The disclosure that follows relates to modular structural assemblies.
Modular building is a technique of construction of temporary or permanent structures, such as construction camps, schools, classrooms, community centers, disaster relief housing, civilian or military housing, and industrial facilities. It is also highly desirable in remote areas where conventional construction techniques may be unavailable or unfeasible due to lack of resources, construction crews, or difficult access.
There are many known disadvantages of traditional site-built structures, that may be addressed by a highly mobile and cost effective modular building technique. For example, site-built structures are typically constructed from concrete, metal and wood. Increased or prohibitive costs may be involved in transporting the building materials and construction workers to the build site. Use of concrete requires the materials to be mixed and poured at the job site by a concrete mixing truck. Concrete is also prone to cracking due to thermal stresses and seismic activity. Likewise wood building materials often need to be suitably stored at the construction site, and for larger beams, whether wood or metal, heavy duty transportation or handling may be required. In addition, wood structures can be susceptible to infestation by pests, such as termites and mice. Wood also can deteriorate due to environmental factors such as fungus or other rot. Furthermore, typical wood, metal and concrete structures cannot be readily disassembled and moved to a different location, leading to waste of building materials if the building becomes unneeded.
Accordingly, there is a need for an easily transportable and readily assembled pre-fabricated building structure and assembly technique. There is also a need for a building structure that can be disassembled and either re-used or recycled. Further, there is also a need for a building process that is flexible, fast and environmentally friendly.
The present disclosure, in its many embodiments, alleviates to a great extent the disadvantages of known buildings and construction techniques by providing modular building elements, that are readily transportable, and can be assembled into a desired modular structure. In embodiments of the invention, the modular structures are buildable using a small crew with little or no construction expertise or specialized equipment. In one embodiment the structure is assembled by two installers, using construction tape, ladders and optionally fasteners such as bolts or screws.
In an embodiment, the building elements of the modular structures are made from a fiberboard material system, such as formed from molded and/or compressed cellulosic based materials, and formed into generally sections. The sections can be sized to be loadable onto the back of a pickup truck and transportable to remote locations for assembly. In an opposed panel embodiment, the panels have approximately quarter circle cross sections, with a base aligned at ground and a joint end close to or contacting an opposing panel. The panels are affixed to one another at the contact seam using tape, and optionally a positioning block, or biscuit, that optionally also can receive a fastener. In this way, the connection ends of each panel are fastened at a joint such that the two panels form a section with a 180 degree arch.
The panels can be attached at a seam or joint through a variety of fasteners or even held together with no fastener. In the embodiment where no fastener is used, the panels remain connected by their opposing moment forces. In the embodiments with fasteners, adhesive tape or a biscuit can be used to secure the panels together at the joint. For adhesive tape, it is desirable that the length of the tape match the width of the panel to provide greater stabilization at the seam.
The sections may be connected to one another to provide an elongated, rectangular modular structure. There is no limit on how many sections can be stacked lengthwise. The interior of the panels have a corrugated or truss structure, providing longitudinally extending voids or a plenum. In one embodiment, electrical plumbing is threaded through the plenum. In another embodiment, lighting is attached to the electrical plumbing to provide lighting to the interior of the structure. In addition, the internal, longitudinally extending voids also optionally may be used for mechanical elements, such as conduits, wiring, ventilation ducts, water, plumbing or any other construction purpose that requires a plenum or conduit.
In another embodiment of the invention, a plurality of pie-shaped curved panels made from molded fiberboard are joined together at an assembly joint, and the sides of the panels are connected to one another in the shape of an igloo. The assembly joint is typically a compression ring, and is selected for its capability in absorbing horizontal force exerted on it. In one embodiment, the compression ring is hollow, allowing for a skylight to be placed over it. Optionally, objects may be attached to the panels, such as a solar panel with batteries. In other embodiments, windows and doors may be added to elongated structures and the igloo-type structures using resins, adhesives or mechanical fasteners.
Various configurations of the modular structures are possible. In one embodiment, an elongated structure is attached to a half-igloo structure. In another embodiment, two half-igloo structures are attached at opposite ends of an elongated structure. In still another embodiment, no igloo is attached to the modular structure.
A notable advantage of the present invention is its portability. Each panel can be lifted by a single person and placed onto the back of a pick-up truck. Another notable advantage is the ease of disassembly of the modular structure. The materials are completely recyclable and reusable, only requiring new adhesive tape to connect the recycled panels. In some cases, however, the tape may be reused.
Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.
The foregoing and other objects of the disclosure will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which:
In the following paragraphs, embodiments will be described in detail by way of example with reference to the accompanying drawings, which are not drawn to scale, and the illustrated components are not necessarily drawn proportionately to one another. Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than as limitations of the present disclosure. As used herein, the “present disclosure” or “present invention” refer to any one of the embodiments described herein, and any equivalents. Furthermore, reference to various aspects of the invention throughout this document does not mean that all claimed embodiments or methods must include the referenced aspects or features.
The modular structures of the present invention are formed by curved stressed-skin panels made from molded cellulose based materials. Examples of suitable molded and/or compressed cellulose based materials are discussed in commonly owned U.S. Pat. No. 8,297,027, entitled, “Engineered Molded Fiberboard Panels and Methods of Making and Using the Same” and U.S. Pat. No. 8,475,894, entitled, “Engineered Molded Fiberboard Panels, Methods of Making the Panels, and Product Fabricated From the Panels,” both of which are referred to and incorporated herein in their entireties.
The basic configurations for panels used in the present invention can be formed in accordance with methods established in prior art, such as embodied in U.S. Pat. Nos. 4,702,870; 4,753,713; 5,198,236; 5,277,854; 5,314,654, and PCT Application No. US98/08495, the entire disclosures of which are incorporated herein by reference.
A two-piece section 10 is illustrated in
The top ends 50 of the two single panels 20 form a joint or seam 30 at their point of contact. The panels 20 can be attached at seam 30 using a variety of methods. For example, the curved panels can be attached with no fastener. In this instance, the weight of the two single-panels 20 pressing against one another at their respective top ends 50 acts as a counterbalance to one another. As shown in
The moment of force applied to the beam is comprised of two force components—a lateral force and a vertical force. The lateral force from a single panel 20 meets an opposing, yet equal lateral force from a second panel at seam 30. These two lateral forces of the two opposing panels 20 cancel one another and hold together the panels at seam 30 without the use of any additional fastening device. The other force component, the vertical force, is not canceled. Instead, it combines with the vertical force of an opposing single panel. In cases where the combined vertical forces are large, bowing at seam 30 may occur.
Fasteners may be incorporated at seam 30 to connect the two single-panels 20 into section 10. In
For example, in an exemplary embodiment, single panel 20 is two feet in width. To match the width of the panel, two feet of adhesive tape 60 should be applied at seam 30. The panels can be wider than two feet, depending on the structural requirements of the modular assembly. However, the width of panel chosen should not negatively impact the transportable nature and ease of assembly of the panels. It is desirable that the panel have a width that the average person can grasp with two hands. It is also desirable that one person on a ladder be able to apply adhesive tape 60 at seam 30 to connect the panels 20.
In addition to adhesive tape, a mechanical fastener may be used to secure the panels 20 together at seam 30. In the exemplary embodiment illustrated in
Illustrated in
It should be noted that panel 20 may have a corrugated or truss internal structure, providing longitudinally extending voids 120 within the structure. It should be further noted that panel 20 may optionally have a honeycomb internal structure. In the illustrated embodiment shown in
In the illustrated example, single panel 20 is shown from a perspective view. Longitudinally extending void spaces between the outer and inner skin panels 100, 110 are indicated with reference number 120. It should be noted that any interior structure may be used, not just a corrugated structure as illustrated, and accordingly, any shaped void spaces may be created. In one embodiment it is desired that at least one of the void spaces 120 extends longitudinally for the entire length or a desired portion of the entire length of the panel 20. In an alternative embodiment, the corrugated internal structure and void space 120 may run crosswise through the width of the panel 20, as opposed to longitudinally over the length of the panel.
Optionally mechanical or electrical elements may be positioned within one or more of the void spaces 120. Examples of such mechanical or electrical elements may include ventilation ducts, wires, lighting, cables, plumbing or conduits. In the embodiment illustrated in
In other embodiments, the mechanical or electrical element may enter at end 230, but have an intermediate access or egress port that enables access into the interior of the panel 20 at a point intermediate of the respective ends. In an alternate embodiment, there are two or multiple intermediate access or egress ports. The ports may be positioned either on outer or inner sides of the panel 20, or on outer or inner sides of alternate structures as well. In an alternate embodiment, as illustrated in void 120 on far left side of
Many different modular structures are possible.
It is known in the art that compression posts or rings are useful in assemblies that may require occasional disassembly or partial removal for maintenance etc., since these joints can be broken and remade without affecting the integrity of the panels 21. Compression posts or rings are also desirable because they do not require soldering, so they are comparatively quick and easy to use. Further, they require no special tools or skills to operate and work at higher pressures.
Different styles of compression rings may be used in the present invention. In one embodiment, a solid compression ring or plug 310 may be used at the joint to align and assemble the panels into a modular structure, as shown in
It should be noted that a hollow ring 320 provides the additional advantage of an open roof in the modular structure to allow in natural light. Illustrated in
It should be appreciated that additional roof elements may be attached to the top side of the modular structure. For example, solar panels may be attached to the top side of the panels and wired through the void spaces in the Fiberboard Panels to bring electricity into the modular structure. This would be highly desirable when the modular structure is assembled in a remote location where electricity might not be available. If additional electrical power is desired or electrical storage is needed, solar panels with batteries may be attached to the top side of the modular structure and wired through the void spaces in the Fiberboard Panels.
It should be further appreciated that additions may be made to the sidewalls of the modular structure. For example, windows or doors may added. Other cosmetic features may also be added such as molding or a transom lights to beautify the structure.
A resin or adhesive binder may be used to attach the skylight, solar panels and windows to the panels. The resin or adhesive binder should be selected to provide desirable features such as water resistance and thermal resistance at the seal. Mechanical fasteners, such as bolts, may also be used to attach these desirable objects to the structure.
It should be appreciated that any shape of modular structure can be created with the present invention. A minimum of two panels creates a semi-circle arch 10. However, if a taller structure is desired, then four panels 20 may be used to construct the semi-circle arch 10 as illustrated in
Multiple iterations of sections can be combined to build more complex structures.
It should be appreciated that other footprints for the modular structures are possible by combining the shapes from the previously described figures. For example, in the embodiment shown in
A notable feature of the modular structure is its portability. Each panel can be lifted by two people, sometimes even by a single person, and placed onto the back of a pick-up truck. Multiple panels can fit in one truckload. After the truck has transported the panels to its desired location, each panel can be unloaded and assembled by two individuals, with the use of ladder and tape.
Another notable feature is the ease of disassembly of the modular structure. Simply remove the tape, unscrew the bolts, remove the sections of panels one at a time and load back onto the truck. The materials are completely recyclable and reusable to build a new modular structure. The only additional material needed would be new tape to connect the recycled panels.
Thus, it is seen that modular building structures made from fiberboard materials are provided. It should be understood that any of the foregoing configurations and specialized components or may be interchangeably used with any of the apparatus or systems of the preceding embodiments. Although illustrative embodiments are described hereinabove, it will be evident to one skilled in the art that various changes and modifications may be made therein without departing from the scope of the disclosure. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the disclosure.
This application claims priority to U.S. application No. 61/841,207, entitled, “Portable Building Structures”, and which was filed Jun. 28, 2013, the entirety of which is referred to and incorporated herein by this reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2372187 | Davison | Mar 1945 | A |
2460662 | Van Voorhis | Feb 1949 | A |
3300923 | Behlen | Jan 1967 | A |
3648420 | Nelson | Mar 1972 | A |
3763608 | Chamlee | Oct 1973 | A |
3894367 | Yacoboni | Jul 1975 | A |
3902288 | Knudson | Sep 1975 | A |
3999337 | Tomassetti et al. | Dec 1976 | A |
4023317 | Bettger et al. | May 1977 | A |
4068423 | Marsh | Jan 1978 | A |
4075795 | Thomas | Feb 1978 | A |
4133150 | Yacoboni | Jan 1979 | A |
4146997 | Diethorn | Apr 1979 | A |
4324074 | South et al. | Apr 1982 | A |
4400927 | Wolde-Tinase | Aug 1983 | A |
4488392 | Pearcey | Dec 1984 | A |
4655013 | Ritland | Apr 1987 | A |
4663898 | Yacaboni | May 1987 | A |
4698941 | Rieder et al. | Oct 1987 | A |
4702870 | Setterholm et al. | Oct 1987 | A |
4720947 | Yacaboni | Jan 1988 | A |
4753713 | Gunderson | Jun 1988 | A |
4784172 | Yacoboni | Nov 1988 | A |
4848046 | Wallhead | Jul 1989 | A |
5198236 | Gunderson et al. | Mar 1993 | A |
5277854 | Hunt | Jan 1994 | A |
5313763 | Oram | May 1994 | A |
5314654 | Gunderson et al. | May 1994 | A |
5706620 | De Zen | Jan 1998 | A |
5724775 | Zobel et al. | Mar 1998 | A |
5771649 | Zweig | Jun 1998 | A |
6324791 | Azpiroz Villar | Dec 2001 | B1 |
7152384 | McCarty | Dec 2006 | B1 |
7237363 | Wilson | Jul 2007 | B2 |
7882660 | Kitagawa | Feb 2011 | B2 |
8297027 | Noble et al. | Oct 2012 | B2 |
8307605 | McCarty | Nov 2012 | B2 |
8475894 | Noble et al. | Jul 2013 | B2 |
8720091 | Snyder | May 2014 | B1 |
20050210767 | DeFever et al. | Sep 2005 | A1 |
20080236057 | McCarty | Oct 2008 | A1 |
20120204496 | McSweeney | Aug 2012 | A1 |
20140283473 | Yoo | Sep 2014 | A1 |
20140345207 | Gliessman | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
864795 | May 1941 | FR |
2004-278150 | Oct 2004 | JP |
WO 9849403 | Nov 1998 | WO |
Entry |
---|
U.S. Appl. No. 60/045,145, filed Apr. 30, 1997, Noble et al. |
WO, PCT/US2014/031916 ISR and Written Opinion, dated Aug. 27, 2014. |
Number | Date | Country | |
---|---|---|---|
20150000216 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61841207 | Jun 2013 | US |