§ 1.1 Field of the Invention
The present invention generally concerns atmospheric pressure plasma generation devices (or “plasma sources”). In addition, the present invention also concerns applications for this microwave plasma torch as well as the feasibility of enlarging the device for generating multiple torches simultaneously.
§ 1.2 Background
Atmospheric pressure plasma sources may be used in applications requiring plasmas to be exposed directly to the open air. The applications include spray coating and materials synthesis (See, e.g., the articles: M. I. Boulos et al., “Thermal Plasma Fundamentals and Applications,” Vol. 1, Plenum Press, 1994, pp. 33–47 and 403–418 (hereafter referred to as “the Boulos article”); and “Thermal Plasma Torches and Technologies,” Vol. 1, O. P. Solonenko, Ed., Cambridge: Cambridge Int. Sci. Publ., 2001 (hereafter referred to as “the Solonenko article”).), microwave reflector/absorber (See, e.g., the articles: R. J. Vidmar, “On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers,” IEEE Trans. Plasma Sci., Vol. 18, pp. 733–741, 1990 (hereafter referred to as “the Vidmar article”); and E. Koretzky and S. P. Kuo, “Characterization of an atmospheric pressure plasma generated by a plasma torch array,” Phys. Plasmas, Vol. 5, pp. 3774–3780, 1998 (hereafter referred to as “the Koretzky article”).), shock wave mitigation for sonic boom and wave drag reductions in supersonic flights (See, e.g., the articles: V. P. Gordeev et al., “Plasma technology for reduction of flying vehicle drag,” Fluid Dynamics, Vol. 31, pp. 313–317, 1996 (hereafter referred to as “the Gordeev article”); S. P. Kuo et al., “Observation of shock wave elimination by a plasma in a Mach-2.5 flow,” Phys. Plasmas, Vol. 7, pp. 1345–1348, 2000 (hereafter referred to as “the Kuo article”); and Daniel Bivolaru and S. P. Kuo, “Observation of supersonic wave mitigation by plasma aero-spike,” Phys. Plasmas, vol. 9, 721–723, 2002 (hereafter referred to as “the Bivolaru article”).), and sterilization and chemical neutralization (See, e.g., the articles: M. Laroussi, “Sterilization of contaminated matter with an atmosphere pressure plasma,” IEEE Trans. Plasma Sci., Vol. 24, pp. 1188–1191, 1996 (hereafter referred to as “the Laroussi article”); J. R. Roth et al., “A remote exposure reactor (RER) for plasma processing and sterilization by plasma active species at one atmosphere,” IEEE Trans. Plasma Sci., Vol. 28, pp. 56–63, 2000 (hereafter referred to as “the Roth article”); and H. W. Herrmann et al., “Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ),” Phys. Plasma, Vol. 6, pp. 2284–2289, 1999 (hereafter referred to as “the Herrmann article”).).
Different applications have different requirements on the plasma parameters, such as its density, temperature, volume and flow rate. For spray coating application, a plasma jet is used for heating and acceleration of particles injected into the jet. Thus a high enthalpy jet having large plasma flow rate and density is desirable. Dense, uniform, low temperature, and large volume plasma is desirable for microwave reflector/absorber applications. Used for decontamination of chemical and biological warfare (CBW) agents, a plasma source is aimed at producing chemically active species, such as molecular oxygen in metastable states and atomic oxygen. These reactive species are capable of rapidly destroying a broad spectrum of CBW agents. Some of the applications also favor that the sources can be easily transported.
Dense atmospheric-pressure plasma can be produced through dc/low frequency capacitive or high frequency inductive arc discharges. This technique requires adding gas flows to stabilize the discharges and to carry the generated plasmas out of the discharge regions to form torches. The inductive torch (See, e.g., the article: T. B. Reed, “Induction-coupled plasma torch”, J. Appl. Phys., Vol. 32, pp. 821–824, 1961 (hereafter referred to as “the Reed article”).) and non-transferred dc torch (See, e.g., “the Boulos article” and M. Zhukov, “Linear direct current plasma torches”, Thermal Plasma and New Material Technology, Vol. 1: Investigations of Thermal Plasma Generators, O. Solonenko and M. Zhukov, Ed. Cambridge Interscience Publishing, pp. 9–43, 1994, (hereafter referred to as “the Zhukov article”).) employ high current power supply and require very high gas flow rate to achieve stable operation. Consequently, the structures of these torches are relatively large and are therefore unsuitable for certain applications.
Torch modules such as those described in the article S. P. Kuo, et al., “Design and electrical characteristics of a modular plasma torch,” IEEE Trans. Plasma Sci., vol. 27, no. 3, pp. 752–758, 1999; and U.S. Pat. No. 6,329,628 titled “Methods and Apparatus for Generating a Plasma Torch,” (“the '628 patent”) can be run in dc or low frequency ac mode and can produce low power (hundreds of watts) or high power (a few kW in 60-Hz periodic mode or hundreds of kW in pulsed mode) torch plasmas. However, the size of the torch plasma produced by such modules may be limited by the gap between the electrodes and may depend strongly on the gas flow rate.
In view of the foregoing deficiencies of known plasma torches, there is a need for a plasma source that is portable and that can generate a stable and sizable plasma torch independent of the gas flow rate.
Embodiments consistent with the present invention meet the aforementioned goals by providing a seeded microwave torch employing a tapered rectangular cavity and moderate microwave power (e.g., time average power of 700 W). A torch module such as one of those described in the '628 patent may be used to generate the seeding plasma, which initiates and controls the location of microwave discharge. With seeding, a low Q cavity (e.g., with a value less than 30) can be used. Thus, a relatively large exit opening on a cavity wall can be used to increase the diameter of the torch. Although the Q-factor of the cavity is reduced, the evanescent microwave electric field can also reach farther out of the cavity opening. Therefore, this new type arc/microwave hybrid plasma torch does not need gas flow in its operation and yet can produce sizable plasma outside the cavity. Although gas flow is not required, the torch module is flexible in that gas flow may be introduced to its operation. Gas flow can increase the size as well as the energy of the torch plasma. The whole system can be integrated into a portable unit, which permits it to be used in many applications requiring the plasma sources to be easily transported.
The components of an exemplary plasma torch consistent with the present invention may include 1) a microwave source, (e.g., a magnetron) 2) a tapered microwave cavity, 3) a torch module, and 4) a power supply to run the torch module and magnetron. This microwave plasma torch may have a radius of about 1.25 cm or more, a height of about 5 cm, and a peak electron density exceeding 5×1013 cm−3. This plasma source can easily and quickly start the plasma generation.
A plasma torch device consistent with of the present invention may be easily expanded to an array of torches. This may be done by increasing the length of a narrow section of the cavity and adding, at a quarter wavelength apart, exit opening-torch module pairs on the top and bottom walls of the cavity, respectively. The available microwave power is increased proportionally.
The present invention is attractive because at least some embodiments consistent with the present invention can use electrical circuitry that is simple and is adaptable to a number of AC power sources, such as 60 Hz (or 50 Hz) voltage available at most common wall outlets. In some embodiments consistent with the present invention, such as in aircraft applications, a 400 Hz AC power source may be used. This plasma source can run continuously without needing water-cooling and can produce a plasma torch having its cycle energy (in 60 Hz) exceeding 10 J/per cycle, which is large enough for many applications.
The present invention is attractive also because at least some embodiments consistent with the present invention produce an abundance of reactive atomic oxygen, which may be used in applications for rapidly destroying a broad spectrum of chemical and biological warfare (CBW) agents.
In addition, microwave plasma torches, in accordance with the present invention may be used in applications for absorbing radar pulses, e.g., microwave plasma torches arranged in an array on the surface of an aircraft may be used for evading radar detection.
In some embodiments, the tapered microwave cavity is formed by tapering a section of a rectangular waveguide and terminating two ends of the waveguide with conducting plates. In such an embodiment, using a tapered rectangular cavity, the dimensions of the cavity may be varied, as long as the cavity supports a TE10n mode at the selected microwave source frequency, where n is a positive integer ≧3.
In some embodiments consistent with the present invention, the height of the narrow section of the cavity is small, e.g., as small as 5 mm, the two ends of the taper section are located at electric field minimum locations of the TE10n mode selected, and the openings in the narrow section to host the torch module and to exit the arc/microwave plasma are located at field maximum locations of the TE10n mode.
In some embodiments, the length of the narrow section of the cavity is mλz/2, where λz is the wavelength of the TE10n mode in the axial direction of the cavity, and m is an integer determined by the number of torches to be hosted.
The present invention involves novel methods and apparatus for generating a microwave plasma torch. The following description is presented to enable one skilled in the art to make and use the invention, and is provided in the context of particular applications and their requirements. Various modifications to the disclosed embodiments will be apparent to those skilled in the art, and the general principles set forth below may be applied to other embodiments and applications. Thus, the present invention is not intended to be limited to the embodiments shown.
In the following, functions, which may be performed by the present invention, are introduced in § 4.1. Then, structures of the apparatus built in accordance with the present invention are described in § 4.2. Thereafter, operations of the apparatus are described in § 4.3. Finally, conclusions about the present invention are presented in § 4.4.
§ 4.1 Functions
The present invention may be used to generate a microwave plasma torch having a relatively large size (e.g., at least 5 cm height and at least 2 cm wide) and a relatively high density (e.g., at least 1013 electrons/cm3). The present invention may also be used to generate a plasma torch that does not need a gas flow for its operation and having enhanced enthalpy and stability. The present invention may be considered as a unit of a microwave plasma torch and several units in an array may be installed in a single cavity with prolonged narrow section to host all units. The present invention may use one or more units of microwave plasma torches in applications for spray coating and materials synthesis, for decontamination of CBW agents, and for absorbing radiation (e.g., radar).
§ 4.2 Structures
In the following, a new portable microwave plasma torch is described in § 4.2.1. Thereafter, systems with one or more units of the microwave plasma torches described in § 4.2.1 are described in § 4.2.2.
§ 4.2.1 A Portable Arc-Seeded Microwave Plasma Torch
A new hybrid arc/microwave torch will be described with reference to
The end cross section (110) of the un-tapered section (106) may be the same as that of a standard S-band (WR-284) waveguide. (e.g., ˜7.2 cm×3.4 cm). The S-band rectangular waveguide is tapered to a smaller cross section (e.g., 7.2 cm×0.5 cm). The two sides of the waveguide (100) are terminated by conducting plates to form a cavity. This cavity includes three sections. Sections I (106) and III (105) on the two sides of the waveguide (100) have uniform cross sections. The wider section I (106) may have a length (103) of 3λz/8 (e.g., ˜8.74 cm) and the narrow section III (105) may have a length (111) of λz/2 (e.g., ˜11.65 cm). The tapered middle transition section II (104) may have the same width as the adjoining sections (e.g., ˜7.2 cm), may have a height ranging from ˜3.4 cm to ˜0.5 cm, may have a length of λz/2 (e.g., ˜11.65 cm) and a slope angle θ≅tan−1(2.9/11.65)≅140.
Microwave generated by a magnetron (e.g., 2.45 GHz, 700 W) radiates into this cavity at opening (108). The opening (108) may be located at about quarter wavelength (λ0/4) (more precisely, λz/8) away from the open-end of section I of the cavity. Thus, if λ0=12.25 cm is the free space wavelength and λz=λ0/[1−(λ0/2a)2]1/2=23.3 cm is the axial wavelength for the TE103 mode, and if a=7.2 cm is the dimension of the wider side of the cross section, the quarter wavelength in the axial direction of the cavity may be 5.83 cm and the total axial length of the cavity may be 32 cm≅1.5λz.
At the maximum wave electric field location in the narrow section III (105) of the cavity, which may be λz/4=5.83 cm away from its shorted-end, two aligned openings (109 and 102) on the bottom (107) and top (101) walls, respectively, are introduced. Both openings have the same diameter of 1.3 cm.
A gas plenum chamber (206), such as those described below, is aligned to the openings (109 and 102) and attached (e.g., welded) to the bottom wall (107) of the narrow section III (105) of the cavity (100). Gas plenum chamber (206) is used to feed the gas flow through as well as to host the torch module generating the seeding plasma.
Referring to
This torch may be operated without applying a gas flow to stabilize the arc discharge and a large portion of microwave plasma may still be generated outside the cavity.
The tapered rectangular cavity used in this torch device needs a special design consideration. Other parts may be constructed using components from available spark plugs for the torch module (See, e.g., “the Kuo article and patent”), from available microwave oven for the magnetron, transformer, diodes, and capacitors.
Having described a portable setup of an exemplary microwave plasma torch, a second setup having more than one unit of microwave plasma torches is now described in § 4.2.2 below.
§ 4.2.2 Systems with One or More Arc-Seeded Microwave Plasma Torches
The narrow section of the cavity can be easily extended to host more than one torch. A large volume atmospheric pressure plasma can thus be generated. It can be used to absorb radiation (and therefore provide a cloaking feature) and to decontaminate CBW agents.
The operations of the systems described in this section will be described in § 4.3 below. First, however, a number of applications of these systems are described in § 4.2.3 below.
§ 4.2.3 Exemplary Applications of System
There are a number of potential applications from an arrangement of one or more microwave plasma torches. As described in § 4.2.3.1 below, a system made in accordance with the present invention, such as those described in § 4.2.1, may be used to generate plasma jet carrying reactive species such as atomic oxygen. Such as a plasma jet may be used to decontaminate chemical and biological warfare (CBW) agents. As described in § 4.2.3.2 below, a system including an array of microwave plasma torches, made in accordance with the present invention, such as those described in § 4.2.2, may be used to absorb radiation for radar cloaking. This application may be applied to systems aboard an aircraft, such as a military aircraft for example.
§ 4.2.3.1 Decontamination of CBW Agents
The emission spectroscopy of the microwave plasma torch generated by the embodiment of the present invention described in § 4.2.1 was analyzed to deduce the information on the electron density distribution and composition of torch species. Electron density was evaluated from the Stark broadening of Hβ at 486.133 nm and Hα at 656.279 nm. The radial distribution of electron density Ne(r) in the region close to the cavity wall is presented in
The present invention is portable and operates stably with all-air discharge, which are the advantageous features for decontamination applications.
§ 4.2.3.2 Absorbing Radiation for Radar Cloaking
A plasma torch generated by a torch module such as those described in the Kuo article and the '628 patent can have a plasma density of 1013 electrons/cm3 and can attenuate 10 GHz CW microwave by more than 10 dB. The size of each torch is enlarged considerably when microwave is added as shown in
§ 4.3 Operations of an Exemplary Embodiment
Operations of an exemplary arc-seeded microwave plasma torch such as those described in § 4.2.1 above, are described in § 4.3.1 below. Operations of an exemplary system generating two (or more) microwave torches simultaneously, such as those described in § 4.2.2 above, are described in § 4.3.2 below.
§ 4.3.1 Operations of an Exemplary Arc-Seeded Microwave Plasma Torch
The operation of an exemplary microwave torch involves the operation of the torch module and the operation of the magnetron. Both components may be run at a 60 Hz periodic mode. The circuit arrangement shown in
Two digital oscilloscopes provided four channels to simultaneously measure the time varying voltages and currents of the arc discharge of the torch module and of the magnetron. The V-I characteristics and power functions of the arc discharge and magnetron input in the case of gas flow rate at 1.133 l/s are presented in
The cycle energies of the arc discharge and magnetron input as function of the gas flow rate f are presented in
§ 4.3.2 Operation of an Exemplary System Including Two or More Microwave Plasma Torches
The two-torch system with the embodiment described in § 4.2.2 utilizes a single microwave source. The arc discharges in the two torch modules are synchronized with the same microwave pulse in the operation. Thus two separate power supplies may be used in this system. One may be identical to the one shown in
§ 4.4 Conclusions
By combining a plasma torch with a microwave generator, an arc plasma torch may be used to seed a microwave discharge to produce a large, high density, plasma torch, without requiring gas flow.
Without seeding, the moderate microwave power of the magnetron (e.g., ˜700 W) would be too low to initiate microwave discharge by itself in a low Q cavity. Therefore, the present invention has the advantage of triggering microwave discharge and producing a large high density plasma discharge (torch) using a low Q cavity at a moderate microwave power level.
Such a new hybrid arc/microwave plasma torch, may be constructed from parts of commercially available microwave ovens, spark plugs, and a tapered cavity. The size of the torch is nearly doubled by doubling the diameter of this opening from that of the torch module. This hybrid arc/microwave plasma torch has a peak plasma density exceeding 1013 electrons/cm3 and can achieve a volume of approximately 20 cc without applying a very large airflow.
This invention was made with Government support and the Government may have certain rights in the invention as provided for by grant number AFOSR-F49620-01-1-0392 by the Air Force Office of Scientific Research (AFOSR).
Number | Name | Date | Kind |
---|---|---|---|
4275287 | Hiratake | Jun 1981 | A |
4990739 | Zaplatynsky et al. | Feb 1991 | A |
5036176 | Yamaguchi et al. | Jul 1991 | A |
5144110 | Marantz et al. | Sep 1992 | A |
5147998 | Tsantrizos et al. | Sep 1992 | A |
5220150 | Pfender et al. | Jun 1993 | A |
5538765 | Kurihara et al. | Jul 1996 | A |
5847355 | Barmatz et al. | Dec 1998 | A |
5938950 | Gay et al. | Aug 1999 | A |
6163009 | Hardwick et al. | Dec 2000 | A |
6329628 | Kuo et al. | Dec 2001 | B1 |
6388225 | Blum et al. | May 2002 | B1 |
6614000 | Bessho et al. | Sep 2003 | B1 |