same level as the patient as well as above or below. Also the touch screen user interface must be clear and easy to use for the patient. Moreover, the physical operation of the PD machine must not require physical strength, as PD patients are often in a weakened condition. And finally, of paramount importance is patient safety. For example, very accurate monitoring of pressure in the lines is extremely important so no harm comes to the patient.
The intent of this invention is to provide improved PD equipment with a clearer touch screen user interface, improved pressure monitoring and one that better suited for the demands of the traveling PD patient and the patient in a weakened condition.
Briefly, the invention relates to an apparatus for pumping fluids between a peritoneal dialysis machine and a patient in order to perform peritoneal dialysis upon the patient. The apparatus includes a pair of diaphragm pumps, each having a variable stroke, adapted to be connected between the peritoneum of a patient and fluid-containing chambers.
The fluid-containing chambers include one for receiving output fluids from the patient and one containing fluids to be pumped into the patient. The apparatus further includes a stepper motor coupled to each diaphragm pump to bidirectionally actuate the pump. The stepper motors control the variable stroke of the piston of each pump so as to accurately stroke the pump in predetermined increments and at a predetermined speed to pass precise amounts of fluid between the patient and the apparatus during predetermined times. The stepper motor control is capable of operating the pair of pumps either in tandem or in opposing directions.
The apparatus of the invention further includes two substantially flat surfaces adapted to receive and hold a disposable cassette which is at least partially flexible, and which has predetermined flow paths. When placed into the machine, the cassette is aligned with the two surfaces. One of the flat surfaces is fixed and the other is hinged to the fixed surface, so that when the hinged surface is closed against the fixed surface, the cassette is held in alignment with the flat surfaces. A clamping mechanism including an inflatable pad is disposed in alignment with the two surfaces when the hinged surface is closed, for compressing together the two surfaces with the cassette in between, aligned and in tight engagement with the two surfaces. The clamping mechanism is inflated with hydraulic pressure to maintain the surfaces tightly engaged with the cassette.
The invention also includes a method of operating a peritoneal dialysis unit having a touch screen display that includes a mode-indicating portion and an operation descriptive portion. The mode-indicating portion has a plurality of touch sensitive indicia indicating the mode in which the machine is operating. The display is used to keep a patient continually informed of which of at least three operating modes the machine is operating in, the possible modes including treatment, diagnostics and data modes, as the operation descriptive portion changes to display details of a specific operation being carried out within the one mode. The indicia for each of the three operating modes is always visible to the patient while the machine is operating in the selected mode.
The operating mode is selected by the patient touching one of the touch-sensitive indicia to select a current operating mode. The indicia for that mode is highlighted in response to that mode being selected.
The operation descriptive portion of the display, describing the operation of the machine within the selected operating mode, is displayed or changed without changing either the display of the indicia for each of the three operating modes, or changing the highlighting of the selected indicia. The user changes the mode of operation of the machine by touching a different indicia, thereby highlighting the newly selected indicia and at the same time, unhighlighting the previously selected indicia for the prior mode of operation.
The apparatus of the invention further includes a removable cassette having a flexible fluid-containing enclosure which, during the operation of the machine, contains fluid. The cassette is secured in the machine by a holding mechanism and a pressure sensor is in registration and intimate contact with the fluid-containing enclosure within the cassette. Then changes in pressure within the enclosure will be sensed and measured by the pressure sensor. The pressure sensor is connected to an electronic control for the machine so that the operation of the machine can be changed in response to changes in pressure sensed by the pressure sensor.
The disposable cassette includes a flexible enclosure adapted to contain a fluid, along with ingress and egress passageways connected to the flexible enclosure to conduct fluid into and out of the enclosure to and from the patient. The flexible enclosure has a surface located on the outside of the disposable cassette, adapted to mate with a pressure sensing device to measure the pressure of the fluid contained in the enclosure.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Numbers referring to the same items in several drawings will bear the same reference numbers.
Referring to
Referring to
It is necessary that a very tight, secure mechanical enclosure be provided with intimate contact with the cassette 28 (
Door 24 is lightly latched using latch lever 40 and latch posts 36, which loosely engage with holes 38. Although the door easily “clicks” shut, the proper seals are not made by this closing. To insure that the cassette 28 is in intimate and sealed contact with both the base 30 and the door 24, the PD apparatus of the invention uses an inflatable pad 47, shown in
To open door 24 to load a cassette, button 50 on the top left edge of the door is depressed. This will disengage the door lock. The door then swings open from left to right. Cassette 28 (
Once the door safety switch is closed, the system receives an electrical signal indicating that it is ready to clamp the cassette into the cassette holder by inflating the cassette clamping inflatable pad 47 ((
The pumps 44 (best seen in
To move fluid out of one of the chambers 34, the pump 44 mated to that chamber is moved all the way to the wall of the cassette, but not touching it. To draw fluid into one of the chambers 34, pump 44 is pulled back by one of the stepper motors 45 while building vacuum in the back of cassette 28 located within chamber 34, so as to retract the membrane of cassette 28 (not shown in
For draining fluids from the patient, an alternating pumping method is employed where one pump 44 extends while the other retracts. When the pump associated with chamber A is extending, the fluid in the chamber A is pushed out into a drain line of the cassette 28. As the pump associated with chamber B retracts, fluid from the patient is drawn into chamber B. When this motion is completed, the pump associated with chamber A then retracts and draws fluid from patient while pump B protracts and transfers fluids out into the drain line. This process continues until the required volume of fluid from the patient is processed.
Initially, the pumps 44 are moved to a home position which is sensed by a conventional optical sensor, not shown. The pump controller encoder value is then set to zero. Next the pump is moved towards the cassette until it touches the cassette. This is the “OUT” position where the encoder is then set to a current encoder value less a maximum (calculated to be the maximum possible stroke, for example, an encoder count of 250). Then, the pump is moved backwards by 800 microsteps, or about an encoder count of 16000. The “HOME” position is then set to this encoder value. The stepper motor 45 next moves backward another 500 microsteps, or about an encoder count of 10,000. This is where the “IN” position is set.
Volume calculation is based on the fact that the cassette volume is a known value (based upon its physical dimensions). The volume of the pump head is also a known value (again, the calculation of this volume is based upon the physical dimensions of the pump head and chamber). If the whole mushroom head 32 is flushed against the cassette wall 46, then no fluid volume can reside in the cassette chamber. As the mushroom head 32 is moved back, however, it draws fluid into the chamber of the cassette 28 (
The electronics board 101 of the PD apparatus of the invention is shown in
Referring to
A stepper motor controller (not shown) provides the necessary current to be driven through the windings of the stepper motor. The polarity of the current determines whether the head is moving forward or backward. Rough positioning of the piston is aided by one or more opto-sensors (not shown).
Inside the FPGA 106, there are two duplicate sets of control logic, one for each piston. The two-channel quadrature output of the linear encoder 110 (
Referring again to
Another part of the FPGA firmware allows the speed of the stepper motors 45 to be controlled, as is well known in the art. By adjusting the motor pulse duration and time between pulses, the motor can run faster or slower to get a desired speed vs. torque balance. The speed the motor runs is inversely related to the torque it is able to apply to the pump head. This adjustment allows the machine to produce the desired amount of push on the fluid in the pump chambers A or B (
In addition to the motor pulse, the FPGA 106 provides several control signals to the stepper motor controllers (not shown), for example, direction and step size. Depending on the values sent from the flash memories 102 and 104 to the FPGA 106, the step size can be adjusted between full, half, quarter and eighth steps. Also, the motor controller can be sent a continuous sequence of pulses for rapid motor movement; or just a single pulse to make a single step. This is set conventionally by registers in the FPGA 106.
Referring to
Referring to
Referring to
The two pressure sensors 33 are connected to a high resolution 24 bit Sigma-Delta, serial output A-D converter (ADC) 103 on I/O board 101. This ADC sends a signal from each of the two pressure sensors to the FPGA 106 on the board 101. After the data ready signal is received by the FPGA 106, the FPGA reads this ADC and transfers this data to be processed by the microprocessor 112, which in the preferred embodiment of the invention is an MPC823 PowerPC device manufactured by Motorola, Inc.
Upon completion of the flush and prime processes, as is well known in the art, the cassette will be filled with solution. At this time, the line to the patient will be completely filled with solution. The pressure at this stage is detected and will be used as base line for static pressure. At that time, the patient's head height relative to the PD machine will be determined from the differential in the pressure reading. Preferably, this pressure differential is maintained below 100 mbar.
During the drain sequence, the maximum pump hydraulic vacuum is limited to −100 mbar to prevent injury to the patient. The vacuum in the peritoneum must be held at or above this value. The position of the patient below or above the PD machine level indicated by the static pressure measurement is compensated by adjusting the level of the vacuum.
By way of example, the target vacuum of the vacuum chamber can be based on the following equation:
Pstat=static hydraulic pressure(+1meter=+100mbar and −1meter=−100mbar)
Ppatmax=−100 mbar
Pvac=target vacuum of vacuum chamber
Pvac=Ppatmax+Pstat
For example, where the patient is 1 meter above the PD machine, the differential pressure=+100 mbar; Pvac=−100 mbar+100 mbar=0 mbar.
Where the patient on same level than machine, the differential pressure=0 mbar;
Pvac=−100mbar+0mbar=−100mbar.
Where the patient is 1 meter below machine, the differential pressure=−100 mbar;
Pvac=−100mbar+−100mbar=−200mbar.
Since continuous flow through the various lines connected to the patient is essential to proper treatment of the patient, it is important to continuously monitor if a patient line is blocked, partially blocked or open. There are three different possible situations:
1. the patient line is open;
2. the patient line is closed; or
3. the patient line is not completely open and therefore creates an undesired flow resistance (caused, for example by the patient is lying on the line).
The pressure sensors 33 (
1. The patient line is open when pump B is protracting until a defined length value is reached, and the patient pressure is not increasing;
2. The patient line is closed, and the pump is not able to protract because the patient pressure increases to a defined alarm limit.
3. The pump protracts to produce an increasing patient pressure, but the pressure decreases slowly.
These error conditions may be sensed using the pressure sensors 33 of the invention, and corrective action can then be taken, either automatically or by sending an alarm to the patient, where the screen tells the patient what action to take. For example, the screen may tell the patient that he or she may be lying on a fluid line, and should move off of it.
Since the patient pressure sensors are a critical components to patient safety, it is very important to monitor whether these sensors are functioning properly. Although prior machines have attempted to accomplish this monitoring by checking the pressure readings from the sensors, such tests are not foolproof, because the varied nature of the normal, expected readings may fool one to believe that the sensors are working properly when actually they are not.
Therefore this sensor monitoring should be independent of the pressure measurements. In a preferred embodiment of the invention, the pressure sensors are monitored through an A-to-D converter (“ADC”) having two dedicated current sources, one for each sensor. Upon command, each ADC will source current (instead of acquiring data, as is usual case) and monitor how this current flows (or fails to flow) through each sensor. This independent monitoring of the pressure sensors would guarantee patient safety. Since normal treatments typically run overnight, the ability to continually double-check the very pressure sensors that monitor patient safety is indeed desirable.
The fluid flow through the disposable is illustrated in
The prime sequence removes air from the patient line by pumping dialysate solution through the patient line. The drain sequence is used to pump dialysate solution from the patient to the drain. The fill sequence is used to pump dialysate solution from the heater bag to the patient. The pause sequence allows the patient to disconnect from the PD machine once the patient has been filled with dialysate solution. While the patient is disconnected from the machine, the machine will be transferring dialysate solution from the solution bags to the heater bag. Finally, the dwell sequence is used to allow the dialysate solution to remain for a set time in the patient. Dwell sequences are identical to pause sequences with the exception that the patient does not disconnect from the machine. While a dwell sequence is occurring, the machine will be transferring dialysate solution from the solution bags to the heater bag.
The flow sequences are shown in
Referring to
The pause sequence is where solution from a solution bag is pumped to the heater bag while the patient is disconnected, as shown in
One important part of a patient-controlled PD machine is the user interface, shown in
The mode-indicating portion 80 has a plurality of touch sensitive indicia 84, 86, 88, 90, and 92, each indicating the mode in which the machine is operating to keep the patient continually informed of which one of at least three operating modes the machine is operating in. These modes as illustrated in the preferred embodiment shown in
During operation under any of these modes, the operation descriptive portion 82 of the display changes to display details of the specific operation being carried out within the selected mode. Generally, the descriptive portion shows helpful information to guide the user in operating the machine. For example, during treatment, when the treatment mode indicator is highlighted, as shown in
All five illustrated mode indicia in the mode portion 80 of the screen, for each of the five operating modes of the preferred embodiment, always remain visible to the patient, with the mode that the machine is currently operating in being highlighted in some mariner, as shown in
The operating mode is changed by the patient by touching one of the indicia on the screen different from the one (“treatment” in
Then the descriptive portion 96 of the touch screen, shown in
The invention has been described in terms of particular embodiments. Other embodiments are within the scope of the following claims. For example, steps of the invention can be performed in a different order and still achieve desirable results.
This application is a divisional application of and claims priority to U.S. application Ser. No. 11/069,195, filed on Feb. 28, 2005, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 11069195 | Feb 2005 | US |
Child | 12709039 | US |