In general, the disclosed subject matter involves selective removal of unwanted components in a patient's blood including, but not limited to, pathogenic particles, chemicals, and other particles.
A localized infection, such as at a wound site, if not promptly and properly diagnosed and treated can oftentimes progress to a serious and overwhelming blood infection caused by the presence of pathogenic microorganisms or their toxins in the blood stream. Such blood infection is commonly known as sepsis and may lead to limb amputation, organ dysfunction or failure, or even death.
Sepsis diagnosis has typically involved using a relatively small percentage of a patient's blood (e.g., 0.1% of less) for a culture or molecular analysis. Further, even if detected, treatment has typically involved a “broad-brush” approach, whereby a non-specific antibiotic is used. However, in some cases, the non-specific antibiotic may not be effective treatment against an infecting pathogen. Moreover, frequent use of non-specific antibiotics can also promote antibiotic-resistant bacteria.
In another context, the low therapeutic index and high toxicity of many chemotherapeutic agents is exacerbated by their long term persistence in the human body. In particular, myelosuppression can be an undesirable side effect of virtually all chemotherapy treatments. Many protein-bound chemotherapy agents have extended half-lives relying on elimination by the liver or kidney, and there is often cumulative toxicity based on the cumulative effects of the treatment regimen.
SUMMARY
The Summary describes and identifies features of some embodiments. It is presented as a convenient summary of some embodiments, but not all. Further the Summary does not necessarily identify critical or essential features of the embodiments, inventions, or claims.
Generally speaking, included among embodiments described herein is a blood filtration device or system that can selectively remove or reduce unwanted substances or components from a patient's blood stream, and thereafter replenish the patient with “cleaned” blood. In various embodiments, the unwanted substance may be unknown prior to operation of the blood filtration device or system. Such systems and devices can be used to treat infections such as local or blood infections described above or as part of chemotherapy treatment. The system can also be used to allow a broader range of pharmacokinetic options such as varying the concentration of antibiotics or other agents using cycles of infusion and removal of such infusates. The system can be used to dialytically remove target substances from blood, such as bacteria, while minimizing the exposure of blood to thrombogenic surfaces thereby, in embodiments, eliminating the need for anticoagulants.
Embodiments described herein can be configured as mobile systems or devices, such that they can be moved, for example, from room to room in a hospital. Embodiments can be deployed in mobile medical units, such an ambulance or medivac helicopter, for use by emergency or military personnel. Alternatively, the embodiments can be configured as a portable device that emergency responders or military personnel can carry to a treatment site. In yet another alternative, embodiments can be configured as substantially fixed units with appropriate fluid conveyances and/or storage vessels for transporting to a target or treatment location. In still another alternative, embodiments can be fixed at a particular location, such as a floor or wing of a medical treatment facility. In some or all embodiments the device or system can contain its own power supply (e.g., a battery or batteries), which can serve as the system or device primary or back-up power supply.
According to embodiments, the disclosed subject matter includes any devices and or systems configured to implement any of the methods described herein.
Embodiments will hereinafter be described in detail below with reference to the accompanying drawings, wherein like reference numerals represent like elements. The accompanying drawings have not necessarily been drawn to scale. Any values dimensions illustrated in the accompanying graphs and figures are for illustration purposes only and may not represent actual or preferred values or dimensions. Where applicable, some features may not be illustrated to assist in the description of underlying features.
The detailed description set forth below in connection with the appended drawings is intended as a description of various embodiments of the disclosed subject matter and is not intended to represent the only embodiments in which the disclosed subject matter may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the disclosed subject matter. However, it will be apparent to those skilled in the art that the disclosed subject matter may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring the concepts of the disclosed subject matter.
Patent application Ser. No. 11/814,117 (Pub. No. 2009/0139931) filed May 22, 2007 (hereinafter “the '117 application”), which was attached in Appendix A in the above-referenced provisional patent application, and which is hereby incorporated by reference in its entirety into the present application, discusses the use of a secondary treatment device to remove waste from plasma such as for treatment of end stage renal disease. In the disclosure of the '117 application, a microfluidic separation device is employed to extract a cytoplasmic-body-free fraction of whole blood extracted from a patient, hereafter referred to as plasma. The filtering of toxins from the plasma may be done in an extracorporeal treatment process with whole blood entering the microfluidic separation device, and splitting into two streams, one of a plasma fraction (plasma and components to be removed), and the other whole blood with the plasma fraction removed. The latter may be directly returned to the body while the plasma fraction is passed through a filter, exposed to an adsorbent or other substance removal device such as a deionization filter (e.g., cation-ion exchange) so as to remove undesired components or portions thereof. For example, water volume may be reduced by ultrafiltration. A combination of removal mechanisms may be used as well. The treated plasma is then returned to the patient. Also incorporated by reference in its entirety into the present application is U.S. Pat. No. 7,588,550 which describes related technology.
Other extraction mechanisms known now or which may later be discovered may be used as a secondary processor in any of the embodiments described herein to create alternative embodiments. For example, newly discovered engineered tissues (so called organs on a chip) may be used or centrifugation or processes that employ binding agents such as opsonins.
In the disclosed subject matter, embodiments of microfluidic separation components of the treatment devices and systems described above extract plasma containing targeted substances from whole blood. The microfluidic separation device may be combined with a secondary treatment device that removes the target substances from the plasma. The target substances may include particles such as pathogens such as bacteria, middle or large molecular-weight proteins, metabolic solutes or drugs, for example. In embodiments, substances of smaller size or lower molecular weight than the target substance may be returned to the patient. In such embodiments, substitution fluid may be administered, for example to make up lost volume and/or lost precious blood substances such as albumin. The secondary separation device may employ any suitable mechanism for removing target substances from the blood, including adsorption, double filtration with a membrane, single stage filtration with a membrane, centrifugation, etc. Cleansed plasma may be returned to the body.
The use of microfluidic separation devices for clearing substances, such as pathogens, toxins, or drugs from a patient's blood may offer at least these benefits over existing technologies for removing pathogens, their toxins, or other toxins (including administered drugs, such as antibiotics or chemotherapy drugs and/or medicaments or other therapeutic agents) from blood.
First, host cytoplasmic body depleted fractions may be extracted and replaced relatively rapidly and with less exposure to artificial materials because of the properties and capabilities (e.g., flow rate, biofouling resistance, etc.) of the microfluidic separation module as a plasma separation device. Note the term “host” is used here to indicate that the cytoplasmic bodies referenced are non-contaminating elements such as sepsis-causing bacteria that are to be removed. In the remainder of the instant specification, references to the cytoplasmic body free fraction indicate it is free of host substances but not necessarily free of contaminating particles.
Second, the volume of plasma that needs to be removed can be reduced due to the small extracorporeal volume of the microfluidic separation module. Third, there is a lower latency between the time plasma is circulating in the patient and the time plasma is extracted, allowing for real-time detection of pathogens, toxins, or drugs in the plasma fraction. Signal levels for such real time detection can be higher for these substances circulating in the plasma fraction of the blood because of the higher concentration as compared to whole blood and the reduced diffusion caused by the presence of cytoplasmic bodies. Fourth, the reduced exposure to artificial surfaces provided by the microfluidic technology may compensate the use of less biocompatible materials or longer exposure time to materials with low biocompatibility. Though not relevant or minimized, should inadvertent removal of essential blood components occur, any such effects to the patient can be negated or reduced because of the aforementioned relatively lower time period in which blood components are external to the patient.
Additionally, the use of a microfluidic separation module to separate plasma from whole blood prior to applying a selective filtration method to the plasma, besides having the other benefits described in the patent-related documents herein incorporated by reference, also concentrates the target particles or molecules relative to whole blood, since the latter are confined to the plasma portion of whole blood. Also, for the same reason, the diffusion path length for solutes and particles, and thus the diffusivity thereof, may be enhanced relative to that in the presence of cytoplasmic bodies. This may increase the effectiveness of sensors that detect analytes. It may also increase the efficiency of secondary separation, reduce the fouling of filters used in such secondary separation, reduce treatment time, and reduce the amount of whole blood required to be processed for a given amount of blood cleansing. For all embodiments disclosed, the detectors/sensors which detect undesired species in blood may be embodied in small microfluidic separation devices which extract plasma in very small amounts for sampling purposes only.
For instance, the concentration of drug in the plasma according to embodiments may be about twice as high as that in whole blood. The higher concentration and the lack of cells may improve the signal for concentration monitoring systems as well as improve the removal rate and/or efficiency of adsorbent and other secondary treatment devices. Removal of drug from cell free plasma may also permit the use of less biocompatible materials, such as certain adsorbents.
Other benefits of the microfluidic technology described herein and in the patent-related documents discussed and incorporated by reference herein will also be appreciated.
According to embodiments, microfluidic separation of plasma is combined with further processing of the plasma to remove particles (or molecules) in a predefined size range by passing the plasma through a double filtration system. That is, target molecules are discriminated from the plasma by a slicing cascade of membrane filters. The purified plasma can then be returned to the patient or the microfluidic separation device (which may ultimately return the purified plasma to the patient).
According to embodiments, microfluidic separation of plasma is combined with further processing of the plasma to remove particles (or molecules) of a predefined species by exposing the plasma to an adsorbent or other removal mechanism. Target molecules are discriminated from the plasma by chemical or physical interaction with the adsorbent. The purified plasma can be returned directly to the patient or the microfluidic separation device (which may ultimately return the purified plasma to the patient).
According to embodiments, microfluidic separation of plasma is combined with further processing of the plasma to remove particles (or molecules) of large size by passing the plasma through a filter membrane. A filtrand stream containing large molecules blocked by the filter is discarded while the filtered stream is returned to the microfluidic separation device or to the patient.
According to embodiments, the disclosed subject matter includes a method for extracorporeal treatment of blood to remove a target substance. The method includes removing blood from a patient and passing the blood through a microfluidic channel, the passing including diffusing the target substance into a cytoplasmic body-free blood fraction using a microfluidic separation module that employs microfluidic channels and microsieve wall filters. The method further includes removing the cytoplasmic body-free fraction from the microfluidic channel and extracting at least some of the target substance from the removed cytoplasmic body-free fraction and returning the resulting cytoplasmic body-free fraction to the microfluidic channel.
The extracting may include cascade filtration using multiple membranes having different pore sizes to select and filter out a target particle size range. The extracting may include adhering the target to an adsorbent. The method may include monitoring an amount of the target substance in the body of a patient and controlling an administration of the target substance, or a precursor thereof, responsively to the monitoring. The method may include binding the target substance to another substance to form an aggregate particle, the extracting including extracting the aggregate particle. The aggregate particle may have a higher binding affinity for an adsorbent and the extracting includes exposing the aggregate particle to the adsorbent. The method may include monitoring an amount of the target substance in the body of a patient and controlling an administration of the target substance, or a precursor thereof, according to a time concentration integral limit is not exceeded. The method may include monitoring an amount of the target substance in the body of a patient and controlling an administration of the target substance, or a precursor or metabolite thereof, responsively to predictive model of an elimination rate of the target substance from the patient by endogenous pathway. The patient may have a faulty endogenous elimination capacity and the method may include identifying the patient as a candidate for the method based on the faulty capacity. The target substance may be a result of a drug overdose.
According to embodiments, the disclosed subject matter includes a method for extracorporeal treatment of blood to remove a target substance. The method includes removing blood from a patient and passing the blood through a microfluidic channel which separates plasma from a host cytoplasmic body-rich fraction of the whole blood. The method further includes removing and discarding the cytoplasmic body-free fraction from the microfluidic channel. The method further includes returning fresh plasma or components thereof, such as albumin, to the microfluidic channel.
In any of the embodiments, the target molecules may be bound chemically to a molecule of a predefined size to form particles or molecules having a predefined aggregate size or having predefined chemical properties, such as a binding affinity, which aggregate may be discriminated by any of the filtering processes discussed above. The filter cascade may be designed to remove an aggregate particle (i.e., the target bound to the predefined particle or molecule) rather than the target molecule alone. According to embodiments, the disclosed subject matter may be applied to perform hemoperfusion through carbon, or reticular filter columns may be used; plasmapheresis or apheresis with plasma replacement; plasmapheresis with plasma perfusion through sorbents which bind to proteins, bilirubin and/or aromatic amino acids; standard hemodialysis, standard hemodialysis with an amino acid dialysate and plasma exchange; high permeability hemodialysis or dialysis with charcoal-impregnated or anion-exchange membranes.
Examples of target substances for removal include bacteria, viruses, toxins and biomolecules, and patient cells. For instance, small molecular toxins and protein-bound molecules or heavy molecules associated with liver disease may be removed. Other examples include protein-bound ammonia, phenols, mercaptans; fatty acids, aromatic amino-acids, salts. Also, larger molecules such as and bacterial particles and endotoxins. Examples of target bacteria include Y pestis, F. tularensis, B. anthracis, Streptococcus pneumoniae, K pneumonia, A. calccoaceticus-baumannii complex, S. aureus, P. aeruginosa, etc. Examples of target viruses include Hepatitis C, Influenza, smallpox, HIV, viral hemorrhagic fevers, etc. Target toxins and biomolecules include Aflatoxin, amatoxin, alpha toxin, botulinum toxin, endotoxin, ricin, Shiga toxin, tetanus toxin, cytokines, etc. Target patient cells include activated platelets, activated neutrophils, lymphocytes producing pro-inflammatory cytokines, etc.
Chemotherapy agents may also be targets for removal. For example, a secondary separation method may be to use a membrane dialyzer with adsorbent particles in the dialysate, which removes toxins exchanged across the membrane as described in U.S. Pat. No. 5,277,820. In such an embodiment, a stream of plasma is generated using a microfluidic separation device and subjected to a secondary treatment process, as described in U.S. Pat. No. 5,277,820. Any of the other processes for extracting target substances may be used to remove chemotherapeutic agents from the plasma. The entire content of U.S. Pat. No. 5,277,820 is hereby incorporated by reference into the present application.
Also included among embodiments described herein is a systemic oncology drug delivery system which increases the range and precision of control of drug delivery and drug elimination from the body of the patient. This may be used to provide, for example, a higher maximum tolerated dose (MTD) for certain agents. In embodiments, systems can include an infusion pump for drug administration, an extracorporeal blood purification circuit that concurrently and efficiently removes protein-bound toxins, and an adaptive control system to monitor and regulate delivery and removal.
In embodiments, blood is removed from a patient's body via a device or system implementing a closed-loop fluid path. Plasma is first separated from blood using a microfluidic separation module. The module can operate to generate an albumin-rich cell-free stream, which is then passed through a sorbent which separates the unwanted species from albumin. The purified plasma returns to the patient's blood through the microfluidic separation module or directly by infusion (as discussed for example with reference to
Using embodiments described herein, a patient at risk for sepsis can be connected to a portable device monitored by slow removal and testing of plasma fraction and rapidly treated by removal of bacterial particles. The embodiments can be combined in a system that also provides for the automated or operator controlled administration of therapeutic agents such as antibiotics.
Using the embodiments described herein, the efficacy of chemotherapy drugs may be modified by employing systems for apheresis or chemofiltration of plasma extracted by a microfluidic separation module. This may be employed as a treatment modality for chemotherapeutic agents, which are introduced at high levels and then removed. Area under the curve toxicity can be reduced while spiking the blood levels of one or more therapeutic agents over respective time intervals, thereby providing broader range of pharmacokinetic options to a treating physician. By reducing the drugs or their metabolites that are simply circulating in the blood and which have not bound to tumor cells, their toxic effects may be controlled. The patient's own natural elimination mechanisms can thus be augmented. In embodiments described herein, real time automatic adaptive control is described in combination with chemofiltration which may provide still more pharmacokinetic options for treatment.
A specific therapy employing a therapeutic agent, such as used in chemotherapy, may be provided according to the disclosed subject matter. Some therapeutic agents have toxic effects. In many cases, the dosages required for treatment are toxic. In the therapy embodiment, a therapeutic agent is introduced into the blood supply at a first time and removed later or simultaneously at a different point from that of infusion to augment the patient's own natural elimination mechanisms, if one exists, or to provide an elimination mechanism, if none exists or is impaired (for example, due to renal or hepatic insufficiency). This may reduce the burden on organs such as kidneys and liver and reduce the toxicity on healthy cells which are susceptible to being destroyed during and after chemotherapy treatment (e.g., bone marrow). Also agents such as imaging contrast agents or other diagnostic materials that are useful for a period of time but which burden the elimination capabilities of weakened patients can be spared from iatrogenic problems. Also blood levels of other drugs such as antibiotics may be “profiled” in a similar manner.
As described with reference to
The approximation is based on the assumption that the volume of blood and plasma in the microfluidic channel is approximately the same in each microfluidic channel.
In embodiments, a feedback loop controls the administration of a drug, for example, a chemotherapeutic agent or antibiotic. Embodiments of the disclosed methods can be applied to remove the drug or other unwanted component. The control may be configured to provide real time feedback control based on total load of the target substance in the body of a patient. The control variable may be obtained from a real time assay, for example as described in International Application No. PCT/U.S. 2010/031600 corresponding to International Publication No. WO 2010/123819, the entire content of which is hereby incorporated by reference. Alternatively, the control variable for feedback control may be a predictive model of the total amount of drug in the patient. The control system logic may be used to manage the infusion rate of the drug so as to maintain a desired profile of drug dose and/or toxin level. Control based purely on pharmacokinetic models may not be as personalized for a given patient and may not account for unique patient responses. Real-time feedback offers a much more precise way of managing dose and toxicity.
Embodiments may include detection and regulation of undesired blood components such as pathogen levels. These embodiments may also include detection and regulation of levels of therapeutic agents that change the levels of the unwanted substances and the regulation of the blood levels of the therapeutic agents themselves. Thus in all of the embodiments described herein, multiple types of detectors may be employed such as one indicating the presence of infection and another for indicating the blood levels of a treatment agent. The system may be configured to regulate the levels of both. The latter capability may be provided by the use of combinations of treatment components (secondary treatment devices that remove target substances from extracted plasma) which are selectively switched in and out of the plasma loop responsively to the detected levels of species in the blood or plasma.
Lines 129, 129A, and 129B represent return line configuration for respective alternative embodiments. The cleansed blood fraction can be returned to the patient at various points in the system including, directly to the microfluidic channel via line 129 as described, for example, in the '117 application. Alternatively, the cleansed blood fraction is returned by line 129A to the patient venous line 104. Another alternative embodiment returns the cleansed fraction via line 129B to the arterial line 110.
In an embodiment, the filter 108 is a dialyzer, in which case a supply of dialysate 150 is pumped through the dialyzer (filter 108) via a supply line 114 and pump 124, where it passes along a filter to exchange components with the cytoplasmic-body-free fraction of the blood, is recovered, and then discarded (149) via discharge line 112 and pump 138. Detectors 134 and 136 detect an amount of a target substance in the supply and discharge lines 114 and 112, allowing a controller XTL to determine an amount of a target substance being removed.
In any of the embodiments of
Examples of substances that may be infused and then recovered also include imaging contrast agents, diagnostic agents, and treatment drugs such as chemotherapeutic agents for cancer treatment.
In an embodiment, the infusion pump is used to infuse a patient with a therapeutic agent that has some known toxicity. The chemofiltration circuit may be primed and the patient access established and patency of the access maintained until a time governed by the controller XTL according to a stored treatment plan. The controller XTL may then stop the infusion and after a second interval, start the chemofiltration system at a rate responsive to the treatment plan. The treatment plan may provide for a specific time-varying concentration of drug in the patient by controlling both the infusion system 10 and chemofiltration system 100 thereby providing flexibility to a treating entity.
In an embodiment, the filter 208 has a membrane whose pores are large enough to pass albumin molecules and small enough to block larger particles that are the target particle or are bound thereto.
Detectors 134 and 136 detect an amount of a target substance in the supply and discharge lines 219 and 229, allowing a controller XTL to determine an amount of a target substance being removed. This may be done in near real time by a lab on a chip assay device, for example, or by some other type of sensor. The controller may use the rate of removal of the target to control the infusion pump 10 which infuses a drug or medicament into the venous line 104 and thereby into the patient 102. Examples of substances that may be infused and then recovered also include imaging contrast agents, diagnostic agents, and treatment drugs such as chemotherapeutic agents for cancer treatment.
In any of the embodiment, the infusion pump may be used to infuse a patient with a therapeutic agent as described above, under control of the controller and according to a treatment plan.
As in preceding embodiments, detectors 134 and 136 detect an amount of a target substance in the supply and discharge lines 319 and 339, allowing a controller XTL to determine an amount of a target substance being removed. This may be done in near real time by a lab on a chip assay device, for example, or by some other type of sensor. The controller may use the rate of removal of the target to control the infusion pump 10 which infuses a drug or medicament into the venous line 104 and thereby into the patient 102. Examples of substances that may be infused and then recovered also include imaging contrast agents, diagnostic agents, and treatment drugs such as chemotherapeutic agents for cancer treatment.
As in preceding embodiments, detectors 134 and 136 can detect an amount of a target substance in the supply and discharge lines 409 and 439, or in the arterial line 110 and the venous line 104, allowing a controller XTL to determine an amount of a target substance being removed. This may be done in near real time by a lab on a chip assay device, for example, or by some other type of sensor. The controller may use the rate of removal of the target to control the infusion pump 10 which infuses a drug or medicament into the venous line 104 and thereby into the patient 102. Examples of substances that may be infused and then recovered also include imaging contrast agents, diagnostic agents, and treatment drugs such as chemotherapeutic agents for cancer treatment.
System 500 is substantially similar to system 400 except for the differences noted hereinbelow. Referring to
Examples of drugs that may be used in treatments (either alone or in conjunction with other drugs) as described are (i) drugs such as cisplatin, cyclophosphamide, docetaxel, doxorubicin, etoposide, idarubicin, lomustine, melphalan, paclitaxel and pemetrexed, which are highly protein-bound and have long half-life; and (ii) drugs such as busulfan, capecitibine, carmustine, temozolomide, thiotepa, vincristine and valrubicin, which are also protein-bound and have short but toxic half-life. Systems such as described above may be adapted to quantify an amount of each of multiple drugs added to and removed from the patient in a rapid process.
Referring to
A combination of the above including intermittently interspersing removal and infusion of respective substances.
During step S108, blood and other patient conditions may be monitored for conditions indicating the use of a therapeutic agent such as an antibiotic. At step S110, the method determines whether a therapeutic agent is indicated and if so at step S112, the agent is infused. Step S114 monitors for the possible conditions and reverts or terminates the process accordingly.
In the method embodiment of
Embodiments of the method of
Note that while according to the embodiments of
Referring to
PCT publication WO2011/025986 for “Multi-Layered Blood Component Exchange Devices, Systems, and Methods,” which is incorporated herein by reference in its entirety, describes details that are applicable for fabrication of the microfluidic separation module embodiments described throughout the present application and is hereby incorporated by reference in its entirety herein. According to the description the size of the microfluidic separation device can be scaled by stacking multiple channels as described in the reference. The result can achieve large interface area in a compact configuration which lends itself to a portable device.
In addition to drugs, treatments may also employ the administration of affinity agents for removal of viruses and/or virus proteins from the blood such as described in U.S. Pat. No. 7,226,429. The '429 patent describes removing pathogens bound to lectins which are filtered from the blood or plasma. In variations of the described embodiments, plasma may be separated from whole blood, treated, and returned to the patient. Other treatments are also possible such as described in U.S. Pat. No. 6,620,382 for removing large molecules in the treatment of cancer and U.S. Publication No. 2008/0138434 for treatment of infection by reducing the levels of pro- or anti-inflammatory stimulators or mediators such as cytokines using adsorption from plasma. The entire content of each of the aforementioned documents is hereby incorporated by reference into the present application. The embodiments may also be used in treatment systems where the circulation of an organ or other region of the body is isolated from the rest of a patient's circulatory system and high levels of drug infused into the organ's blood system and removed from the isolated flow.
Although most of the embodiments described employed adsorbent, deionization, and membrane filtration as mechanisms for removing substances from plasma, other mechanisms may be employed with the disclosed subject matter. For example, removal, modification, or destruction mechanisms may include exposing the target substance to a suitable electrical and/or magnetic field to discriminate, alter, or destroy the target substance. Optionally, the latter may include “labeling” target substances with magnetic or electrically polarized substances. Catalysis and/or enzyme reactions may be employed to modify or remove target substances.
In any of the embodiments described above, the microfluidic separation module may be omitted and whole blood passed directly through the various secondary separation components. These alternative embodiments are clearly enabled in the present disclosure though clearly not all features and benefits are provided by such alternatives.
Although particular configurations have been discussed herein, other configurations can also be employed. It is, thus, apparent that there is provided, in accordance with the present disclosure, filtration methods, devices, and systems. Many alternatives, modifications, and variations are enabled by the present disclosure. Features of the disclosed embodiments can be combined, rearranged, omitted, etc., within the scope of the invention to produce additional embodiments. Furthermore, certain features may sometimes be used to advantage without a corresponding use of other features. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents, and variations that are within the spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
61325765 | Apr 2010 | US | national |
The present application claims the benefit of U.S. Provisional Application No. 61/325,765 filed Apr. 19, 2010, the entire content of which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/29854 | 3/24/2011 | WO | 00 | 12/26/2012 |