Portable battery pack-powered welder

Information

  • Patent Grant
  • 12194575
  • Patent Number
    12,194,575
  • Date Filed
    Wednesday, January 13, 2021
    4 years ago
  • Date Issued
    Tuesday, January 14, 2025
    8 days ago
Abstract
A portable welder that includes a portable housing, a ground clamp, an electrode holder, a user interface, and a battery pack interface. The ground clamp is connected to the portable housing through a ground cable and is configured to be connected to a metal workpiece. The electrode holder is connected to the portable housing through an electrode cable. The electrode holder includes a mount connected to the electrode cable and a user input. The mount is configured to hold a consumable electrode. The user input is configured to activate the portable welder. The user interface located on the housing. The battery pack interface is configured to receive a removable and rechargeable battery pack.
Description
BACKGROUND

Embodiments described herein provide electric welders.


SUMMARY

Portable welders described herein include a portable housing, a ground clamp, an electrode holder, a user interface, and a battery pack interface. The ground clamp is connected to the portable housing through a ground cable and is configured to be connected to a metal workpiece. The electrode holder is connected to the portable housing through an electrode cable. The electrode holder includes a mount connected to the electrode cable and a user input. The mount is configured to hold a consumable electrode. The user input is configured to activate the portable welder. The user interface located on the housing. The battery pack interface is configured to receive a removable and rechargeable battery pack.


In some aspects, a voltage output of the portable welder is controlled using a voltage converter.


In some aspects, the converter is a buck converter.


In some aspects, the user interface displays a state-of-charge of the battery pack.


In some aspects, the portable welders include a wireless communication controller configured to wirelessly communicate with an external device, and a setting of the portable welder is controlled based on a signal from an external device.


In some aspects, the setting of the portable welder is an ON or OFF state of a security lockout system.


In some aspects, the portable welder is configured to be powered by between a 200 Watt-hour battery pack and a 1000 Watt-hour battery pack.


In some aspects, the portable welder is configured to be powered by an AC/DC adapter.


In some aspects, the portable welders include a fan.


In some aspects, the portable welder controls the operation of the fan based on a temperature associated with the portable welder.


In some aspects, the fan of the portable welder is controlled to turn ON based on a first temperature threshold and to turn OFF based on a second temperature threshold.


In some aspects, the first temperature threshold is different from the second temperature threshold.


In some aspects, the portable welder determines a remaining runtime of the portable welder based on a state-of-charge of the battery pack.


In some aspects, an indication of the remaining runtime is configured to be displayed in the user interface.


Portable welders described herein include a portable housing, an electrode holder, a user interface, and a battery pack interface. The electrode holder is connected to the housing through an electrode cable. The electrode holder includes a consumable electrode, a mount connected to the electrode cable, and a user input. The mount is configured to hold the consumable electrode. The user input is configured to activate the portable welder. The user interface is located on the housing. The battery pack interface is configured to receive a removable and rechargeable battery pack.


In some aspects, a voltage output of the portable welder is controlled using a voltage converter.


In some aspects, the converter is a buck converter.


In some aspects, the user interface displays a state-of-charge of the battery pack.


In some aspects, the portable welders include a wireless communication controller configured to wirelessly communicate with an external device, and a setting of the portable welder is controlled based on a signal from an external device.


In some aspects, the setting of the portable welder is an ON or OFF state of a security lockout system.


In some aspects, the portable welder is configured to be powered by between a 200 Watt-hour battery pack and a 1000 Watt-hour battery pack.


In some aspects, the portable welder is configured to be powered by an AC/DC adapter.


In some aspects, the portable welders include a fan.


In some aspects, the portable welder controls the operation of the fan based on a temperature associated with the portable welder.


In some aspects, the fan of the portable welder is controlled to turn ON based on a first temperature threshold and to turn OFF based on a second temperature threshold.


In some aspects, the first temperature threshold is different from the second temperature threshold.


In some aspects, the portable welder determines a remaining runtime of the portable welder based on a state-of-charge of the battery pack.


In some aspects, an indication of the remaining runtime is configured to be displayed in the user interface.


In some aspects, the consumable electrode is a fixed-length consumable electrode.


In some aspects, the portable welders include a wire feed mechanism supported by the portable housing for feeding a consumable welding wire through the electrode cable.


Portable welders described herein include a portable housing, an electrode holder, a user interface, a battery pack interface, and a wireless communication controller. The electrode holder is connected to the housing through an electrode cable. The electrode holder includes a consumable electrode, a mount connected to the electrode cable, and a user input. The mount is configured to hold the consumable electrode. The user input is configured to activate the portable welder. The user interface located on the housing. The battery pack interface is configured to receive a removable and rechargeable battery pack. The wireless communication controller is configured to wirelessly communicate with an external device.


In some aspects, a voltage output of the portable welder is controlled using a voltage converter.


In some aspects, the converter is a buck converter.


In some aspects, the user interface displays a state-of-charge of the battery pack.


In some aspects, a setting of the portable welder is controlled based on a signal from the external device.


In some aspects, the setting of the portable welder is an ON or OFF state of a security lockout system.


In some aspects, the portable welder is configured to be powered by between a 200 Watt-hour battery pack and a 1000 Watt-hour battery pack.


In some aspects, the portable welder is configured to be powered by an AC/DC adapter.


In some aspects, the portable welders include a fan.


In some aspects, the portable welder controls the operation of the fan based on a temperature associated with the portable welder.


In some aspects, the fan of the portable welder is controlled to turn ON based on a first temperature threshold and to turn OFF based on a second temperature threshold.


In some aspects, the first temperature threshold is different from the second temperature threshold.


In some aspects, the portable welder determines a remaining runtime of the portable welder based on a state-of-charge of the battery pack.


In some aspects, an indication of the remaining runtime is configured to be displayed in the user interface.


In some aspects, the consumable electrode is a fixed-length consumable electrode.


In some aspects, the portable welders include a wire feed mechanism supported by the portable housing for feeding a consumable welding wire through the electrode cable.


In some aspects, the portable welders include an attachment for a gas source to direct an inert gas to the electrode holder.


Methods of operating a portable welder that includes a portable housing, an electrode holder connected to the housing through an electrode cable, the electrode holder including a consumable electrode, a mount connected to the electrode cable, the mount configured to hold the consumable electrode, and a user input configured to activate the portable welder, and a battery pack interface configured to receive a removable and rechargeable battery pack include determining an amp-hour capacity of the removable and rechargeable battery pack, determine a state-of-charge of the removable and rechargeable battery pack, determining a welding current setting for the portable welder, calculate a remaining runtime for the portable welder based on the amp-hour capacity, the state-of-charge, and the welding current setting, and displaying the remaining runtime for the portable welder on a user interface.


In some aspects, the methods include comparing the remaining runtime for the portable welder to a welding threshold time value related to an amount of time for completing a welding action.


In some aspects, the methods include providing an indication to a user when the remaining runtime for the portable welder is less than the welding threshold time value.


Before any embodiments are explained in detail, it is to be understood that the embodiments are not limited in its application to the details of the configuration and arrangement of components set forth in the following description or illustrated in the accompanying drawings. The embodiments are capable of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof are meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings.


In addition, it should be understood that embodiments may include hardware, software, and electronic components or modules that, for purposes of discussion, may be illustrated and described as if the majority of the components were implemented solely in hardware. However, one of ordinary skill in the art, and based on a reading of this detailed description, would recognize that, in at least one embodiment, the electronic-based aspects may be implemented in software (e.g., stored on non-transitory computer-readable medium) executable by one or more processing units, such as a microprocessor and/or application specific integrated circuits (“ASICs”). As such, it should be noted that a plurality of hardware and software based devices, as well as a plurality of different structural components, may be utilized to implement the embodiments. For example, “servers,” “computing devices,” “controllers,” “processors,” etc., described in the specification can include one or more processing units, one or more computer-readable medium modules, one or more input/output interfaces, and various connections (e.g., a system bus) connecting the components.


Relative terminology, such as, for example, “about,” “approximately,” “substantially,” etc., used in connection with a quantity or condition would be understood by those of ordinary skill to be inclusive of the stated value and has the meaning dictated by the context (e.g., the term includes at least the degree of error associated with the measurement accuracy, tolerances [e.g., manufacturing, assembly, use, etc.] associated with the particular value, etc.). Such terminology should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the expression “from about 2 to about 4” also discloses the range “from 2 to 4”. The relative terminology may refer to plus or minus a percentage (e.g., 1%, 5%, 10%, or more) of an indicated value.


It should be understood that although certain drawings illustrate hardware and software located within particular devices, these depictions are for illustrative purposes only. Functionality described herein as being performed by one component may be performed by multiple components in a distributed manner. Likewise, functionality performed by multiple components may be consolidated and performed by a single component. In some embodiments, the illustrated components may be combined or divided into separate software, firmware and/or hardware. For example, instead of being located within and performed by a single electronic processor, logic and processing may be distributed among multiple electronic processors. Regardless of how they are combined or divided, hardware and software components may be located on the same computing device or may be distributed among different computing devices connected by one or more networks or other suitable communication links. Similarly, a component described as performing particular functionality may also perform additional functionality not described herein. For example, a device or structure that is “configured” in a certain way is configured in at least that way but may also be configured in ways that are not explicitly listed.


Other aspects of the embodiments will become apparent by consideration of the detailed description and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a portable welder.



FIGS. 2A and 2B illustrates different sizes of battery packs for powering the portable welder of FIG. 1.



FIG. 3 illustrates an adapter including an AC/DC adapter assembly with a power box.



FIG. 4A illustrates a controller for the portable welder of FIG. 1.



FIG. 4B illustrates a communication controller for the portable welder of FIG. 1.



FIG. 4C illustrates a communication system for the portable welder of FIG. 1.



FIG. 5 illustrates a user interface and display for the portable welder communication system of FIG. 4A, FIG. 4B, and FIG. 4C.



FIG. 6 illustrates a security lockout for the portable welder of FIG. 1.



FIG. 7 illustrates a state-of-charge display for the portable welder of FIG. 1.



FIG. 8A and FIG. 8B illustrate a runtime remaining calculation method for the portable welder of FIG. 1.



FIG. 9A and FIG. 9B illustrate a last weld indication method for the portable welder of FIG. 1.



FIG. 10A and FIG. 10B illustrate fan control for the portable welder of FIG. 1.





DETAILED DESCRIPTION


FIG. 1 illustrates a portable welder 100, such as a metal flux-cored arc welder 100. The welder 100 includes a portable housing 105, which may be configured as a backpack and/or include one or more handles to facilitate transport by a user while performing welding operations. The welder 100 also includes an electrode holder 110 connected to the housing 105 by an electrode cable 115, and an electrically conductive ground cable 150 with an associated ground clamp 120 that is connectable to a metal workpiece 125. The electrode holder 110 includes a mount 130 to which a consumable electrode 135 is attached and a user input 140 (e.g., a switch, a button, a trigger, etc.) operable to activate the welder 100 and perform a welding operation on the workpiece.


The welder 100 also includes at least one removable and rechargeable battery pack 145 that is detachably coupled to the housing 105. In the illustrated embodiment, the battery pack 145 is configured as a rechargeable lithium-ion power tool battery pack 145 to provide a source of DC power for directing a current through the electrode cable 115, the electrode holder 110, the electrode 135, the workpiece 125, the ground clamp 120, and/or the ground cable 150 during a welding operation. In particular, the battery pack 145 has a nominal voltage of up to about 80 volts (V) and is operated to output high power (e.g., power of 2760 watts [W] to 3000 W or more [3.7 horsepower (hp) to 4.0 hp or more]) for sustained durations (e.g., at least 5-6 minutes or more). In order to achieve this sustained power, a high sustained current (e.g., 50 amps [A] or more) is discharged from the battery pack 145. Such a battery pack 145 is described in further detail in U.S. patent application Ser. No. 16/025,491, filed Jul. 2, 2018, the entire content of which is incorporated herein by reference.


In other embodiments, rather than using a fixed length consumable electrode 135, the welder 100 may include a wire feed mechanism supported by the housing 105 for feeding a consumable welding wire through the electrode cable 115 to be dispensed from a welding tip of the electrode holder (which in this embodiment would be considered as a welding gun). In such an embodiment, the consumable welding wire may require an inert gas to be applied near the welding tip during a welding process as is common in metal/inert gas (MIG) welding. In this embodiment, the welder 100 may further include a provision for attachment to a gas source for directing an inert gas through the welding tip. The gas source may be a gas tank coupled to the housing via a feed line.



FIG. 2A illustrates a battery pack that is detachable to the portable housing 105. The battery pack may include one or more cell strings, each having a number (e.g., 10) of battery cells connected in series to provide a desired discharge output (e.g., nominal voltage [e.g., 20 V, 40 V, 60 V, 80 V, 120 V] and current capacity). Accordingly, the battery pack 200 may include “20S1P,” “20S2P,” etc., configuration. In other embodiments, other combinations of battery cells are also possible.


Each battery cell may have a nominal voltage between 3 V and 5 V and may have a nominal capacity between 3 Ampere-hours (Ah) and 5 Ah. Each battery cell has a diameter of up to about 21 mm and a length of up to about 71 mm. The battery cells may be any rechargeable battery cell chemistry type, such as, for example, lithium (Li), lithium-ion (Li-ion), other lithium-based chemistry, nickel-cadmium (NiCd), nickel-metal hydride (NiMH), etc.


With reference to FIG. 2A, the portable welder 100 is capable to run using various battery sizes and power sources, some of which are described below. In some embodiments, the portable welder uses a 216 Watt-hour (“Wh”) battery pack. In other embodiments, the portable welder uses a 420 Wh battery pack. In yet another embodiment, the portable welder uses a 630 Wh battery pack or a 1000 Wh battery pack. In some embodiments, the battery pack is between about a 200 Wh battery pack and a 1000 Wh battery pack. In other embodiments, the portable welder 100 is compatible with a wall adapter. The wall adapter fits into a battery location located on the portable welder 100, then may be plugged into the wall to allow the portable welder 100 to be run off of AC power from the AC/DC power adapter.


In some embodiments, the portable welder 100 uses a battery pack having a power rating below 200 Wh. For example, a 27 Wh battery pack (e.g., 18V nominal voltage and a 1.5 Ah capacity) can be used to power the portable welder 100. In some embodiments, a 90 Wh battery pack (e.g., 18V nominal voltage and a 5 Ah capacity) can be used to power the portable welder 100. In some embodiments, a battery pack between 25 Wh and 270 Wh can be used to power the portable welder 100. In some embodiments, a plurality of battery packs are used to power the portable welder 100. For example, two to four battery packs (e.g., 18V nominal voltage and capacities between 1.5 Ah and 15 Ah) can be connected in series or parallel to provide between, for example, 27 Wh and 1080 Wh of power to the portable welder 100.


A battery pack 200 having a 20S1P configuration is illustrated in FIG. 2A in accordance with some embodiments. The battery pack 200 includes a battery pack housing 210 with a support portion 215 and a battery terminal block 220. The battery pack housing 210 encloses components of the battery pack 200 including the battery cells, a battery controller, etc. The support portion 215 provides a slide-on arrangement with a projection/recess 225 cooperating with a complementary projection/recess 225 of the combination.


The battery pack 200 defines a length within a range of approximately 260 mm to approximately 280 mm. In some embodiments, the length 502 is approximately 270 mm. In some embodiments, the length is approximately 270 mm. The battery pack 200 defines a width of the battery pack 200 within a range of approximately 90 mm to approximately 110 mm. In some embodiments, the width is approximately 100 mm. The battery pack 200 defines a height of the battery pack 200 with a range of 96 mm to approximately 116 mm. In some embodiments, the height of the battery pack 200 is approximately 106 mm. The total weight of the battery pack 200 is within a range of approximately 5.5 lbs. to 6.5 lbs. In some embodiments, the total weight of the battery pack 200 is approximately 6 lbs.


The battery pack 200 has an AC internal resistance (ACIR) within a range of approximately 150 mΩ to approximately 160 mΩ. The battery pack 200 has a DC internal resistance within a range of approximately 220 mΩ to approximately 260 mΩ.



FIG. 2B illustrates another embodiment of a battery pack 230 that is detachable to the portable housing 105. The battery pack 230 having a 20S2P configuration is illustrated in accordance with some embodiments. The battery pack 230 includes two cell strings of twenty series connected cells, the cell strings being connected in parallel. The battery pack 230 defines a length within a range of approximately 260 mm to approximately 280 mm. In some embodiments, the length of the battery pack 230 is approximately 270 mm. The battery pack defines a width within a range of approximately 171 mm to approximately 191 mm. In some embodiments, the width of the battery pack 230 is approximately 181 mm. The battery pack 230 defines a height within a range of approximately 96 mm to approximately 116 mm. In some embodiments, the height of the battery pack 230 is approximately 106 mm. The total weight of the battery pack 230 is within a range of approximately 10.25 lbs. to 11.25 lbs. In some embodiments, the total weight of the battery pack 230 is approximately 10.75 lbs. In some embodiments a 20S3P battery pack is detachable to the portable housing 105.


The battery pack 230 has an AC internal resistance (ACIR) within a range of approximately 75 mΩ to approximately 80 mΩ. The battery pack 230 has a DC internal resistance within a range of approximately 130 mΩ to approximately 170 mΩ.


The battery packs 200, 230 of FIG. 2A and FIG. 2B include a switch 205 extending from the housing 210. The switch 205 is configured to be in a first position and a second position. When in the first (e.g., “OFF”) position, electrical components (for example, the subcores) of the battery packs 200, 230 contained within the housing 210 are electrically disconnected from each other. When in the second (e.g., “ON”) position, electrical components (e.g., battery cell subcores) are electrically connected to each other. The switch 205 may be manipulated by a user from the first position to a second position by pressing or sliding the switch 205.


The portable welder 100 may also be configured to receive a power adapter 305. FIG. 3 illustrates the power adapter 305 is an AC/DC adapter assembly 300 including a power box 340 is operable to receive an input alternating current (AC) power via a power cord and supply direct current (DC) power via an adapter 305 to the portable welder 100. An adapter cord 310 electrically connects the adapter 305 to the power box 340. In other constructions, the power assembly 300 may receive power from another power source (e.g., a DC power source [a battery pack], a generator, etc.).


The power box 340 includes a housing 345 formed, in the illustrated construction, of two clamshell housing halves connected along plane 360. The in illustrated construction, the housing halves are connected with threaded fasteners (e.g., screws) or other suitable coupling means. Together, the housing halves define an internal compartment within the housing 345 containing internal components of the power box 340.


The housing 345 includes a handle 320 formed at a first end opposite a second end and a storage portion operable to selectively receive the power adapter 305 for convenient storage when the power adapter 305 is not in use. In additional or alternative embodiments, the storage portion may be configured to receive the pack engagement portion to selectively couple the battery pack to the power box 340. The storage portion is formed in a first or top side of the power box 340. The storage portion includes a recessed cavity open at an open end proximate the first end and adjacent the handle 320, and closed at a closed end.


The illustrated power box 340 includes a cord wrap arrangement operable to selectively receive a wound cord (e.g., the power cord 325 and/or the adapter cord 310) for compact and convenient storage when the power adapter 305 is not in use. In the illustrated construction, a pair of cord wraps are provided on opposite sides of the housing 345. In the illustrated construction, each cord wrap 355 includes a pair of longitudinally opposed hooks 330, 350 projecting laterally outwardly from the housing 345. That is, in the illustrated construction, a first cord wrap is configured to receive the power cord in a wound configuration. In other constructions, the power box 340 may include a single cord wrap 355 (large enough to receive the provided cords [e.g., the power cord and the adapter cord 310]) or more than two cord wraps 355.


The power adapter cord 310 has a length (e.g., at least about 2 meters [m]) and a diameter (e.g., about 10 mm to about 13 mm). In the illustrated construction, the cord length allows a user to operate the portable adapter 305 at or near an eye level while the power box 340 is resting at or near ground level, which limits excess adapter cord 310 that can be cumbersome during use. In other constructions, the cord length can be less than or greater than 3 meters so as to be adapted to particular uses of the portable adapter 305.


The power box 340 has at least one foot that projects downwardly from the housing 345 and that is engageable with a support surface. In the illustrated construction, the power box 340 has a pair of longitudinally-extending feet at opposite sides of the housing 345. In particular, each of the feet is coupled to a second or bottom side of the housing 345 and has a first surface that is substantially perpendicular to the second side of the power box 340 and a second surface that is oriented at an angle α relative to the second side of the power box 340. Each of the feet has a polygonal cross-section. In other or additional constructions, the power box may have four separate feet positioned proximate the corners. In still other constructions, the power box 340 have feet having any suitable location and configuration. The feet provide the power box 340 with a stable and robust resting surface when the power box 340 is supported on the floor or the ground. For example, the feet allow the power box 340 to straddle obstacles or otherwise address uneven ground surfaces. The feet also raise the housing 345 to a certain height above the ground, thereby preventing or inhibiting contaminants (e.g., pooled liquids, dust, other debris, etc.) from entering the housing 345 and interfering with the internal components of the power box 340. In the illustrated construction, the height is approximately 30 mm, but may range from 20 mm to 40 mm.


The power adapter 300 includes a circuit operable, in the illustrated construction, to receive as input AC and to output DC power. The circuit includes the necessary electrical components to operate as an AC/DC adapter (e.g., a rectifier). The circuit may include other components (e.g., a battery charging circuit portion to charge a connected battery pack, a pass-through circuit portion to output AC power to an AC outlet, an output circuit portion to output DC power to a DC power outlet, etc.). The circuit further includes a Ground Fault Circuit Interrupt (GFCI) protection system to protect against electrical shock during operation. GFCI controls are located on the housing 345 adjacent the storage portion.



FIG. 4A illustrates a controller 400 for the portable welder 100. The controller 400 is electrically and/or communicatively connected to a variety of modules or component of the portable welder 100. For example, the illustrated controller 400 is connected to indicators 445, sensors 450 (which may include, for example, a pressure sensor, a current sensor, a voltage sensor, a position sensor, etc.), a wireless communication controller 455, a trigger 460, a trigger switch 462, a welding circuit 465, a can control circuit 466, a fan 468, and a power input unit 470.


The controller 400 includes a plurality of electrical and electronic components that provide power, operational control, and protection to the components and modules within the controller 400 and/or portable welder 100. For example, the controller 400 includes, among other things, a processing unit 405 (e.g., a microprocessor, an electronic processor, an electronic controller, a microcontroller, or another suitable programmable device), a memory 425, input units 430, and output units 435. The processing unit 405 includes, among other things, a control unit 410, an arithmetic logic unit (“ALU”) 415, and a plurality of registers 420 (shown as a group of registers in FIG. 4A), and is implemented using a known computer architecture (e.g., a modified Harvard architecture, a von Neumann architecture, etc.). The processing unit 405, the memory 425, the input units 430, and the output units 435, as well as the various modules or circuits connected to the controller 400 are connected by one or more control and/or data buses (e.g., common bus 440). The control and/or data buses are shown generally in FIG. 4A for illustrative purposes. The use of one or more control and/or data buses for the interconnection between and communication among the various modules and components would be known to a person skilled in the art in view of the embodiments described herein.


The memory 425 is a non-transitory computer readable medium and includes, for example, a program storage area and data storage area. The program storage area and the data storage area can include combinations of different types of memory, such as a ROM, a RAM (e.g., DRAM, SDRAM, etc.), EEPROM, flash memory, a hard disk, an SD card, or other suitable magnetic, optical, physical, or electronic memory devices. The processing unit 405 is connected to the memory 425 and executes software instruction that are capable of being stored in a RAM of the memory 425 (e.g., during execution), a ROM of the memory 425 (e.g., on a generally permanent basis), or another non-transitory computer readable medium such as another memory or a disc. Software included in the implementation of the portable welder 100 can be stored in the memory 425 of the controller 400. The software includes, for example, firmware, one or more applications, program data, filters, rules, one or more program modules, and other executable instructions. The controller 400 is configured to retrieve from the memory 425 and execute, among other things, instructions related to the control processes and methods described herein. In other embodiments, the controller 400 includes additional, fewer, or different components.


The controller 400 drive the welding circuit 465 to perform a welding tasks in response to a user's actuation of the trigger 460. Depression of the activation trigger 460 actuates a trigger switch 462, which outputs a signal to the controller 400 to activate the welding circuit. The welding circuit 465 controls the power received from the battery pack 200, 230 to maintain a constant welding power. The welding circuit 465 includes a voltage converter (e.g., a DC-to-DC converter, a synchronous buck converter, an asynchronous buck converter, etc.). The voltage converter and the battery pack 200, 230 provide a constant voltage source for the portable welder 100. When the trigger 460 is released, the trigger switch 462 no longer outputs the actuation signal (or outputs a released signal) to the controller 400. The controller 400 may cease a welding task when the trigger 460 is released by controlling the welding circuit 465 to turn off the welding circuit 465.


A battery pack interface 472 is connected to the controller 400 and couples to a battery pack 474 (e.g., battery pack 200, 230). The battery pack interface 472 includes a combination of mechanical (e.g., a battery pack receiving portion) and electrical components configured to and operable for interfacing (e.g., mechanically, electrically, and communicatively connecting) the portable welder 100 with a battery pack 474. The battery pack interface 472 is coupled to power input unit 470. The battery pack interface 472 transmits the power received from the battery pack to the power input unit 470. The power input unit 470 includes active and/or passive components (e.g., voltage step-down controllers, voltage converters, rectifiers, filters, etc.) to regulate or control the power received through the battery pack interface 472, to the wireless communication controller 455, and controller 400. When the battery pack 474 is not coupled to the portable welder 100, the wireless communication controller 455 is configured to receive power from a back-up power source 476.


The indicators 445 are also coupled to the controller 400 and receive control signals from the controller 400 to turn on and off or otherwise convey information based on different states of the portable welder 100. The indicators 445 include, for example, one or more light-emitting diodes (LEDs), or a display screen. The indicators 445 can be configured to display conditions of, or information associated with, the portable welder 100. For example, the indicators 445 can display information relating to a welding action performed by the portable welder 100. In addition to or in place of visual indicators, the indicators 445 may also include a speaker or a tactile feedback mechanism to convey information to a user through audible or tactile outputs.



FIG. 4B illustrates a wireless communication controller 455 for the portable welder 100. The wireless communication controller 455 includes a processor 494, a memory 496, an antenna and transceiver 492, and a real-time clock (RTC) 498. The wireless communication controller 455 enables the portable welder 100 to communicate with an external device 482 (see, e.g., FIG. 4C). The radio antenna and transceiver 492 operate together to send and receive wireless messages to and from the external device 482 and the processor 494. The memory 496 can store instructions to be implemented by the processor 494 and/or may store data related to communications between the portable welder 100 and the external device 482, or the like. The processor 494 for the wireless communication controller 455 controls wireless communications between the portable welder 100 and the external device 482. For example, the processor 494 associated with the wireless communication controller 455 buffers incoming and/or outgoing data communicates with the controller 400, and determines the communication protocol and/or settings to use in wireless communications. The communication via the wireless communication controller 455 can be encrypted to protect the data exchanged between the portable welder 100 and the external device 482 from third parties.


In the illustrated embodiment, the wireless communication controller 455 is a Bluetooth® controller. The Bluetooth® controller communicates with the external device 482 employing the Bluetooth® protocol. Therefore, in the illustrated embodiment, the external device 482 and the portable welder 100 are within a communication range (i.e., in proximity) of each other while they exchange data. In other embodiments, the wireless communication controller 455 communicates using other protocols (e.g., Wi-Fi, ZigBee, a proprietary protocol, etc.) over different types of wireless networks. For example, the wireless communication controller 455 may be configured to communicate via Wi-Fi through a wide area network such as the Internet or a local area network, or to communicate through a piconet (e.g., using infrared or NFC communications).


In some embodiments, the network is a cellular network, such as, for example, a Global System for Mobile Communications (“GSM”) network, a General Packet Radio Service (“GPRS”) network, a Code Division Multiple Access (“CDMA”) network, an Evolution-Data Optimized (“EV-DO”) network, an Enhanced Data Rates for GSM Evolution (“EDGE”) network, a 3GSM network, 4GSM network, a 4G LTE network, 5G New Radio, a Digital AMPS (“IS-136/TDMA”) network, or an Integrated Digital Enhanced Network (“iDEN”) network, etc.


The wireless communication controller 455 is configured to receive data from the controller 400 and relay the information to the external device 482 via the antenna and transceiver 492. In a similar manner, the wireless communication controller 455 is configured to receive information (e.g., configuration and programming information) from the external device 482 via the antenna and transceiver 492 and relay the information to the controller 400.


The RTC 498 increments and keeps time independently of the other power tool components. The RTC 498 receives power from the battery pack when the battery pack is connected to the portable welder 100, and receives power from the back-up power source 485 when the battery pack is not connected to the portable welder 100. Having the RTC 498 as an independently powered clock enables time stamping of operational data (stored in memory 496 for later export) and a security feature whereby a lockout time is set by a user (e.g., via the external device 482) and the tool is locked-out when the time of the RTC 498 exceeds the set lockout time.



FIG. 4C illustrates a communication system 480. The communication system 480 includes at least one portable welder 100 and the external device 482. Each portable welder 100 and the external device 482 can communicate wirelessly while they are within a communication range of each other. Each portable welder 100 may communicate portable welder 100 status, portable welder 100 operation statistics, portable welder 100 identification, portable welder 100 sensor data, stored portable welder 100 usage information, portable welder 100 maintenance data, and the like.


More specifically, the portable welder 100 can monitor, log, and/or communicate various tool parameters that can be used for confirmation of correct tool performance, detection of a malfunctioning tool, and determination of a need or desire for service. Taking, for example, the portable welder parameters are detected, determined, and/or captured by the controller 400 and output to the external device 482 can include a welding time (e.g., time it takes for the portable welder to perform a welding task), a time (e.g., a number of seconds) that the portable welder 100 is on, a number of overloads, a total number of cycles performed by the tool, a number of cycles performed by the tool since a reset and/or since a last data export, a number of remaining service cycles (i.e., a number of cycles before the tool should be services, recalibrated, repaired, or replaced), a number for transmissions sent to the external device 482, a number of transmission sent to the external device 482, a number of errors generated in the transmissions sent to the external device 605, a code violation resulting in a master control unit (MCU) reset, a short in the power circuitry (e.g., a metal-oxide-semiconductor field-effect transistor [MOSFET] short), a non-maskable interrupt (NMI) hardware MCU Reset (e.g., of the controller 400), an over-discharge condition of the battery pack, an overcurrent condition of the battery pack, a battery dead condition at trigger pull, a tool FETing condition, thermal and stall overload condition at trigger pulled at tool sleep condition, heat sink temperature histogram data, MOSFET junction temperature histogram data (from the current sensor), etc.


Using the external device 482, a user can access the tool parameters for the portable welder 100. With the tool parameters (i.e., tool operational data), a user can determine how the tool has been used (e.g., number of tasks performed), whether maintenance is recommended or has been performed in the past, and identify malfunctioning components or other reasons for certain performance issues. The external device 482 can also transmit data to the portable welder 100 for tool configuration, firmware updates, or to send commands. The external device 482 also allows a user to set operational parameters, safety parameters, select tool modes, and the like for the portable welder 100.


The external device 482 is, for example, a smart phone (as illustrated), a laptop computer, a tablet computer, a personal digital assistant (PDA), or another electronic device capable of communication wirelessly with the portable welder 100 and providing a user interface. The external device 482 provides the user interface and allows a user to access and interact with the portable welder. The external device 482 can receive user inputs to determine operational parameters, enable or disable features, and the like. The user interface of the external device 482 provides an easy-to-use interface for the user to control and customize operation of the portable welder. The external device 482, therefore, grants the user access to the tool operational data of the portable welder, and provides a user interface such that the user can interact with the controller 400 of the portable welder 100.


In addition, as shown in FIG. 4C, the external device 482 can also share tool operational data obtained from the portable welder 100 with a remote server 489 connected through a network 486. The remote server 489 may be used to store the tool operational data obtained from the external device 482, provide additional functionality and service to the user, or a combination thereof. In some embodiments, storing the information on the remote server 489 allows a user to access the information from a plurality of different locations. In some embodiments, the remote server 489 collects information from various users regarding their power tool devices and provide statistics or statistical measures to the user based on information obtained from the different tools. For example, the remote server 489 may provide statistics regarding the experienced efficiency of the portable welder 100, typical usage of the portable welder 100, and other relevant characteristics and/or measures of the portable welder 100. The network 486 may include various networking elements (routers 484, hubs, switches, cellular towers 488, wired connections, wireless connections, etc.) for connecting to, for example, the Internet, a cellular data network, a local network, or a combination thereof as previously described. In some embodiments, the portable welder 100 is configured to communicate directly with the server 489 through an additional wireless interface or with the same wireless interface that the portable welder uses to communicate with the external device 482.



FIG. 5 illustrates the user interface 500 from the communication system of FIG. 4A, FIG. 4B, and FIG. 4C. An external device 505 displays different features of the portable welder 100 (e.g., welding current, stick type, arc force, hot start, etc.) and communicates with the portable welder 100's user display 510. This demonstrates communication between external device 505 and the portable welder 100, making it easy for the user of the portable welder to monitor the conditions of the portable welder 100 through the communication system 480.



FIG. 6 illustrates a security lockout system 600 for the portable welder 100. Using an external device 605, an application can be used for locking the portable welder 100 for the purpose of preventing the portable welder 100 from being used by an undesignated user. The external device 605 includes of a user interface. The user interface can be used to turn the security lockout system 600 ON or OFF. A signal is then sent to the portable welder 100, and the result of the action taken on the external device 605 can be displayed on a user interface 610 of the portable welder 100. The user interface 610 of the portable welder then displays an indication of whether the security lockout system 600 is ON or OFF.


The security lockout system 600, when turned on, would prevent a welder electrode output from being live, so as to prevent any arc from being created at all. The security lockout system 600 may prevent the portable welder 100 from turning ON, or, in another embodiment, the user interface 610 of the portable welder 100 may turn ON and indicate a locked tool.



FIG. 7 illustrates a state-of-charge mirror system 700 on the portable welder 100. A user interface 705 of the portable welder 100 may display a variety of information (e.g., welding current, welding voltage, etc.). An indication 710 of the battery charge provided on the portable welder 100 will allow a user to know the charge of the battery pack 200, 230 easily or from a distance. The indication 710 of the state-of-charge on the user interface 705 will mirror a Fuel Gauge on the battery pack 200, 230, while updating at a refresh rate that allows for accurate battery pack state of charge readings. The battery pack 200, 230 will communicate the state-of-charge and the portable welder 100 will then mirror that value according to a battery charge indication standard on the battery pack 200, 230. This will make the display of the user interface 705 an exact mirror of the battery charge indication on the battery pack 200, 230.



FIG. 8A illustrates an interface 800 of the portable welder 100 for displaying a calculation of how long a user has left to weld using a current battery pack. The calculation is based off the user-set welding current and the size or amp-hour capacity of the battery pack that has been installed on the portable welder 100 itself. The runtime prediction may be presented in the form of time in minutes until the battery pack is depleted.


A current runtime prediction alert method 805 is illustrated in FIG. 8B. Initially, the portable welder 100 determines the battery pack size and battery pack state-of-charge (STEP 810). The portable welder 100 reads or determines the user-set welding current (STEP 815). The method 805 uses the battery pack size, the battery pack state-of-charge, and the user-set welding current to calculate how many minutes of welding time the user has remaining (STEP 820). For example, the battery pack communicates a 20% charge, is 216 Wh battery pack, and has a nominal voltage of 72 Volts. The portable welder 100 is set to 140 A at the output, correlating to 85A out of the battery pack. The example runtime prediction calculation is as shown below:

216 Wh×20%=43.2 Wh
72 V×85 A=6120 W








43.2

Wh


6120


W


=


0
.
0


0706


Hours






0.00706 Hours=25.4 seconds of runtime remaining



FIG. 9A illustrates another embodiment of an interface 900 of the portable welder 100 for displaying a welding current runtime prediction. In some embodiments, the portable welder 100 is capable of calculating how much usable runtime is present for a specific welding current value. The welding current runtime prediction alert warns a user when runtime is below a time threshold (e.g., set by a user). This allows the user to plan the welding task based on a preset runtime. The portable welder takes the calculated time left to weld (as described previously) and compares the value to the threshold set by the user. Once the time left to weld is equal to or below the threshold, the portable welder 100 will provide a visual indication 905 (or, in some embodiments, audible indication) to warn the user through LEDs, LCD screens, or other similar devices.



FIG. 9B illustrates a welding current runtime prediction alert method 905 implemented by the portable welder 100. The portable welder 100 first determines the amount of usable battery discharge time left (STEP 910), and a user indicates the welding threshold time value for completing an action taken using the portable welder (STEP 915). The portable welder 100 then determines whether the welding threshold would exceed the time left for the battery pack to be discharged. If this is the case, the portable welder 100 notifies the user of the discrepancy (STEP 920) and that there is insufficient charge on the battery pack to complete to operation. If the welding time of the task is shorter than the time left for battery pack to be discharged, then the portable welder 100 continue operation as normal (STEP 925).


The portable welder 100 is a high-power application that uses, for example, active cooling (e.g., a fan) of electrical components within the portable welder 100. By controlling a fan's speed, the battery life of the battery pack may be able to be conserved for a longer runtime. Controlling the fan speed and/or turn on time will save power and reduce noise of the portable welder 100. In the embodiment illustrated in FIG. 10A, fan control 1000 will be based on hysteresis. The fan will turn ON when a temperature (or welding load) is read at a value that is above a first set value. The fan will turn OFF once the temperature has reduced below a second set value. The set values may be the same value or different values. As illustrated in FIG. 10A, the first set value is greater than the second set value.


In another embodiment, illustrated in FIG. 10B, fan control 1005 operation is based on a dynamic fan control. The fan will adjust the running speed when an application of the portable welder 100 has started. The speed of the fan will be determined by the portable welder 100's welding load. The higher the load value the faster the fan speed. Once the fan has reached a maximum speed, the system will remain on before reducing the fan speed if the load is reduced. In some embodiments, existing heat generated in the portable welder 100 can be considered after the fan reaches maximum speed to determine whether the portable welder 100 should be disabled.


Thus, embodiments described herein provide, among other things, systems and methods for a portable welder. Various features and advantages are set forth in the following claims.

Claims
  • 1. A portable welder comprising: a portable housing;a ground clamp connected to the portable housing through a ground cable, the ground clamp configured to be connected to a metal workpiece;an electrode holder connected to the portable housing through an electrode cable, the electrode holder including a mount connected to the electrode cable, the mount configured to hold a consumable electrode, and a user input configured to activate the portable welder;a user interface located on the housing;a battery pack interface configured to receive a removable and rechargeable battery pack; anda wireless communication controller configured to wirelessly communicate with an external device separate from the portable welder,wherein a setting of the portable welder is controlled based on a signal received from the external device.
  • 2. The portable welder of claim 1, wherein the user interface displays a state-of-charge of the battery pack.
  • 3. The portable welder of claim 1, wherein the setting of the portable welder is an ON or OFF state of a security lockout system.
  • 4. The portable welder of claim 1, wherein the portable welder is configured to be powered by between a 200 Watt-hour battery pack and a 1000 Watt-hour battery pack.
  • 5. The portable welder of claim 4, wherein the portable welder controls operation of a fan based on a temperature associated with the portable welder.
  • 6. The portable welder of claim 5, wherein the fan of the portable welder is controlled to turn ON based on a first temperature threshold and to turn OFF based on a second temperature threshold.
  • 7. A portable welder comprising: a portable housing;an electrode holder connected to the housing through an electrode cable, the electrode holder including: a consumable electrode;a mount connected to the electrode cable, the mount configured to hold the consumable electrode, anda user input configured to activate the portable welder;a user interface located on the housing;a battery pack interface configured to receive a removable and rechargeable battery pack; anda wireless communication controller configured to wirelessly communicate with an external device separate from the portable welder,wherein a setting of the portable welder is controlled based on a signal from the external device.
  • 8. The portable welder of claim 7, wherein the user interface displays a state-of-charge of the battery pack.
  • 9. The portable welder of claim 7, wherein the setting of the portable welder is an ON or OFF state of a security lockout system.
  • 10. The portable welder of claim 7, wherein the portable welder is configured to be powered by between a 200 Watt-hour battery pack and a 1000 Watt-hour battery pack.
  • 11. The portable welder of claim 7, wherein the portable welder controls operation of a fan based on a temperature associated with the portable welder.
  • 12. The portable welder of claim 11, wherein the fan of the portable welder is controlled to turn ON based on a first temperature threshold and to turn OFF based on a second temperature threshold.
  • 13. The portable welder of claim 12, wherein the first temperature threshold is different from the second temperature threshold.
  • 14. The portable welder of claim 7, wherein the portable welder determines a remaining runtime of the portable welder based on a state-of-charge of the battery pack.
  • 15. A portable welder comprising: a portable housing;an electrode holder connected to the housing through an electrode cable, the electrode holder including: a consumable electrode;a mount connected to the electrode cable, the mount configured to hold the consumable electrode, anda user input configured to activate the portable welder;a user interface located on the housing;a battery pack interface configured to receive a removable and rechargeable battery pack; anda wireless communication controller configured to wirelessly communicate with an external device separate from the portable welder.
  • 16. The portable welder of claim 15, wherein a setting of the portable welder is controlled based on a signal from the external device.
  • 17. The portable welder of claim 16, wherein the setting of the portable welder is an ON or OFF state of a security lockout system.
  • 18. The portable welder of claim 15, wherein the portable welder is configured to be powered by between a 200 Watt-hour battery pack and a 1000 Watt-hour battery pack.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 62/960,423, filed Jan. 13, 2020, the entire content of which is hereby incorporated by reference.

US Referenced Citations (259)
Number Name Date Kind
2866076 Aversten Dec 1958 A
3129352 Adamson et al. Apr 1964 A
3242312 Pierce Mar 1966 A
3448239 Hill Jun 1969 A
3657512 Bondarenko Apr 1972 A
3746965 Okada et al. Jul 1973 A
3883714 James May 1975 A
4216367 Risberg Aug 1980 A
4273984 Hara et al. Jun 1981 A
4301355 Kimbrough et al. Nov 1981 A
4442339 Mizuno et al. Apr 1984 A
4503316 Murase et al. Mar 1985 A
4507542 Kunz et al. Mar 1985 A
4521672 Fronius Jun 1985 A
4532409 Ogata et al. Jul 1985 A
4590357 Winkler May 1986 A
4785159 Hruska Nov 1988 A
4877941 Honma et al. Oct 1989 A
4916289 Suhanek Apr 1990 A
4947021 Stava Aug 1990 A
5086208 Habermann Feb 1992 A
5229930 Makimaa Jul 1993 A
5233159 Day Aug 1993 A
5250786 Kikuchi et al. Oct 1993 A
5298712 Alexandres Mar 1994 A
5406050 Macomber et al. Apr 1995 A
5446641 Reynolds et al. Aug 1995 A
5599470 Peotter et al. Feb 1997 A
5672963 Corrigall et al. Sep 1997 A
5710696 Reynolds et al. Jan 1998 A
5814788 Everhart et al. Sep 1998 A
5824990 Geissler et al. Oct 1998 A
5869801 Paton et al. Feb 1999 A
5911894 Colling Jun 1999 A
5942139 Moriguchi et al. Aug 1999 A
5991180 Vogel et al. Nov 1999 A
6005220 Bunker et al. Dec 1999 A
6075225 Heraly et al. Jun 2000 A
6087628 Ferkel et al. Jul 2000 A
6111215 Lilly Aug 2000 A
6114655 Reynolds Sep 2000 A
6137080 Borchardt et al. Oct 2000 A
6150632 Fisher Nov 2000 A
6204479 Sickels Mar 2001 B1
6225596 Chandler et al. May 2001 B1
6239407 Thommes May 2001 B1
6278081 Reynolds Aug 2001 B1
6291798 Stava Sep 2001 B1
6303894 Laser et al. Oct 2001 B1
6310320 Kraus et al. Oct 2001 B1
6348671 Fosbinder et al. Feb 2002 B1
6364197 Oelgoetz et al. Apr 2002 B1
6472635 Trinkner et al. Oct 2002 B2
6512199 Blazina Jan 2003 B1
6713721 Albrecht Mar 2004 B2
6747246 Crandell, III Jun 2004 B2
6762392 Krengel et al. Jul 2004 B1
6777649 Reynolds et al. Aug 2004 B2
6797922 Katooka et al. Sep 2004 B2
6812584 Renner Nov 2004 B2
6818860 Stava et al. Nov 2004 B1
6858818 Knoener Feb 2005 B2
6930280 Zauner et al. Aug 2005 B2
6933466 Hutchison Aug 2005 B2
6933467 Hayes et al. Aug 2005 B2
7045742 Feichtinger et al. May 2006 B2
7087860 Nikodym et al. Aug 2006 B2
7091449 Ihde et al. Aug 2006 B2
7115834 Sykes et al. Oct 2006 B2
7196284 Barten Mar 2007 B2
7211764 Leisner et al. May 2007 B2
7235759 Geissler Jun 2007 B2
7262387 Uecker Aug 2007 B2
7265318 Fosbinder Sep 2007 B2
7265319 Fosbinder et al. Sep 2007 B2
7291808 Burgstaller et al. Nov 2007 B2
7319206 Thommes Jan 2008 B2
7323658 Rice et al. Jan 2008 B2
7428843 Prock Sep 2008 B2
7429712 Stanzel et al. Sep 2008 B2
7686853 Seman, Jr. et al. Mar 2010 B2
7700893 Kaufman Apr 2010 B2
7730921 Acors Jun 2010 B2
7777447 Vogel Aug 2010 B2
7778056 Geissler Aug 2010 B2
7781699 Schneider Aug 2010 B2
7781700 Harris Aug 2010 B2
7817091 Gezici et al. Oct 2010 B2
7858895 Moore Dec 2010 B2
8035059 Artelsmair Oct 2011 B2
8080762 Martin et al. Dec 2011 B2
8264188 Veik Sep 2012 B2
8291602 Korb et al. Oct 2012 B2
8299398 Madsen Oct 2012 B2
8536488 Ertmer et al. Sep 2013 B2
8558139 Albrecht Oct 2013 B2
8592722 Ulrich et al. Nov 2013 B2
8618441 McQuerry Dec 2013 B2
8664564 Vogel et al. Mar 2014 B2
8698035 Fisk Apr 2014 B2
8735775 Kaufman May 2014 B2
8742280 Vogel Jun 2014 B2
8785817 Luck et al. Jul 2014 B2
8796586 Fulcer et al. Aug 2014 B2
8803032 Matthews et al. Aug 2014 B2
8824175 Sickels et al. Sep 2014 B2
8890021 Shipulski et al. Nov 2014 B2
8938867 Filiatrault et al. Jan 2015 B2
8987638 Hiroi et al. Mar 2015 B2
9065305 Trinkner Jun 2015 B2
9073139 Christopher et al. Jul 2015 B2
9089923 Wilder et al. Jul 2015 B2
9101999 Lambert et al. Aug 2015 B2
9156104 Diedrick et al. Oct 2015 B2
9162311 Ott Oct 2015 B2
9174295 Swartz Nov 2015 B2
9180587 Rozmarynowski Nov 2015 B2
9186743 Radtke et al. Nov 2015 B2
9308597 Matus et al. Apr 2016 B2
9308598 Madsen et al. Apr 2016 B2
9308605 Jokinen et al. Apr 2016 B2
9315283 Neeser et al. Apr 2016 B2
9381593 DuVal et al. Jul 2016 B2
9399263 Bashore et al. Jul 2016 B2
9407185 Jochman Aug 2016 B2
9442481 Davidson et al. Sep 2016 B2
9449498 Dina et al. Sep 2016 B2
9486874 Giese Nov 2016 B2
9511435 Bavhammar et al. Dec 2016 B2
9531276 Knoll et al. Dec 2016 B2
9533367 Carrier et al. Jan 2017 B2
9636766 Uecker et al. May 2017 B2
9651114 Filiatrault et al. May 2017 B2
9676050 Albrecht Jun 2017 B2
9712947 Dina et al. Jul 2017 B2
9737949 Beeson Aug 2017 B2
9764407 Dantinne et al. Sep 2017 B2
9789559 Geissler et al. Oct 2017 B2
9821413 Feldhausen et al. Nov 2017 B2
9839968 Borchert et al. Dec 2017 B2
9839969 Granato, Jr. et al. Dec 2017 B2
9862053 Ulrich Jan 2018 B2
9919376 Starzengruber et al. Mar 2018 B2
9925614 Albrecht Mar 2018 B2
9943924 Denis et al. Apr 2018 B2
9977242 Patel et al. May 2018 B2
9993890 Denis et al. Jun 2018 B2
10010961 Peters et al. Jul 2018 B2
10040141 Rajagopalan et al. Aug 2018 B2
10076809 Rappl et al. Sep 2018 B2
10099308 Vogel et al. Oct 2018 B2
10105782 Becker et al. Oct 2018 B2
10118241 Mehn et al. Nov 2018 B2
10144083 Radtke et al. Dec 2018 B2
10144084 Bunker et al. Dec 2018 B2
10144085 Reynolds et al. Dec 2018 B2
10166624 Furman et al. Jan 2019 B2
10183352 Stanzel et al. Jan 2019 B2
10201870 Plottier et al. Feb 2019 B2
10227149 Keller Mar 2019 B2
10270719 Nelson et al. Apr 2019 B2
10279415 Hsu et al. May 2019 B2
10363627 Denis et al. Jul 2019 B2
10391577 Ulrich et al. Aug 2019 B2
10421143 Albrecht Sep 2019 B2
10449615 Schartner Oct 2019 B2
20010002583 Kraus et al. Oct 2001 A1
20050230372 Ott Oct 2005 A1
20060001915 Seman et al. Jan 2006 A1
20060010269 Ihde et al. May 2006 A1
20080001762 Uecker Jan 2008 A1
20080015678 Rice et al. Jul 2008 A1
20080019090 Aigner Aug 2008 A1
20080020307 Feldhausen et al. Aug 2008 A1
20080021067 Lambirth et al. Sep 2008 A1
20080223830 Gibbons et al. Sep 2008 A1
20080030854 Hiroi et al. Dec 2008 A1
20080031488 Hutchison Dec 2008 A1
20090015225 Dantinne et al. Jun 2009 A1
20090026680 Thommes Oct 2009 A1
20090027789 Speilman Nov 2009 A1
20100001263 Wierschke et al. Jan 2010 A1
20100005948 Hutchison et al. Mar 2010 A1
20100193487 Geissler Aug 2010 A1
20110008914 Acors Apr 2011 A1
20110018655 Heinrich et al. Aug 2011 A1
20110019831 Casner Aug 2011 A1
20110022061 Mehn et al. Sep 2011 A1
20120000679 Rozmarynowski et al. Jan 2012 A1
20120175356 Magerl et al. Jul 2012 A1
20120024142 Kowaleski Sep 2012 A1
20120241429 Knoener et al. Sep 2012 A1
20120032579 Stein et al. Dec 2012 A1
20120318778 Joubert Dec 2012 A1
20140000116 Bunker et al. Jan 2014 A1
20140001167 Albrecht Jan 2014 A1
20140014489 Ulrich et al. May 2014 A1
20140025197 Vogel Sep 2014 A1
20140026324 Ulrich et al. Sep 2014 A1
20140033251 Luck et al. Nov 2014 A1
20150004144 Niedereder et al. Feb 2015 A1
20150006903 Farah Mar 2015 A1
20150007612 Krupp et al. Mar 2015 A1
20150018304 Starzengruber et al. Jul 2015 A1
20150026612 Enyedy et al. Sep 2015 A1
20150273611 Denis Oct 2015 A1
20150032871 Miyahara Nov 2015 A1
20160004639 Neeser et al. Feb 2016 A1
20160006781 Radtke et al. Mar 2016 A1
20160010148 Ott Apr 2016 A1
20160012951 Schartner et al. May 2016 A1
20160021420 Beeson et al. Jul 2016 A1
20160221104 Madsen et al. Aug 2016 A1
20160034686 Davidson et al. Dec 2016 A1
20170002850 Radtke et al. Feb 2017 A1
20170003628 Albrecht et al. Feb 2017 A1
20170050256 Enyedy Feb 2017 A1
20170050257 Leiteritz et al. Feb 2017 A1
20170189986 Henry Jul 2017 A1
20170023261 Hammock Aug 2017 A1
20170026674 Stockton Sep 2017 A1
20170028227 Knoener et al. Oct 2017 A1
20170036863 Schartner et al. Dec 2017 A1
20180002187 Ellis Jan 2018 A1
20180005642 Batzler Mar 2018 A1
20180056902 Ihde et al. Mar 2018 A1
20180009334 Granato, Jr. et al. Apr 2018 A1
20180011771 Rajagopalan et al. May 2018 A1
20180013037 Meess et al. May 2018 A1
20180123370 Schartner May 2018 A1
20180017195 Orvedahl Jun 2018 A1
20180020774 Enyedy et al. Jul 2018 A1
20180185948 Knoener et al. Jul 2018 A1
20180021497 Ihde Aug 2018 A1
20180022932 Denis et al. Aug 2018 A1
20180026457 Denis et al. Sep 2018 A1
20180264581 Schraff Sep 2018 A1
20180036996 Rappl et al. Dec 2018 A1
20180369886 McQuerry et al. Dec 2018 A1
20190006980 Sheeks Jan 2019 A1
20190007695 Becker et al. Mar 2019 A1
20190070688 Mehn et al. Mar 2019 A1
20190010572 Reynolds et al. Apr 2019 A1
20190099826 Vogel et al. Apr 2019 A1
20190121131 Patel et al. Apr 2019 A1
20190015197 Radtke et al. May 2019 A1
20190016833 Renner Jun 2019 A1
20190016890 Keller Jun 2019 A1
20190199662 Nelson et al. Jun 2019 A1
20190024076 Ihde Aug 2019 A1
20190232413 Ulrich Aug 2019 A1
20190031492 Bunker et al. Oct 2019 A1
20190032934 Radtke Oct 2019 A1
20190299341 Dessart et al. Oct 2019 A1
20190337081 Anders et al. Nov 2019 A1
20190358727 Albrecht Nov 2019 A1
20190363643 Borowski et al. Nov 2019 A1
20210027657 Becker Jan 2021 A1
20210346973 Sandahl Nov 2021 A1
Foreign Referenced Citations (45)
Number Date Country
1045364 Sep 1990 CN
2181356 Nov 1994 CN
2584339 Nov 2003 CN
201201102 Mar 2009 CN
201371328 Dec 2009 CN
201699463 Jan 2011 CN
202212709 May 2012 CN
202491026 Oct 2012 CN
202825049 Mar 2013 CN
103624411 Mar 2014 CN
203918156 Nov 2014 CN
103128419 Feb 2015 CN
204262646 Apr 2015 CN
103128425 Sep 2015 CN
103692059 Sep 2015 CN
204603640 Sep 2015 CN
205324945 Jun 2016 CN
304045661 Feb 2017 CN
206230125 Jun 2017 CN
106141378 Sep 2017 CN
207255449 Apr 2018 CN
207344021 May 2018 CN
108406184 Aug 2018 CN
108555433 Sep 2018 CN
208178836 Dec 2018 CN
106425029 May 2019 CN
110052743 Jul 2019 CN
2939045 Jul 1980 DE
3236605 Dec 1983 DE
8535215 Apr 1987 DE
4305339 Nov 1995 DE
202006007244 Jul 2006 DE
202006015816 Dec 2006 DE
102009040957 Sep 2011 DE
102013205513 Oct 2013 DE
0001815 May 1979 EP
0667205 Aug 1995 EP
0901865 Jul 2006 EP
1882541 Dec 2009 EP
2846431 Mar 2015 EP
2882559 Apr 2016 EP
2942142 Jul 2019 EP
102059362 Dec 2019 KR
00069593 Nov 2000 WO
2008022654 Feb 2008 WO
Non-Patent Literature Citations (3)
Entry
US 8,866,045 B2, 10/2014, Beeson et al. (withdrawn)
Extended European Search Report for Application No. 21741541.3 dated Jan. 4, 2024 (10 pages).
International Search Report and Written Opinion for Application No. PCT/US2021/013193 dated May 11, 2021 (12 pages).
Related Publications (1)
Number Date Country
20210213553 A1 Jul 2021 US
Provisional Applications (1)
Number Date Country
62960423 Jan 2020 US