The present invention relates to a portable boring and welding machine.
In particular, the present invention relates to a portable boring and welding machine of the type normally used to recondition bores or seats for crankpins, cylinder liners, etc., directly on a machine or part of a machine without having to transport the part to be repaired to a workshop and without having to place the part on a fixed machine tool.
This need is felt especially strongly when repairing the rotating parts of large construction machines such as excavators and cranes or parts of fixed installations that are difficult to dismantle and transport.
A typical example of the use of a portable boring and welding machine is boring (or reaming) a bore to be reconditioned, then adding material by welding and finally finishing the bore by boring (or reaming) to restore the original dimensions and tolerances.
For this purpose, machines with three drive motors are known. The three drive motors are designed to rotate the welding tool used to add material to the inside of the bore, to rotate the boring tool and to drive the tool backwards and forwards along the axis of the bore being machined.
These triple-motor machines are extremely complex on account of the large number of components and, in an attempt to provide a simplified solution, machines with only two motors have been constructed.
Twin-motor machines, although they are much more simple, are not entirely satisfactory: transmission of rotational motion is accomplished by flexible transmission means, such as elastic belts, whose tension must be kept at a defined optimum level using special tensioning devices.
The drive belt must transmit rotational motion to the tool shaft not only during boring/reaming operations but also during the step of adding material by welding. Obviously, the power required for these operations differs considerably and may also vary significantly on account of the differences in diameter of the bores machined, leading to high resistant torque moments and the need for the drive belt to operate within a very wide tension range.
The above mentioned tensioning devices are therefore unable to guarantee the correct belt tension for all the different working conditions, which leads to poor machine performance.
Another drawback closely connected with the use of flexible means for transmitting rotational motion is due to the vibrations created during machining which are propagated from one machine part to another and which have a negative effect on the flexible transmission means.
The aim of the present invention is therefore to overcome the above mentioned disadvantages by providing a portable boring and welding machine that is functional, practical and simple in construction.
Accordingly, the invention provides a portable boring and welding machine comprising a tool shaft that mounts, at least alternately, means for boring and means for welding workpieces, the shaft extending along a defined axis and having drive means that rotate the shaft about the axis, the drive means comprising a motor that rotates about a different axis, wherein the drive means further comprise rigid means for transmitting rotational motion from the motor to the shaft.
The technical characteristics of the invention, with reference to the above aims, are clearly described in the claims below and its advantages are apparent from the detailed description which follows, with reference to the accompanying drawings which illustrate a preferred embodiment of the invention provided merely by way of example without restricting the scope of the inventive concept, and in which:
With reference to the accompanying drawings, the numeral 1 denotes in its entirety a portable boring and welding machine used to recondition crankpin bores or seats, cylinder liners, or, in general, the seats of bearings for rotating machine parts, hereinafter referred to as workpieces and labeled 2 in their entirety.
As illustrated in
The shaft 4 extends along a longitudinal axis A which also constitutes the axis of rotation of the shaft 4.
The rotational drive unit 6 of the tool shaft 4 is housed inside a casing 7 connected to a first, front end 3a of the mounting structure 3.
In the present specification, the term tool shaft is used to mean either the shaft that mounts a boring and/or reaming tool used for stock removal and surface finishing operations or the shaft that mounts the welding torch used for adding material to the workpiece. In other terms, the machine 1 may have either two different shafts, one used for boring and one for welding, or a single shaft on which different tools used to perform these operations can be mounted when required.
These tools and devices, which are not illustrated constitute means for boring and means for welding the workpieces 2 on the machine 1.
As shown in
The feed unit 5 comprises a second motor 10, also electrical, connected to a speed reducer 11 which is of customary type and therefore not described in detail. The speed reducer 11 has an output sprocket 12 that is dynamically connected through an elastic belt 13 to a pulley 14 which is keyed to a bush 14a that is screwed to an externally threaded tubular member 15.
With reference to
The tool shaft 4 is designed to mount boring means and welding means which are used alternately to machine the workpieces 2. The boring and welding means are of customary type and therefore not described in any detail in terms of their structure but solely in terms of the functions they perform.
With reference to
The rotational drive unit 6 further comprises a tubular cylindrical element 17 with a globoidal helical gearwheel 19 coaxially keyed to an outer cylindrical surface 18 of it.
The tubular cylindrical element 17 is rotatably supported by the casing 7 on two rolling contact bearings 20 attached to two surfaces 21, 22 that close the bottom of the casing 7. The two bearings 20 are positioned on opposite sides of the globoidal helical gearwheel 19 from which they are separated by two respective spacer rings 23.
The tool shaft 4 is mounted inside the tubular cylindrical element 17. On an internal cylindrical face 24 of the tubular element 17 there is a housing 25 for a key 26. The key 26 is designed to engage with a longitudinal keyway 27 made in the tool shaft 4 so as to synchronously transmit to the shaft 4 the rotational drive motion imparted on the globoidal helical gearwheel 19 while at the same time allowing the tool shaft 4 to slide relative to the cylindrical element 17 in a direction D parallel to the axis A in which the shaft 4 extends.
Advantageously, the key 26 is attached to the cylindrical element 17 by customary fixing means which are not illustrated.
As shown in
The worm 29 is designed to mesh with the globoidal helical gearwheel 19 to form a helical gearwheel and worm pair 30.
The key 26 constitutes a connecting member 31 between the tubular cylindrical element 17 and the tool shaft 4. The connecting member 31, the housing 25 and the longitudinal keyway 27 on the tool shaft 4 together constitute means 32 for engaging the tubular cylindrical element 17 to the tool shaft 4.
The rotating unit 6 constitutes means 33 for rotationally driving the tool shaft 4 about its axis A.
As shown in
In yet another embodiment, illustrated in
Advantageously, with reference to each of the embodiments described above, the first and second electric motors 8, 10 may be substituted by pneumatic or hydraulic motors without changing the basic operation of the machine 1.
As illustrated in
The aforementioned helical gearwheel and worm pair 30, bevel gearwheel pair 34 and cylindrical gearwheel pair 37 constitute rigid means 41 for transmitting motion from the motor 8 to the shaft 4.
During work, as illustrated in
The fixing elements 42, besides supporting the machine 1 enable the shaft axis A to be exactly aligned with the ideal axis of the workpiece 2, thus guaranteeing that machining operations will meet even the most stringent requirements.
The tool shaft 4, partially illustrated in
Once the aforementioned tools and devices (not illustrated) designed to perform the required reconditioning operations on the workpiece 2 have been correctly positioned relative to the workpiece 2 itself, in the direction D, the machine 1 can be started as soon as the jaws 43 have been moved apart to enable the tool shaft 4 to be rotated.
The central control unit 40 activates the drive motor 8 and the latter, through the helical gearwheel and worm pair 30, causes the tool shaft 4 to rotate about its axis A.
Preferably, the electric motor 8 is a direct current motor so that the speed of the tool shaft 4 can be precisely controlled according to the function to be performed, without having to use a geared motor.
The use of the rigid means 41, constituted by the gear pairs 30, 34 and 37, to transmit motion from the motor 8 to the tool shaft 4, advantageously overcomes the disadvantages connected with the transmission of motion using flexible means such as elastic belts or chains. Flexible transmission means cause vibrations during machine operation. Rigid transmission means reduce these vibrations and this, besides improving the performance and efficiency of the boring and welding machine, contributes significantly to increasing machine life and facilitates maintenance.
Rigid transmissions eliminate the need for the time-consuming and costly adjustments and repairs frequently required by the tensioning devices of flexible transmissions. Moreover, rigid transmissions are less subject to wear than flexible transmissions and therefore last longer.
In the present specification, a gearwheel described as being connectable or connected to the drive shaft of a motor means a gearwheel that receives motion from the motor, either directly, through a direct physical connection between the parts, or indirectly, through an interposed coupling, reduction gear, clutch or other transmission system of any kind.
It will be understood that the invention can be subject to modifications and variations without thereby departing from the scope of the inventive concept. Moreover, all the details of the invention may be substituted by technically equivalent elements.
Number | Date | Country | Kind |
---|---|---|---|
BO2002A0411 | Jun 2002 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
3774476 | Sohnlein et al. | Nov 1973 | A |
3803927 | Lawler | Apr 1974 | A |
4115025 | Petroff | Sep 1978 | A |
4406566 | Bauer | Sep 1983 | A |
4550235 | Fuwesi | Oct 1985 | A |
4580931 | Wilger et al. | Apr 1986 | A |
5350259 | Russo | Sep 1994 | A |
5983936 | Schwieterman et al. | Nov 1999 | A |
6073322 | Russo | Jun 2000 | A |
6295707 | Siracusa | Oct 2001 | B1 |
6350317 | Hao et al. | Feb 2002 | B1 |
6653589 | Dolton et al. | Nov 2003 | B1 |
Number | Date | Country |
---|---|---|
244 733 | Aug 1998 | IT |
Number | Date | Country | |
---|---|---|---|
20040000043 A1 | Jan 2004 | US |