This application relates generally to liquid concentrators, and more specifically to compact, portable, inexpensive wastewater concentrators that can be easily connected to and use sources of waste heat.
Concentration of volatile substances can be an effective form of treatment or pretreatment for a broad variety of wastewater streams and may be carried out within various types of commercial processing systems. At high levels of concentration, many wastewater streams may be reduced to residual material in the form of slurries containing high levels of dissolved and suspended solids. Such concentrated residual may be readily solidified by conventional techniques for disposal within landfills or, as applicable, delivered to downstream processes for further treatment prior to final disposal. Concentrating wastewater can greatly reduce freight costs and required storage capacity and may be beneficial in downstream processes where materials are recovered from the wastewater.
An important measure of the effectiveness of a wastewater concentration process is the volume of residual produced in proportion to the volume of wastewater entering the process. In particular, low ratios of residual volume to feed volume (high levels of concentration) are the most desirable. Where the wastewater contains dissolved and/or suspended non-volatile matter, the volume reduction that may be achieved in a particular concentration process that relies on evaporation of volatiles is, to a great extent, limited by the method chosen to transfer heat to the process fluid.
Conventional processes that affect concentration by evaporation of water and other volatile substances may be classified as direct or indirect heat transfer systems depending upon the method employed to transfer heat to the liquid undergoing concentration (the process fluid). Indirect heat transfer devices generally include jacketed vessels that contain the process fluid, or plate, bayonet tube or coil type heat exchangers that are immersed within the process fluid. Mediums such as steam or hot oil are passed through the jackets or heat exchangers in order to transfer the heat required for evaporation. Direct heat transfer devices implement processes where the heating medium is brought into direct contact with the process fluid, which occurs in, for example, submerged combustion gas systems.
Conventional direct and indirect concentration systems are generally large and stationary. As a result, wastewater streams are generally transported to the conventional concentration systems, sometimes over great distances. The transportation costs of moving the wastewater to the concentrator can make the difference whether a certain project is economically feasible. For example, natural gas wells generate produced water that must be disposed of in some way. Transporting the produced water to a fixed base concentration system may limit the number of economically feasible natural gas well sites.
In addition to being difficult to move, conventional concentration systems suffer from other problems, such as scaling of heat transfer surfaces, fouling of internal components due to high levels of suspended solids in the wastewater streams.
A portable compact liquid concentrating device disclosed herein may be easily connected to a source of waste heat, such as a landfill gas flare or a combustion engine exhaust stack, and use this waste heat to perform a direct heat transfer concentration process without the need of large and expensive containment vessels and without a lot of expensive high temperature resistant materials. The compact liquid concentrator includes a gas inlet, a gas exit and a mixing or flow corridor connecting the gas inlet and the gas exit, wherein the flow corridor includes a narrowed portion that accelerates the gas through the flow corridor. A liquid inlet located between the gas inlet and the narrowed portion of the flow corridor, injects liquid into the gas stream at a point prior to the narrowed portion so that the gas-liquid mixture is thoroughly mixed within the flow corridor, causing a portion of the liquid to be evaporated or concentrated. A demister or fluid scrubber downstream of the narrowed portion, and connected to the gas exit, removes entrained liquid droplets from the gas stream and re-circulates the removed liquid to the liquid inlet through a re-circulating circuit. Fresh liquid to be concentrated is also introduced into the re-circulating circuit at a rate sufficient to offset the combined total of liquid evaporated in the flow corridor and any concentrated liquid that is withdrawn from the process. The portable compact liquid concentrating device may be mounted on a truck bed or skid for easy transportation to remote sites.
A method of preparing a portable wastewater concentrator for transportation to an operation site includes providing a wastewater concentrator having a flare assembly; an air pre-treatment assembly; a concentrator assembly including a quenching section, a venturi section, and an elbow section; a fluid scrubber; and an exhaust section having a stack and an induction fan; removing the quenching section and the venturi section from the elbow section and securing the quenching section, the venturi section, and the elbow to a truck bed, and removing the stack from the induction fan and securing the stack and the induction fan to the truck bed.
As illustrated in
If desired, the flare 130 may include an adapter section 138 including the primary combustion gas outlet 143 and a secondary combustion gas outlet 141 upstream of the primary combustion gas outlet 143. When the flare cap 130 is in the closed position, combustion gas is diverted through the secondary combustion gas outlet 141. The adapter section 138 may include a connector section 139 that connects the flare 130 (or exhaust stack) to the heat transfer section 117 using a 90 degree elbow or turn.
The heat transfer assembly 117 includes a transfer pipe 140, which connects to an inlet of the air pre-treatment assembly 119 to the flare 130 and, more particularly, to the adaptor section 138 of the flare 130. A support member 142, in the form of a vertical bar or pole, supports the heat transfer pipe 140 between the flare 130 and the air pre-treatment assembly 119 at a predetermined level or height above the ground. The heat transfer pipe 140 is connected to the connector section 139 or the adapter section 138 at the secondary combustion gas outlet 141, the transfer pipe forming a portion of a fluid passageway between the adapter section 138 and a secondary process, such as a fluid concentrating process.
The air pre-treatment assembly 119 includes a vertical piping section 150 and an ambient air valve 152 disposed at the top of the vertical piping section 150. The ambient air valve 152 (also referred to as a bleed valve) forms a fluid passageway between the heat transfer pipe 140 (or air pre-treatment assembly 119) and the atmosphere. The ambient air valve 152 operates to allow ambient air to flow into the interior of the air pre-treatment assembly 119 to mix with the hot gas coming from the flare 130. The ambient air valve 152 generally allows the gas from the flare 130 to be cooled before entering into the concentrator assembly 120.
The concentrator assembly 120 includes a lead-in section 156 having a reduced cross-section which mates the bottom of the piping section 150 to a quencher 159 of the concentrator assembly 120. The concentrator assembly 120 also includes a first fluid inlet 160, which injects new or untreated liquid to be concentrated, such as landfill leachate or produced water, into the interior of the quencher 159. While not shown in
The quencher 159 is connected to a liquid injection chamber which is connected to narrowed portion or venturi section 162 which has a narrowed cross section with respect to the quencher 159 and which has a venturi plate 163 disposed therein. The venturi plate 163 creates a narrow passage through the venturi section 162, which creates a large pressure drop between the entrance and the exit of the venturi section 162. This large pressure drop causes turbulent gas flow within the quencher 159 and the top or entrance of the venturi section 162, and causes a high rate of gas flow out of the venturi section 162, both of which lead to thorough mixing of the gas and liquid and thus evaporation of the liquid in the venturi section 162.
A re-circulating pipe 166 extends around opposite sides of the entrance of the venturi section 162 and operates to inject partially concentrated (i.e., re-circulated) liquid into the venturi section 162 to be further concentrated and/or to prevent the formation of dry particulate within the concentrator assembly 120 through multiple fluid entrances located on one or more sides of the flow corridor. A number of pipes, such as three pipes of, for example, ½ inch diameter, may extend from each of the opposites legs of the pipe 166 partially surrounding the venturi section 162, and through the walls and into the interior of the venturi section 162. Because the liquid being ejected into the concentrator 110 at this point is re-circulated liquid, and is thus either partially concentrated or being maintained at a particular equilibrium concentration and more prone to plug a spray nozzle than the less concentrated liquid injected at the inlet 160, this liquid may be directly injected without a sprayer so as to prevent clogging. However, if desired, a baffle in the form of a flat plate may be disposed in front of each of the openings of the ½ pipes to cause the liquid being injected at this point in the system to hit the baffle and disperse into the concentrator assembly 120 as smaller droplets. In any event, the configuration of this re-circulating system distributes or disperses the re-circulating liquid better within the gas stream flowing through the concentrator assembly 120.
The combined hot gas and liquid flows in a turbulent manner through the venturi section 162. As noted above, the venturi section 162, which has a moveable venturi plate 163 disposed across the width of the concentrator assembly 120, causes turbulent flow and complete mixture of the liquid and gas, causing rapid evaporation of the liquid within the gas. Because the mixing action caused by the venturi section 162 provides a high degree of evaporation, the gas cools substantially in the concentrator assembly 120, and exits the venturi section 162 into a flooded elbow 164 at high rates of speed. In fact, the temperature of the gas-liquid mixture at this point may be about 160 degrees Fahrenheit.
The bottom of the flooded elbow 164 has liquid disposed therein, and the gas-liquid mixture exiting the venturi section 162 at high rates of speed impinges on the liquid in the bottom of the flooded elbow 164 as the gas-liquid mixture is forced to turn 90 degrees to flow into the fluid scrubber 122. The interaction of the gas-liquid stream with the liquid within the flooded elbow 164 removes liquid droplets from the gas-liquid stream, and prevents suspended particles within the gas-liquid stream from hitting the bottom of flooded elbow 164 at high rates of speeds, thereby preventing erosion of the metal wall of the flooded elbow 164.
After leaving the flooded elbow 164, the gas-liquid stream in which evaporated liquid and some liquid and other particles still exist, flows through the fluid scrubber 122 which is, in this case, a cross-flow fluid scrubber. The fluid scrubber 122 includes various screens or filters which aid in removal of entrained liquids from the gas-liquid stream and removes other particles that might be present with the gas-liquid stream. In one particular example, the cross flow scrubber 122 may include an initial coarse impingement baffle 169 at the input thereof, which is designed to remove liquid droplets in the range of 50 to 100 microns in size or higher. Thereafter, two removable filters in the form of chevrons 170 are disposed across the fluid path through the fluid scrubber 122, and the chevrons 170 may be progressively sized or configured to remove liquid droplets of smaller and smaller sizes, such as 20-30 microns and less than 10 microns. Of course, more or fewer filters or chevrons could be used.
Liquid captured by the filters 169 and 170 gravity drains into a reservoir or sump 172 located at the bottom of the fluid scrubber 122. The sump 172, which may hold, for example 200 gallons of liquid or more, thereby collects concentrated fluid containing dissolved and suspended solids removed from the gas-liquid stream and operates as a reservoir for a source of re-circulating concentrated liquid back to the concentrator assembly 120 to be further treated and/or to prevent the formation of dry particulate within the concentrator assembly 120.
As illustrated in
Concentrated liquid also be removed from the bottom of the fluid scrubber 122 via the exit port 173 and may be further processed or disposed of in any suitable manner in a secondary re-circulating circuit. In particular, the concentrated liquid removed by the exit port 173 contains a certain amount of suspended solids, which preferably may be separated from the liquid portion of the concentrated liquid and removed from the system using a secondary re-circulating circuit. For example, concentrated liquid removed from the exit port 173 may be transported through a secondary concentrated wastewater circuit (not shown) to a solid/liquid separating device, such as a settling tank, a vibrating screen, a rotary vacuum filter, or a filter press. After the suspended solids and liquid portion of the concentrated wastewater are separated by the solid/liquid separating device, the liquid portion of the concentrated wastewater may be returned to the sump 172 for further processing in the first or primary re-circulating circuit connected to the concentrator.
The gas, which flows through and out of the fluid scrubber 122 with the liquid and suspended solids removed therefrom, exits out of piping or ductwork at the back of the fluid scrubber 122 (downstream of the chevrons 170) and flows through an induced draft fan 190 of the exhaust assembly 124, from where it is exhausted to the atmosphere in the form of the cooled hot inlet gas mixed with the evaporated water vapor. Of course, an induced draft fan motor 192 is connected to and operates the fan 190 to create negative pressure within the fluid scrubber 122 so as to ultimately draw gas from the flare 130 through the transfer pipe 140, the air pre-treatment assembly 119 and the concentrator assembly 120.
While the speed of the induced draft fan 190 can be varied by a device such as a variable frequency drive operated to create varying levels of negative pressure within the fluid scrubber 122 and thus can usually be operated within a range of gas flow capacity to assure complete gas flow from the flare 130, if the gas being produced by the flare 130 is not of sufficient quantity, the operation of the induced draft fan 190 cannot necessarily be adjusted to assure a proper pressure drop across the fluid scrubber 122 itself. That is, to operate efficiently and properly, the gas flowing through the fluid scrubber 122 must be at a sufficient (minimal) flow rate at the input of the fluid scrubber 122. Typically this requirement is controlled by keeping at least a preset minimal pressure drop across the fluid scrubber 122. However, if the flare 130 is not producing at least a minimal level of gas, increasing the speed of the induced draft fan 190 will not be able to create the required pressure drop across the fluid scrubber 122.
To compensate for this situation, the cross flow scrubber 122 may optionally include a gas re-circulating circuit which can be used to assure that enough gas is present at the input of the fluid scrubber 122 to enable the system to acquire the needed pressure drop across the fluid scrubber 122. In particular, the gas re-circulating circuit includes a gas return line or return duct 196 which connects the high pressure side of the exhaust assembly 124 (e.g., downstream of the induced draft fan 190) to the input of the fluid scrubber 122 (e.g., a gas input of the fluid scrubber 122) and a baffle or control mechanism 198 disposed in the return duct 196 which operates to open and close the return duct 196 to thereby fluidly connect the high pressure side of the exhaust assembly 124 to the input of the fluid scrubber 122. During operation, when the gas entering into the fluid scrubber 122 is not of sufficient quantity to obtain the minimal required pressure drop across the fluid scrubber 122, the baffle 198 (which may be, for example, a gas valve, a damper such as a louvered damper, etc.) is opened to direct gas from the high pressure side of the exhaust assembly 124 (i.e., gas that has traveled through the induced draft fan 190) back to the input of the fluid scrubber 122. This operation thereby provides a sufficient quantity of gas at the input of the fluid scrubber 122 to enable the operation of the induced draft fan 190 to acquire the minimal required pressure drop across the fluid scrubber 122. In some embodiments, the induced draft fan 190 may provide the necessary minimum gas flow rate and the gas re-circulating circuit may not be required.
The portable compact liquid concentrator 110 is also a very fast-acting concentrator. Because the portable compact liquid concentrator 110 is a direct contact type of concentrator, it is not subject to deposit buildup, clogging and fouling to the same extent as most other concentrators. Still further, the ability to control the flare cap 134 to open and close, depending on whether the concentrator 110 is being used or operated, allows the flare 130 to be used to burn gas without interruption when starting and stopping the concentrator 110. More particularly, the flare cap 134 can be quickly opened at any time to allow the flare 130 to simply burn gas as normal while the concentrator 110 is shut down. On the other hand, the flare cap 134 can be quickly closed when the concentrator 110 is started up, thereby diverting hot gasses created in the flare 130 to the concentrator 110, and allowing the concentrator 110 to operate without interrupting the operation of the flare 130. In either case, the concentrator 110 can be started and stopped based on the operation of the flare cap 134 without interrupting the operation of the flare 130.
Moreover, due to the compact configuration of the air pre-treatment assembly 119, the concentrator assembly 120 and the fluid scrubber 122, parts of the concentrator assembly 120, the fluid scrubber 122, the draft fan 190 and at least a lower portion of the exhaust section 124 can be permanently mounted on (connected to and supported by) a skid or plate 230, as illustrated in
Because most of the pumps, fluid lines, sensors and electronic equipment are disposed on or are connected to the fluid concentrator assembly 120, the fluid scrubber 122 or the draft fan assembly 190, set up of the portable compact liquid concentrator 110 at a particular site does not require much fluid piping or electrical work at the site. As a result, the portable compact liquid concentrator 110 is relatively easy to install and to set up at (and to disassemble and remove from) a particular site. Moreover, because a majority of the components of the portable compact liquid concentrator 110 are permanently mounted to the skid 230, the portable compact liquid concentrator 110 can be easily transported around on a truck or other delivery vehicle and can be easily dropped off and installed at particular location, such as next to a landfill flare.
As the gas-liquid mixture passes through the venturi portion 726 of the flow corridor 724, a portion of the liquid evaporates and is absorbed by the gas, thus consuming a large portion of heat energy within the waste heat as latent heat that exits the concentrator system 700 as water vapor within the exhaust gas.
In the embodiment shown in
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the methods and apparatus disclosed herein may be made without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2372846 | Frederick et al. | Apr 1945 | A |
2387818 | Wethly | Oct 1945 | A |
2468455 | Metziger | Apr 1949 | A |
2560226 | Joos et al. | Jul 1951 | A |
2619421 | Greenfield | Nov 1952 | A |
2651647 | Greenfield | Sep 1953 | A |
2658349 | Keller | Nov 1953 | A |
2658735 | Ybarrondo | Nov 1953 | A |
2721065 | Ingram | Oct 1955 | A |
2790506 | Vactor | Apr 1957 | A |
2867972 | Hokderreed et al. | Jan 1959 | A |
2879838 | Flynt et al. | Mar 1959 | A |
2890166 | Heinze | Jun 1959 | A |
2911421 | Greenfield | Nov 1959 | A |
2911423 | Greenfield | Nov 1959 | A |
2979408 | Greenfield | Apr 1961 | A |
2981250 | Steward | Apr 1961 | A |
3060921 | Luring et al. | Oct 1962 | A |
3076715 | Greenfield | Feb 1963 | A |
3203875 | Harris | Aug 1965 | A |
3211538 | Gross et al. | Oct 1965 | A |
3212235 | Markant | Oct 1965 | A |
3251398 | Greenfield | May 1966 | A |
3268443 | Cann | Aug 1966 | A |
3284064 | Kolm et al. | Nov 1966 | A |
3299651 | McGrath | Jan 1967 | A |
3304991 | Greenfield | Feb 1967 | A |
3306039 | Peterson | Feb 1967 | A |
3323575 | Greenfield | Jun 1967 | A |
3405918 | Calaceto et al. | Oct 1968 | A |
3432399 | Schutt | Mar 1969 | A |
3539549 | Greenfield | Nov 1970 | A |
3578892 | Wilkinson | May 1971 | A |
3601374 | Wheeler | Aug 1971 | A |
3638924 | Calaceto et al. | Feb 1972 | A |
3704570 | Gardenier | Dec 1972 | A |
3713786 | Umstead | Jan 1973 | A |
3716458 | Greenfield et al. | Feb 1973 | A |
3730673 | Straitz, III | May 1973 | A |
3743483 | Shah | Jul 1973 | A |
3754869 | Van Raden | Aug 1973 | A |
3756580 | Dunn | Sep 1973 | A |
3756893 | Smith | Sep 1973 | A |
3762893 | Larsen | Oct 1973 | A |
3782300 | White et al. | Jan 1974 | A |
3789902 | Shah et al. | Feb 1974 | A |
3826096 | Hrusch | Jul 1974 | A |
3838974 | Hemsath et al. | Oct 1974 | A |
3838975 | Tabak | Oct 1974 | A |
3840002 | Douglas et al. | Oct 1974 | A |
3855079 | Greenfield et al. | Dec 1974 | A |
3870585 | Kearns et al. | Mar 1975 | A |
3876490 | Tsuruta | Apr 1975 | A |
3880756 | Raineri et al. | Apr 1975 | A |
3898134 | Greenfield et al. | Aug 1975 | A |
3901643 | Reed et al. | Aug 1975 | A |
3915620 | Reed | Oct 1975 | A |
3917508 | Greenfield et al. | Nov 1975 | A |
3925148 | Erwin | Dec 1975 | A |
3944215 | Beck | Mar 1976 | A |
3945331 | Drake et al. | Mar 1976 | A |
3947215 | Peterson et al. | Mar 1976 | A |
3947327 | Greenfield et al. | Mar 1976 | A |
3950230 | Greenfield et al. | Apr 1976 | A |
3994671 | Straitz, III | Nov 1976 | A |
4001077 | Kemper | Jan 1977 | A |
4007094 | Greenfield et al. | Feb 1977 | A |
4012191 | Lisankie et al. | Mar 1977 | A |
4013516 | Greenfield et al. | Mar 1977 | A |
4026682 | Pausch | May 1977 | A |
4036576 | McCracken | Jul 1977 | A |
4070423 | Pierce | Jan 1978 | A |
4079585 | Helleur | Mar 1978 | A |
4080883 | Zink et al. | Mar 1978 | A |
4092908 | Straitz, III | Jun 1978 | A |
4118173 | Shakiba | Oct 1978 | A |
4119538 | Yamauchi et al. | Oct 1978 | A |
4140471 | Straitz, III et al. | Feb 1979 | A |
4154570 | Schwartz | May 1979 | A |
4157239 | Reed | Jun 1979 | A |
4181173 | Pringle | Jan 1980 | A |
4185685 | Giberson | Jan 1980 | A |
4198198 | Straitz, III | Apr 1980 | A |
4227897 | Reed | Oct 1980 | A |
4230536 | Sech | Oct 1980 | A |
4257746 | Wells | Mar 1981 | A |
4259185 | Mixon | Mar 1981 | A |
4264826 | Ullmann | Apr 1981 | A |
4270974 | Greenfield et al. | Jun 1981 | A |
4276115 | Greenfield et al. | Jun 1981 | A |
4285578 | Yamashita et al. | Aug 1981 | A |
4300924 | Coyle | Nov 1981 | A |
4306858 | Simon | Dec 1981 | A |
4336101 | Greenfield et al. | Jun 1982 | A |
4346660 | McGill | Aug 1982 | A |
RE31185 | Greenfield et al. | Mar 1983 | E |
4430046 | Cirrito | Feb 1984 | A |
4432914 | Schifftner | Feb 1984 | A |
4440098 | Adams | Apr 1984 | A |
4445464 | Gerstmann et al. | May 1984 | A |
4445842 | Syska | May 1984 | A |
4450901 | Janssen | May 1984 | A |
4485746 | Erlandsson | Dec 1984 | A |
4496314 | Clarke | Jan 1985 | A |
4518458 | Greenfield et al. | May 1985 | A |
4538982 | McGill et al. | Sep 1985 | A |
4583936 | Krieger | Apr 1986 | A |
4608120 | Greenfield et al. | Aug 1986 | A |
4613409 | Volland | Sep 1986 | A |
4648973 | Hultholm et al. | Mar 1987 | A |
4652233 | Hamazaki et al. | Mar 1987 | A |
4658736 | Walter | Apr 1987 | A |
4683062 | Krovak et al. | Jul 1987 | A |
4689156 | Zibrida | Aug 1987 | A |
4693304 | Volland | Sep 1987 | A |
4771708 | Douglass, Jr. | Sep 1988 | A |
4838184 | Young et al. | Jun 1989 | A |
4863644 | Harrington et al. | Sep 1989 | A |
4882009 | Santoleri et al. | Nov 1989 | A |
4890672 | Hall | Jan 1990 | A |
4909730 | Roussakis et al. | Mar 1990 | A |
4913065 | Hemsath | Apr 1990 | A |
4938899 | Oros et al. | Jul 1990 | A |
4952137 | Schwartz et al. | Aug 1990 | A |
4961703 | Morgan | Oct 1990 | A |
5009511 | Sarko et al. | Apr 1991 | A |
5028298 | Baba et al. | Jul 1991 | A |
5030428 | Dorr et al. | Jul 1991 | A |
5032230 | Shepherd | Jul 1991 | A |
5068092 | Aschauer | Nov 1991 | A |
5076895 | Greenfield et al. | Dec 1991 | A |
5132090 | Volland | Jul 1992 | A |
5154898 | Ajinkya et al. | Oct 1992 | A |
5176798 | Rodden | Jan 1993 | A |
5183563 | Rodden | Feb 1993 | A |
5227017 | Tanaka et al. | Jul 1993 | A |
5230167 | Lahoda et al. | Jul 1993 | A |
5238580 | Singhvi | Aug 1993 | A |
5279356 | Bruhn | Jan 1994 | A |
5279646 | Schwab | Jan 1994 | A |
5336284 | Schifftner | Aug 1994 | A |
5342482 | Duesel, Jr. | Aug 1994 | A |
D350838 | Johnson | Sep 1994 | S |
5347958 | Gordon, Jr. | Sep 1994 | A |
5423979 | Allen | Jun 1995 | A |
5460511 | Grahn | Oct 1995 | A |
5484471 | Schwab | Jan 1996 | A |
5512085 | Schwab | Apr 1996 | A |
5527984 | Stultz et al. | Jun 1996 | A |
5585005 | Smith et al. | Dec 1996 | A |
5630913 | Tajer-Ardebili | May 1997 | A |
5632864 | Enneper | May 1997 | A |
5636623 | Panz et al. | Jun 1997 | A |
5648048 | Kuroda et al. | Jul 1997 | A |
5656155 | Norcross et al. | Aug 1997 | A |
5662802 | Heins et al. | Sep 1997 | A |
5695614 | Hording et al. | Dec 1997 | A |
5695643 | Brandt et al. | Dec 1997 | A |
5735680 | Henkelmann | Apr 1998 | A |
5749719 | Rajewski | May 1998 | A |
5759233 | Schwab | Jun 1998 | A |
5810578 | Hystad et al. | Sep 1998 | A |
5865618 | Hiebert | Feb 1999 | A |
5879563 | Garbutt | Mar 1999 | A |
5925223 | Simpson et al. | Jul 1999 | A |
5934207 | Echols et al. | Aug 1999 | A |
5951743 | Hsieh et al. | Sep 1999 | A |
5958110 | Harris et al. | Sep 1999 | A |
5968320 | Sprague | Oct 1999 | A |
5968352 | Ditzler | Oct 1999 | A |
6007055 | Schifftner | Dec 1999 | A |
6119458 | Harris et al. | Sep 2000 | A |
6149137 | Johnson et al. | Nov 2000 | A |
6250916 | Philippe et al. | Jun 2001 | B1 |
6276872 | Schmitt | Aug 2001 | B1 |
6293277 | Panz et al. | Sep 2001 | B1 |
6332949 | Beckhaus et al. | Dec 2001 | B1 |
6345495 | Cummings | Feb 2002 | B1 |
6383260 | Schwab | May 2002 | B1 |
6391100 | Hogan | May 2002 | B1 |
6391149 | Calfee et al. | May 2002 | B1 |
6402816 | Trivett et al. | Jun 2002 | B1 |
6435860 | Brookshire et al. | Aug 2002 | B1 |
6468389 | Harris et al. | Oct 2002 | B1 |
6485548 | Hogan | Nov 2002 | B1 |
6500216 | Takayasu | Dec 2002 | B1 |
6616733 | Pellegrin | Sep 2003 | B1 |
6632083 | Bussman et al. | Oct 2003 | B1 |
6719829 | Schwab | Apr 2004 | B1 |
6733636 | Heins | May 2004 | B1 |
6742337 | Hays et al. | Jun 2004 | B1 |
6752920 | Harris et al. | Jun 2004 | B2 |
6913671 | Bolton et al. | Jul 2005 | B2 |
6919000 | Klausner et al. | Jul 2005 | B2 |
6926757 | Kalliokoski et al. | Aug 2005 | B2 |
6936140 | Paxton et al. | Aug 2005 | B2 |
7037434 | Myers et al. | May 2006 | B2 |
7069991 | Gudmestad et al. | Jul 2006 | B2 |
7073337 | Mangin | Jul 2006 | B2 |
7074339 | Mims | Jul 2006 | B1 |
7077201 | Heins | Jul 2006 | B2 |
7111673 | Hugill | Sep 2006 | B2 |
7142298 | Nuspliger | Nov 2006 | B2 |
7144555 | Squires et al. | Dec 2006 | B1 |
7150320 | Heins | Dec 2006 | B2 |
7156985 | Frisch | Jan 2007 | B1 |
7166188 | Kedem et al. | Jan 2007 | B2 |
7214290 | Duesel, Jr. et al. | May 2007 | B2 |
7225620 | Klausner et al. | Jun 2007 | B2 |
7288186 | Harris | Oct 2007 | B2 |
7332010 | Steiner | Feb 2008 | B2 |
7402247 | Sutton | Jul 2008 | B2 |
7416172 | Duesel, Jr. et al. | Aug 2008 | B2 |
7416177 | Suzuki et al. | Aug 2008 | B2 |
7424999 | Xu et al. | Sep 2008 | B2 |
7428926 | Heins | Sep 2008 | B2 |
7438129 | Heins | Oct 2008 | B2 |
7442035 | Duesel, Jr. et al. | Oct 2008 | B2 |
7459135 | Pieterse et al. | Dec 2008 | B2 |
7572626 | Frisch et al. | Aug 2009 | B2 |
7591309 | Minnich et al. | Sep 2009 | B2 |
7614367 | Frick | Nov 2009 | B1 |
7661662 | Forstmanis | Feb 2010 | B2 |
7681643 | Heins | Mar 2010 | B2 |
7717174 | Heins | May 2010 | B2 |
7758819 | Nagelhout | Jul 2010 | B2 |
7832714 | Duesel, Jr. et al. | Nov 2010 | B2 |
7955419 | Casella | Jun 2011 | B2 |
8066844 | Duesel, Jr. et al. | Nov 2011 | B2 |
8066845 | Duesel, Jr. et al. | Nov 2011 | B2 |
8114287 | Harris | Feb 2012 | B2 |
8136797 | Duesel, Jr. et al. | Mar 2012 | B2 |
8679291 | Duesel et al. | Mar 2014 | B2 |
20010013666 | Nomura et al. | Aug 2001 | A1 |
20020069838 | Rautenbach et al. | Jun 2002 | A1 |
20030104778 | Liu | Jun 2003 | A1 |
20030127226 | Heins | Jul 2003 | A1 |
20040000515 | Harris et al. | Jan 2004 | A1 |
20040031424 | Pope | Feb 2004 | A1 |
20040040671 | Duesel et al. | Mar 2004 | A1 |
20040045681 | Bolton et al. | Mar 2004 | A1 |
20040045682 | Liprie | Mar 2004 | A1 |
20040079491 | Harris et al. | Apr 2004 | A1 |
20050022989 | Heins | Feb 2005 | A1 |
20050074712 | Brookshire et al. | Apr 2005 | A1 |
20050230238 | Klausner et al. | Oct 2005 | A1 |
20050242036 | Harris | Nov 2005 | A1 |
20050279500 | Heins | Dec 2005 | A1 |
20060000355 | Ogura et al. | Jan 2006 | A1 |
20060032630 | Heins | Feb 2006 | A1 |
20070051513 | Heins | Mar 2007 | A1 |
20070084808 | Williamson et al. | Apr 2007 | A1 |
20070114683 | Duesel et al. | May 2007 | A1 |
20070175189 | Gomiciaga-Pereda et al. | Aug 2007 | A1 |
20070251650 | Duesel et al. | Nov 2007 | A1 |
20080110417 | Smith | May 2008 | A1 |
20080115361 | Santini et al. | May 2008 | A1 |
20080173176 | Duesel et al. | Jul 2008 | A1 |
20080173590 | Duesel et al. | Jul 2008 | A1 |
20080174033 | Duesel et al. | Jul 2008 | A1 |
20080213137 | Frisch et al. | Sep 2008 | A1 |
20080265446 | Duesel et al. | Oct 2008 | A1 |
20080272506 | Duesel et al. | Nov 2008 | A1 |
20080277262 | Harris | Nov 2008 | A1 |
20090078416 | Heins | Mar 2009 | A1 |
20090127091 | Heins | May 2009 | A1 |
20090294074 | Forstmanis | Dec 2009 | A1 |
20100095763 | Harris | Apr 2010 | A1 |
20100126931 | Capeau et al. | May 2010 | A1 |
20100139871 | Rasmussen et al. | Jun 2010 | A1 |
20100176042 | Duesel, Jr. et al. | Jul 2010 | A1 |
20100224364 | Heins | Sep 2010 | A1 |
20100236724 | Duesel, Jr. et al. | Sep 2010 | A1 |
20110005999 | Randal | Jan 2011 | A1 |
20110061816 | Duesel, Jr. et al. | Mar 2011 | A1 |
20110083556 | Duesel, Jr. et al. | Apr 2011 | A1 |
20110100924 | Duesel, Jr. et al. | May 2011 | A1 |
20110132815 | Angelilli et al. | Jun 2011 | A1 |
20110147195 | Shapiro et al. | Jun 2011 | A1 |
20110168646 | Tafoya | Jul 2011 | A1 |
20110180470 | Harris | Jul 2011 | A1 |
20110240540 | Harris | Oct 2011 | A1 |
20120012309 | Noles, Jr. | Jan 2012 | A1 |
20120205303 | Rosine et al. | Aug 2012 | A1 |
20120211441 | Harris | Aug 2012 | A1 |
20120273367 | Themy et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
757-2004 | May 2007 | CL |
556 455 | Aug 1932 | DE |
1 173 429 | Jul 1964 | DE |
0 047 044 | Mar 1982 | EP |
2 441 817 | Jun 1980 | FR |
383570 | Nov 1932 | GB |
463770 | Apr 1937 | GB |
60257801 | Dec 1985 | JP |
62121687 | Jun 1987 | JP |
2003021471 | Jan 2003 | JP |
WO-9610544 | Apr 1996 | WO |
WO-2004022487 | Mar 2004 | WO |
WO-2005110608 | Nov 2005 | WO |
WO-2008112793 | Sep 2008 | WO |
WO-2009071763 | Jun 2009 | WO |
WO-2010092265 | Aug 2010 | WO |
WO-2011042693 | Apr 2011 | WO |
WO-2011050317 | Apr 2011 | WO |
WO-2012100074 | Jul 2012 | WO |
Entry |
---|
Jones, “Liquid Circulation in a Draft-Tube Bubble Column,” Chemical Engineering Science, 40(3):449-462 (1985). |
Talbert et al., “The Elecrospouted Bed,” IEEE Transactions on Industry Applications, vol. 1 A-20, No. 5, pp. 1220-1223 (1984). |
Fox et al., “Control Mechanisms of Flulidized Solids Circulation Between Adjacent Vessels,” AIChE Journal, 35(12):1933-1941 (1989). |
Smith, “Sludge-U-Like, As the Ban on Sea Disposal of Sewage Waste Looms, Technologies That Can Deliver Cleaner, Thicker and More Farmer-Friendly Sludges Are Gaining Popularity,” Water Bulletin, 708 (1996). |
Durkee et al., “Field Tests of Salt Recovery System for Spent Pickle Brine,” Journal of Food Service, 38:507-511 (1973). |
English-language translation of Hage, H., “The MeMon Experiment: A Step towards Large-Scale Processing of Manure,” Applied Science, 4 (1988). |
St. Onge et al., “Start-Up, Testing, and Performance of the First Bulb-Type Hydroelectric Project in the U.S.A.,” IEEE Transactions on Power Apparatus Systems, PAS-101(6):1313-1321 (1982). |
German Kurz, “Immersion Heater,” OI U. Gasfeuerung, 18(3):171-180 (1973). English-language abstract only. |
Hattori et al., “Fluid and Solids Flow Affecting the Solids Circulation Rate in Spouted Beds with a Draft Tube,” Journal of Chemical Engineering of Japan, 37(9):1085-1091 (2004). |
Yeh et al., “Double-Pass Heat or Mass Transfer Through a Parallel-Plate Channel with Recycle,” International Journal of Hat and Mass Transfer, 43:487-491 (2000). |
International Preliminary Report on Patentability for Application No. PCT/US2008/056702, dated Sep. 15, 2009. |
International Search Report and Written Opinion for Application No. PCT/US08/56702, dated Jun. 10, 2008. |
International Search Report and Written Opinion for Application No. PCT/US2010/024143, dated Oct. 12, 2010. |
Mueller et al., “Rotating Disk Looks Promising for Plant Wastes,” (2007). |
Claflin, “Intraparticle Conduction Effects on the Temperature Profiles in Spouted Beds,” Chemeca 85, paper D9b, The Thirteenth Australasian Conference on Chemical Engineering, Perth, Australia, pp. 471-475 (1985). |
Dunn, “Incineration's Role in Ultimate Disposal of Process Wastes,” Chemical Engineering, Deskbook Issue, pp. 141-150 (1975). |
Fan et al., “Some Remarks on Hydrodynamic Behavior of a Draft Tube Gas-Liquid-Solid Fluidized Bed,” AIChE Symposium Series, No. 234(80):91-97 (1985). |
Etzensperger et al., “Phenol Degradation in a Three-Phase Biofilm Fluidized Sand Bed Reactor,” Bioprocess Engineering, 4:175-181 (1989). |
Yoshino et al., “Removal and Recovery of Phosphate and Ammonium as Struvite from Supernatant in Anaerobic Digestion,” Water Science and Technology, 48(1):171-178 (2003). |
Hocevar et al., “The Influence of Draft-Tube Pressure Pulsations on the Cavitation-Vortex Dynamics in a Francis Turbine,” Journal of Mechanical Engineering, 49:484-498 (2003). |
Padial et al., “Three-Dimensional Simulation of a Three-Phase Draft-Tube Bubble Column,” Chemical Engineering Science, 55:3261-3273 (2000). |
Swaminathan et al., “Some Aerodynamic Aspects of Spouted Beds of Grains,” Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada, pp. 197-204 (2007). |
Williams et al., “Aspects of Submerged Combustion As a Heat Exchange Method,” Trans IChemE, 71(A):308-309 (1993). |
Sathyanarayana et al., Circular C.W. Intake System—A Research Opinion, Seventh Technical Conference of the British Pump Manufacturer's Association, paper 21, pp. 293-313, 1981. |
Schone, “Oil Removal from Exhaust Steam and Condensate of Piston-Powered Steam Engines,” Braunkohle, 31:82-92 (1932). English-language abstract only. |
Shaw LFG Specialties, LLC, 2006 Product Catalog. |
Cross et al., “Leachate Evaporation by Using Landfill Gas,” Proceedings Sardinia 97, Sixth Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, pp. 413-422 (1997). |
Genck, “Guidelines for Crystallizer Selection and Operation,” CEP, pp. 26-32 (2004). www.cepmagazine.org. |
Written Opinion for Application No. PCT/US2010/024143, dated Oct. 12, 2010. |
Shimizu et al., “Filtration Characteristics of Hollow Fiber Microfiltration Membranes Used in Membrane Bioreactor for Domestic Wastewater Treatment,” Wat. Res., 30(10):2385-2392 (1996). |
Miyake et al., “Performance Characteristics of High Speed-Type Cross Flow Turbine,” 83-0047:2575-2583 (1993). |
Ye et al., “Removal and Distribution of Iron, Manganese, Cobalt, and Nickel Within a Pennsylvania Constructed Wetland Treating Coal Combustion By-Product Leachate,” J. Environ. Qual., 30:1464-1473 (2001). |
English language translation of an office action from Chilean Patent Application No. 237-2007. |
International Preliminary Report on Patentability for Application No. PCT/US2007/001487, dated Jul. 21, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2007/001632, dated Jul. 21, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2007/001633, dated Jul. 21, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2007/001634, dated Jul. 21, 2009. |
International Search Report for Application No. PCT/US2006/028515, dated Nov. 14, 2006. |
Office action from Chilean Patent Application No. 238-2007. |
International Search Report and Written Opinion for Application PCT/US2011/021811, dated Mar. 21, 2011. |
MikroPul, “Wet Scrubbers,” (2009). www.mikropul.com. |
“Gas Atomized Venturi Scrubbers,” Bionomic Industries, copyright 2008, printed from www.bionomicind.com <http://www.bionomicind.com> on May 25, 2011. |
“Waste Heat Recovery Systems,” Bionomic Industries, copyright 2008, printed from www.bionomicind.com <http://www.bionomicind.com> on May 25, 2011. |
International Search Report and Written Opinion for Application No. PCT/US10/043647, dated Apr. 27, 2011. |
International Search Report and Written Opinion for Application No. PCT/US10/043648, dated Apr. 27, 2011. |
EVRAS—Evaporative Reduction and Solidification Systems; Brochure for Web. Believed to be publically available as early as Mar. 5, 2010. |
Hill et al., “Produced Water and Process heat Combined Provide Opportunities for Shell CO2”; EVARAS; Facilities 2000: Facilities Engineering in the Next Millennium. |
Layne Evaporative Reduction and Solidification System Brochure (2010). |
Intevras Technologies, LLC—Innovative solutions for water purification, remediation and process improvement; Power Point Presentation, Oct. 2009. |
Office Action issued for U.S. Appl. No. 12/705,462, dated Nov. 6, 2012. |
Office Action issued for U.S. Appl. No. 12/846,257, dated Nov. 16, 2012. |
International Preliminary Report on Patentability and Written Opinion issued for International Patent application No. PCT/US2011/021811, dated Aug. 14, 2012. |
International Search Report for Application No. PCT/US2012/021897, dated Oct. 8, 2012. |
Written Opinion for Application No. PCT/US2012/021897, dated Sep. 28, 2012. |
English translation of Chinese First Office Action for Application No. 201080012067.7, dated Oct. 12, 2012. |
English translation of Chinese Search Report for Application No. 201080012067.7, dated Sep. 12, 2012. |
U.S. Office Action for U.S. Appl. No. 12/530,484, dated Apr. 16, 2013. |
U.S. Office Action for U.S. Appl. No. 12/846,337, dated Apr. 17, 2013. |
Rule 62 EPC Communication issued from the European Patent Office for Application No. 10741828.7, dated Jan. 31, 2013. |
Rule 62 EPC Communication issued from the European Patent Office for Application No. 10805027.9, dated Feb. 5, 2013. |
Rule 62 EPC Communication issued from the European Patent Office for Application No. 10805026.1, dated Feb. 27, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2010/043647, dated Feb. 9, 2012. |
International Preliminary Report on Patentability for Application No. PCT/US2010/043648, dated Feb. 9, 2012. |
Shaw LFG Specialties, LCC “Waste Heat Leachate Evaporator System” (2011). |
Mussatti, Daniel, Section 6, Particulate Matter Controls. Chapter 2 Wet Scrubbers for Particulate Matter. Innovative Strategies and Economics Group. United States Environmental protection Agency. Jul. 2002. |
Office Action for U.S. Appl. No. 12/530,484, dated Feb. 29, 2012. |
Office Action for U.S. Appl. No. 12/530,484, dated Oct. 17, 2012. |
Office Action for U.S. Appl. No. 12/530,484, dated Apr. 16, 2013. |
Office Action for U.S. Appl. No. 12/846,337, dated Apr. 17, 2013. |
Chinese Office Action for Application No. 201180014846.5, dated Jun. 18, 2013. |
Gaudlip et al; “Marcellus Shale Water Management Challenges in Pennsylvania,” SPE Shale Gas Production Conference, Fort Worth (2008). |
Search Report for Chinese Patent Application No. 201180014846.5, dated Jun. 8, 2013. |
Alabovskij et al., “Concentration of Boiler Washing Water in Submerged-Combustion Devices,” Promyshl. Energet, 4:38-39 (1975). English-language abstract only. |
Bachand et al., “Denitrification in Constructed Free-Water Surface Wetlands: II. Effects of Vegetation and Temperature,” Ecological Engineering, 14:17-32 (2000). |
Barrett et al., “The Industrial Potential and Economic Viability of Spouted Bed Processes,” Chemeca 85, paper D4c, The Thirteenth Australasian Conference on Chemical Engineering, Perth, Australia, pp. 401-405 (1985). |
Bennett et al., “Design of a Software Application for the Simulation and Control of Continuous and Batch Crystallizer Circuits,” Advances in Engineering Software, 33:365-374 (2002). |
Berg, “The Development of the Controlled Buoyancy System for Installation of Submerged Pipelines,” Journal AWWA, Water Technology/Quality, pp. 214-218 (1977). |
Brandt et al., “Treatment Process for Waste Water Disposal of the “Morcinek” Mine Using Coalbed Methane,” Conference on Coalbed Methane Utilization, Oct. 5-7, 1994. |
Cherednichenko et al., “Disposal of Saline Wastes From Petroleum Refineries, All-Union Scientific-Research and Planning-Design Institute of the Petroleum Refining and Petrochemical Industry,” Khimiya I Tekhnologiya Topliv I Masel, 9:37-39 (1974). Translated. |
Claflin et al., “The Use of Spouted Beds for the Heat Treatment of Grains,” Chemeca 81, The 9th Australasian Conference on Chemical Engineering, Christchurch, New Zealand, 4:65-72 (1981). |
Final Office Action for U.S. Appl. No. 11/625,002, dated May 26, 2010. |
Final Office Action for U.S. Appl. No. 11/625,022, dated Jan. 24, 2011. |
Final Office Action for U.S. Appl. No. 11/625,024, dated Dec. 8, 2010. |
Hill et al., “Produced Water and Process heat Combined Provide Opportunities for Shell CO2”; EVRAS; Facilities 2000: Facilities Engineering in the Next Millennium. |
International Preliminary Report on Patentability for Application No. PCT/US2006/015803, dated Nov. 13, 2007. |
International Preliminary Report on Patentability for Application No. PCT/US2006/028515, dated Jan. 22, 2008. |
International Preliminary Report on Patentability for Application No. PCT/US2012/021897, dated Aug. 1, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2012/021897, dated Jul. 23, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2006/015803, dated Oct. 30, 2007. |
LFG Specialties, LLC, Waste Heat Leachate Evaporator System, Jan. 14, 2011. |
Notice of Allowance for U.S. Appl. No. 11/625,159, dated Jul. 9, 2010. |
Office Action for U.S. Appl. No. 11/625,002, dated Jan. 6, 2010. |
Office Action for U.S. Appl. No. 11/625,022, dated Jun. 22, 2010. |
Office Action for U.S. Appl. No. 11/625,024, dated Jun. 18, 2010. |
Screen shots from video on LFG website taken Jan. 18, 2011 (http://www.shawgrp.com/markets/envservices/envsolidwaste/swlfg). |
Number | Date | Country | |
---|---|---|---|
20130087487 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
61545866 | Oct 2011 | US |