Portable compact wastewater concentrator

Information

  • Patent Grant
  • 9296624
  • Patent Number
    9,296,624
  • Date Filed
    Thursday, October 11, 2012
    12 years ago
  • Date Issued
    Tuesday, March 29, 2016
    8 years ago
Abstract
A compact and portable liquid concentrator includes a gas inlet, a gas exit and a flow corridor connecting the gas inlet and the gas exit, wherein the flow corridor includes a narrowed portion that accelerates the gas through the flow corridor. A liquid inlet injects liquid into the gas stream at a point prior to the narrowed portion so that the gas-liquid mixture is thoroughly mixed within the flow corridor, causing a portion of the liquid to be evaporated. A demister or fluid scrubber downstream of the narrowed portion removes entrained liquid droplets from the gas stream and re-circulates the removed liquid to the liquid inlet through a re-circulating circuit. The compact and portable liquid concentrator is mountable on a truck bed or skid for easy transportation to remote sites.
Description
FIELD OF THE DISCLOSURE

This application relates generally to liquid concentrators, and more specifically to compact, portable, inexpensive wastewater concentrators that can be easily connected to and use sources of waste heat.


BACKGROUND

Concentration of volatile substances can be an effective form of treatment or pretreatment for a broad variety of wastewater streams and may be carried out within various types of commercial processing systems. At high levels of concentration, many wastewater streams may be reduced to residual material in the form of slurries containing high levels of dissolved and suspended solids. Such concentrated residual may be readily solidified by conventional techniques for disposal within landfills or, as applicable, delivered to downstream processes for further treatment prior to final disposal. Concentrating wastewater can greatly reduce freight costs and required storage capacity and may be beneficial in downstream processes where materials are recovered from the wastewater.


An important measure of the effectiveness of a wastewater concentration process is the volume of residual produced in proportion to the volume of wastewater entering the process. In particular, low ratios of residual volume to feed volume (high levels of concentration) are the most desirable. Where the wastewater contains dissolved and/or suspended non-volatile matter, the volume reduction that may be achieved in a particular concentration process that relies on evaporation of volatiles is, to a great extent, limited by the method chosen to transfer heat to the process fluid.


Conventional processes that affect concentration by evaporation of water and other volatile substances may be classified as direct or indirect heat transfer systems depending upon the method employed to transfer heat to the liquid undergoing concentration (the process fluid). Indirect heat transfer devices generally include jacketed vessels that contain the process fluid, or plate, bayonet tube or coil type heat exchangers that are immersed within the process fluid. Mediums such as steam or hot oil are passed through the jackets or heat exchangers in order to transfer the heat required for evaporation. Direct heat transfer devices implement processes where the heating medium is brought into direct contact with the process fluid, which occurs in, for example, submerged combustion gas systems.


Conventional direct and indirect concentration systems are generally large and stationary. As a result, wastewater streams are generally transported to the conventional concentration systems, sometimes over great distances. The transportation costs of moving the wastewater to the concentrator can make the difference whether a certain project is economically feasible. For example, natural gas wells generate produced water that must be disposed of in some way. Transporting the produced water to a fixed base concentration system may limit the number of economically feasible natural gas well sites.


In addition to being difficult to move, conventional concentration systems suffer from other problems, such as scaling of heat transfer surfaces, fouling of internal components due to high levels of suspended solids in the wastewater streams.


SUMMARY

A portable compact liquid concentrating device disclosed herein may be easily connected to a source of waste heat, such as a landfill gas flare or a combustion engine exhaust stack, and use this waste heat to perform a direct heat transfer concentration process without the need of large and expensive containment vessels and without a lot of expensive high temperature resistant materials. The compact liquid concentrator includes a gas inlet, a gas exit and a mixing or flow corridor connecting the gas inlet and the gas exit, wherein the flow corridor includes a narrowed portion that accelerates the gas through the flow corridor. A liquid inlet located between the gas inlet and the narrowed portion of the flow corridor, injects liquid into the gas stream at a point prior to the narrowed portion so that the gas-liquid mixture is thoroughly mixed within the flow corridor, causing a portion of the liquid to be evaporated or concentrated. A demister or fluid scrubber downstream of the narrowed portion, and connected to the gas exit, removes entrained liquid droplets from the gas stream and re-circulates the removed liquid to the liquid inlet through a re-circulating circuit. Fresh liquid to be concentrated is also introduced into the re-circulating circuit at a rate sufficient to offset the combined total of liquid evaporated in the flow corridor and any concentrated liquid that is withdrawn from the process. The portable compact liquid concentrating device may be mounted on a truck bed or skid for easy transportation to remote sites.


A method of preparing a portable wastewater concentrator for transportation to an operation site includes providing a wastewater concentrator having a flare assembly; an air pre-treatment assembly; a concentrator assembly including a quenching section, a venturi section, and an elbow section; a fluid scrubber; and an exhaust section having a stack and an induction fan; removing the quenching section and the venturi section from the elbow section and securing the quenching section, the venturi section, and the elbow to a truck bed, and removing the stack from the induction fan and securing the stack and the induction fan to the truck bed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a portable compact liquid concentrator;



FIG. 2 is a side elevational cross-section of the liquid concentrating portion of the portable compact liquid concentrator of FIG. 1 mounted on a transport skid;



FIG. 3 is a top plan view of the liquid concentrating section of FIG. 2; and



FIG. 4 is a perspective view of a wastewater concentration system including a portable compact liquid concentrator mounted on a truck bed.





DETAILED DESCRIPTION


FIG. 1 illustrates one embodiment of a portable compact liquid concentrator 110, which is connected to a source of waste heat in the form of a landfill flare. Generally speaking, the compact liquid concentrator 110 of FIG. 1 operates to concentrate wastewater, such as landfill leachate or produced water from natural gas wells, using exhaust or waste heat created within a landfill flare (or a natural gas flare) which burns landfill gas (or natural gas) in a manner that meets the standards set by the U.S. Environmental Protection Agency (EPA). Typically, the gas exiting the flare is between 1000 and 1500 degrees Fahrenheit and may reach 1800 degrees Fahrenheit.


As illustrated in FIG. 1, the portable compact liquid concentrator 110 generally includes or is connected to a flare assembly 115, and includes a heat transfer assembly 117, an air pre-treatment assembly 119, a concentrator assembly 120, a fluid scrubber 122, and an exhaust section 124. The flare assembly 115 includes a flare 130, which burns landfill gas (or natural gas) therein according to any known principles, and a flare cap assembly 132. The flare cap assembly 132 includes a moveable cap 134 (e.g., a flare cap, an exhaust gas cap, etc.) which covers the top of the flare 130, or other type of stack (e.g., a combustion gas exhaust stack), to seal off the top of the flare 130 when the flare cap 134 is in the closed position, or to divert a portion of the flare gas in a partially closed position, and which allows gas produced within the flare 130 to escape to the atmosphere through an open end that forms a primary gas outlet 143, when the flare cap 134 is in an open or partially open position. The flare cap assembly 132 also includes a cap actuator 135, such as a motor (e.g., an electric motor, a hydraulic motor, a pneumatic motor, etc.) which moves the flare cap 134 between the fully open and the fully closed positions.


If desired, the flare 130 may include an adapter section 138 including the primary combustion gas outlet 143 and a secondary combustion gas outlet 141 upstream of the primary combustion gas outlet 143. When the flare cap 130 is in the closed position, combustion gas is diverted through the secondary combustion gas outlet 141. The adapter section 138 may include a connector section 139 that connects the flare 130 (or exhaust stack) to the heat transfer section 117 using a 90 degree elbow or turn.


The heat transfer assembly 117 includes a transfer pipe 140, which connects to an inlet of the air pre-treatment assembly 119 to the flare 130 and, more particularly, to the adaptor section 138 of the flare 130. A support member 142, in the form of a vertical bar or pole, supports the heat transfer pipe 140 between the flare 130 and the air pre-treatment assembly 119 at a predetermined level or height above the ground. The heat transfer pipe 140 is connected to the connector section 139 or the adapter section 138 at the secondary combustion gas outlet 141, the transfer pipe forming a portion of a fluid passageway between the adapter section 138 and a secondary process, such as a fluid concentrating process.


The air pre-treatment assembly 119 includes a vertical piping section 150 and an ambient air valve 152 disposed at the top of the vertical piping section 150. The ambient air valve 152 (also referred to as a bleed valve) forms a fluid passageway between the heat transfer pipe 140 (or air pre-treatment assembly 119) and the atmosphere. The ambient air valve 152 operates to allow ambient air to flow into the interior of the air pre-treatment assembly 119 to mix with the hot gas coming from the flare 130. The ambient air valve 152 generally allows the gas from the flare 130 to be cooled before entering into the concentrator assembly 120.


The concentrator assembly 120 includes a lead-in section 156 having a reduced cross-section which mates the bottom of the piping section 150 to a quencher 159 of the concentrator assembly 120. The concentrator assembly 120 also includes a first fluid inlet 160, which injects new or untreated liquid to be concentrated, such as landfill leachate or produced water, into the interior of the quencher 159. While not shown in FIG. 1, the inlet 160 may include a coarse sprayer with a large nozzle for spraying the untreated liquid into the quencher 159. As will be understood, the quencher 159 operates to quickly reduce the temperature of the gas stream (e.g., from about 900 degrees Fahrenheit to less than 200 degrees Fahrenheit) while performing a high degree of evaporation on the liquid injected at the inlet 160. If desired, but not specifically shown in FIG. 1, a temperature sensor may be located at or near the exit of the piping section 150 or in the quencher 159 and may be used to control the position of the ambient air valve to thereby control the temperature of the gas present at the inlet of the concentrator assembly 120.


The quencher 159 is connected to a liquid injection chamber which is connected to narrowed portion or venturi section 162 which has a narrowed cross section with respect to the quencher 159 and which has a venturi plate 163 disposed therein. The venturi plate 163 creates a narrow passage through the venturi section 162, which creates a large pressure drop between the entrance and the exit of the venturi section 162. This large pressure drop causes turbulent gas flow within the quencher 159 and the top or entrance of the venturi section 162, and causes a high rate of gas flow out of the venturi section 162, both of which lead to thorough mixing of the gas and liquid and thus evaporation of the liquid in the venturi section 162.


A re-circulating pipe 166 extends around opposite sides of the entrance of the venturi section 162 and operates to inject partially concentrated (i.e., re-circulated) liquid into the venturi section 162 to be further concentrated and/or to prevent the formation of dry particulate within the concentrator assembly 120 through multiple fluid entrances located on one or more sides of the flow corridor. A number of pipes, such as three pipes of, for example, ½ inch diameter, may extend from each of the opposites legs of the pipe 166 partially surrounding the venturi section 162, and through the walls and into the interior of the venturi section 162. Because the liquid being ejected into the concentrator 110 at this point is re-circulated liquid, and is thus either partially concentrated or being maintained at a particular equilibrium concentration and more prone to plug a spray nozzle than the less concentrated liquid injected at the inlet 160, this liquid may be directly injected without a sprayer so as to prevent clogging. However, if desired, a baffle in the form of a flat plate may be disposed in front of each of the openings of the ½ pipes to cause the liquid being injected at this point in the system to hit the baffle and disperse into the concentrator assembly 120 as smaller droplets. In any event, the configuration of this re-circulating system distributes or disperses the re-circulating liquid better within the gas stream flowing through the concentrator assembly 120.


The combined hot gas and liquid flows in a turbulent manner through the venturi section 162. As noted above, the venturi section 162, which has a moveable venturi plate 163 disposed across the width of the concentrator assembly 120, causes turbulent flow and complete mixture of the liquid and gas, causing rapid evaporation of the liquid within the gas. Because the mixing action caused by the venturi section 162 provides a high degree of evaporation, the gas cools substantially in the concentrator assembly 120, and exits the venturi section 162 into a flooded elbow 164 at high rates of speed. In fact, the temperature of the gas-liquid mixture at this point may be about 160 degrees Fahrenheit.


The bottom of the flooded elbow 164 has liquid disposed therein, and the gas-liquid mixture exiting the venturi section 162 at high rates of speed impinges on the liquid in the bottom of the flooded elbow 164 as the gas-liquid mixture is forced to turn 90 degrees to flow into the fluid scrubber 122. The interaction of the gas-liquid stream with the liquid within the flooded elbow 164 removes liquid droplets from the gas-liquid stream, and prevents suspended particles within the gas-liquid stream from hitting the bottom of flooded elbow 164 at high rates of speeds, thereby preventing erosion of the metal wall of the flooded elbow 164.


After leaving the flooded elbow 164, the gas-liquid stream in which evaporated liquid and some liquid and other particles still exist, flows through the fluid scrubber 122 which is, in this case, a cross-flow fluid scrubber. The fluid scrubber 122 includes various screens or filters which aid in removal of entrained liquids from the gas-liquid stream and removes other particles that might be present with the gas-liquid stream. In one particular example, the cross flow scrubber 122 may include an initial coarse impingement baffle 169 at the input thereof, which is designed to remove liquid droplets in the range of 50 to 100 microns in size or higher. Thereafter, two removable filters in the form of chevrons 170 are disposed across the fluid path through the fluid scrubber 122, and the chevrons 170 may be progressively sized or configured to remove liquid droplets of smaller and smaller sizes, such as 20-30 microns and less than 10 microns. Of course, more or fewer filters or chevrons could be used.


Liquid captured by the filters 169 and 170 gravity drains into a reservoir or sump 172 located at the bottom of the fluid scrubber 122. The sump 172, which may hold, for example 200 gallons of liquid or more, thereby collects concentrated fluid containing dissolved and suspended solids removed from the gas-liquid stream and operates as a reservoir for a source of re-circulating concentrated liquid back to the concentrator assembly 120 to be further treated and/or to prevent the formation of dry particulate within the concentrator assembly 120.


As illustrated in FIG. 1, a return line 180, as well as a pump 182, operate to re-circulate fluid removed from the gas-liquid stream from the sump 172 back to the concentrator 120 and thereby complete a fluid or liquid re-circulating circuit. Likewise, a pump 184 may be provided within an input line 186 to pump new or untreated liquid, such as landfill leachate, to the input 160 of the concentrator assembly 120. Also, one or more sprayers may be disposed inside the fluid scrubber 122 adjacent the chevrons 170 and may be operated periodically to spray clean water or a portion of the wastewater feed on the chevrons 170 to keep them clean.


Concentrated liquid also be removed from the bottom of the fluid scrubber 122 via the exit port 173 and may be further processed or disposed of in any suitable manner in a secondary re-circulating circuit. In particular, the concentrated liquid removed by the exit port 173 contains a certain amount of suspended solids, which preferably may be separated from the liquid portion of the concentrated liquid and removed from the system using a secondary re-circulating circuit. For example, concentrated liquid removed from the exit port 173 may be transported through a secondary concentrated wastewater circuit (not shown) to a solid/liquid separating device, such as a settling tank, a vibrating screen, a rotary vacuum filter, or a filter press. After the suspended solids and liquid portion of the concentrated wastewater are separated by the solid/liquid separating device, the liquid portion of the concentrated wastewater may be returned to the sump 172 for further processing in the first or primary re-circulating circuit connected to the concentrator.


The gas, which flows through and out of the fluid scrubber 122 with the liquid and suspended solids removed therefrom, exits out of piping or ductwork at the back of the fluid scrubber 122 (downstream of the chevrons 170) and flows through an induced draft fan 190 of the exhaust assembly 124, from where it is exhausted to the atmosphere in the form of the cooled hot inlet gas mixed with the evaporated water vapor. Of course, an induced draft fan motor 192 is connected to and operates the fan 190 to create negative pressure within the fluid scrubber 122 so as to ultimately draw gas from the flare 130 through the transfer pipe 140, the air pre-treatment assembly 119 and the concentrator assembly 120.


While the speed of the induced draft fan 190 can be varied by a device such as a variable frequency drive operated to create varying levels of negative pressure within the fluid scrubber 122 and thus can usually be operated within a range of gas flow capacity to assure complete gas flow from the flare 130, if the gas being produced by the flare 130 is not of sufficient quantity, the operation of the induced draft fan 190 cannot necessarily be adjusted to assure a proper pressure drop across the fluid scrubber 122 itself. That is, to operate efficiently and properly, the gas flowing through the fluid scrubber 122 must be at a sufficient (minimal) flow rate at the input of the fluid scrubber 122. Typically this requirement is controlled by keeping at least a preset minimal pressure drop across the fluid scrubber 122. However, if the flare 130 is not producing at least a minimal level of gas, increasing the speed of the induced draft fan 190 will not be able to create the required pressure drop across the fluid scrubber 122.


To compensate for this situation, the cross flow scrubber 122 may optionally include a gas re-circulating circuit which can be used to assure that enough gas is present at the input of the fluid scrubber 122 to enable the system to acquire the needed pressure drop across the fluid scrubber 122. In particular, the gas re-circulating circuit includes a gas return line or return duct 196 which connects the high pressure side of the exhaust assembly 124 (e.g., downstream of the induced draft fan 190) to the input of the fluid scrubber 122 (e.g., a gas input of the fluid scrubber 122) and a baffle or control mechanism 198 disposed in the return duct 196 which operates to open and close the return duct 196 to thereby fluidly connect the high pressure side of the exhaust assembly 124 to the input of the fluid scrubber 122. During operation, when the gas entering into the fluid scrubber 122 is not of sufficient quantity to obtain the minimal required pressure drop across the fluid scrubber 122, the baffle 198 (which may be, for example, a gas valve, a damper such as a louvered damper, etc.) is opened to direct gas from the high pressure side of the exhaust assembly 124 (i.e., gas that has traveled through the induced draft fan 190) back to the input of the fluid scrubber 122. This operation thereby provides a sufficient quantity of gas at the input of the fluid scrubber 122 to enable the operation of the induced draft fan 190 to acquire the minimal required pressure drop across the fluid scrubber 122. In some embodiments, the induced draft fan 190 may provide the necessary minimum gas flow rate and the gas re-circulating circuit may not be required.


The portable compact liquid concentrator 110 is also a very fast-acting concentrator. Because the portable compact liquid concentrator 110 is a direct contact type of concentrator, it is not subject to deposit buildup, clogging and fouling to the same extent as most other concentrators. Still further, the ability to control the flare cap 134 to open and close, depending on whether the concentrator 110 is being used or operated, allows the flare 130 to be used to burn gas without interruption when starting and stopping the concentrator 110. More particularly, the flare cap 134 can be quickly opened at any time to allow the flare 130 to simply burn gas as normal while the concentrator 110 is shut down. On the other hand, the flare cap 134 can be quickly closed when the concentrator 110 is started up, thereby diverting hot gasses created in the flare 130 to the concentrator 110, and allowing the concentrator 110 to operate without interrupting the operation of the flare 130. In either case, the concentrator 110 can be started and stopped based on the operation of the flare cap 134 without interrupting the operation of the flare 130.


Moreover, due to the compact configuration of the air pre-treatment assembly 119, the concentrator assembly 120 and the fluid scrubber 122, parts of the concentrator assembly 120, the fluid scrubber 122, the draft fan 190 and at least a lower portion of the exhaust section 124 can be permanently mounted on (connected to and supported by) a skid or plate 230, as illustrated in FIG. 1. The upper parts of the concentrator assembly 120, the air pre-treatment assembly 119 and the heat transfer pipe 140, as well as a top portion of the exhaust stack, may be removed and stored on the skid or plate 230 for transport, or may be transported in a separate truck. Because of the manner in which the lower portions of the concentrator 110 can be mounted to a skid or plate, the concentrator 110 is easy to move and install. In particular, during set up of the concentrator 110, the skid 230, with the fluid scrubber 122, the flooded elbow 164 and the draft fan 190 mounted thereon, may be offloaded at the site at which the concentrator 110 is to be used by simply offloading the skid 230 onto the ground or other containment area at which the concentrator 110 is to be assembled. Thereafter, the venturi section 162, the quencher 159, and the air pre-treatment assembly 119 may be placed on top of and attached to the flooded elbow 164. The piping section 150 may then be extended in height to match the height of the flare 130 to which the concentrator 110 is to be connected. In some cases, this may first require mounting the flare cap assembly 132 onto a pre-existing flare 130. Thereafter, the heat transfer pipe 140 may be raised to the proper height and attached between the flare 130 and the air pre-treatment assembly 119, while the support member 142 is disposed in place.


Because most of the pumps, fluid lines, sensors and electronic equipment are disposed on or are connected to the fluid concentrator assembly 120, the fluid scrubber 122 or the draft fan assembly 190, set up of the portable compact liquid concentrator 110 at a particular site does not require much fluid piping or electrical work at the site. As a result, the portable compact liquid concentrator 110 is relatively easy to install and to set up at (and to disassemble and remove from) a particular site. Moreover, because a majority of the components of the portable compact liquid concentrator 110 are permanently mounted to the skid 230, the portable compact liquid concentrator 110 can be easily transported around on a truck or other delivery vehicle and can be easily dropped off and installed at particular location, such as next to a landfill flare.



FIGS. 2 and 3 illustrate one embodiment of a portable compact liquid concentrator 700 mounted on a truck bed or skid 230. In one embodiment, some of the components of the portable compact liquid concentrator 700 may remain on the skid 230 and be used to perform concentration activities, while others of these components may be removed and installed near a source of waste heat. The portable compact liquid concentrator 700 has a gas inlet 720 and a gas exit 722. A flow corridor 724 connects the gas inlet 720 to the gas exit 722. The flow corridor 724 has a narrowed or venturi portion 726 that accelerates the gas through the flow corridor 724. Gas is drawn into a quencher section 759 by an induction fan 750. A liquid inlet 730 injects a liquid into the gas stream in the quencher section 759. Gas is directed from the venturi section 726 into the demister (or crossflow scrubber) 734 by an elbow section 733. After exiting the demister 734, the gas is directed to the gas exit 722 through a stack 723. Of course, as described above, some of these components may be removed from the bed and installed in close proximity to a source of waste heat while others of these components (such as the demister 734, the stack 723 and the gas exit 722) may remain on the skid 230.


As the gas-liquid mixture passes through the venturi portion 726 of the flow corridor 724, a portion of the liquid evaporates and is absorbed by the gas, thus consuming a large portion of heat energy within the waste heat as latent heat that exits the concentrator system 700 as water vapor within the exhaust gas.


In the embodiment shown in FIGS. 2 and 3, portions of the portable compact liquid concentrator 700 may be disassembled and mounted on a skid 230 for transportation. For example, the quenching section 759 and the venturi section 726 may be removed from the elbow section 733, as illustrated by the dashed line in FIG. 2 Likewise, the stack 723 may be removed from the induction fan 750 as illustrated by the dashed line in FIG. 2. The elbow section 733, demister 734, and induction fan 750 may be secured on a pallet or trailer skid 799 as a unit. The stack 723 may be secured separately to skid 230. The quenching section 759 and venturi section 726 may also be secured to the pallet or trailer skid 230, or alternatively transported separately. The compartmentalized construction of the liquid concentrator 700 simplifies transportation of the liquid concentrator 700.



FIG. 4 illustrates a wastewater concentration system 1000 including one embodiment of the portable compact liquid concentrator 1110 mounted on a first truck bed 1112 and a second truck bed 1112′. In this embodiment, the flare assembly 1115, the air pre-treatment assembly 1119, the concentrator assembly 1120, the fluid scrubber 1122, and the exhaust section 1124 are all mounted on the first truck bed 1112. An exhaust stack 1125 and a pre-treatment and/or water recovery section 1127 are mounted on the second truck bed 1112′. Because the portable compact liquid concentrator 1110 is mounted on one or more truck beds 1112, 1112′, the portable compact liquid concentrator 1110 is easily transported to remote operating sites, such as natural gas well pads and landfills. The wastewater concentration system 1000 may also include residual material bins 1131 for disposal of residual solid or slurry material collected from the portable compact liquid concentrator 1110 and one or more frac tanks 1133 that hold reclaimed water from the pre-treatment and water recovery section 1127. The reclaimed water may be used as frac water for new natural gas wells.


While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the methods and apparatus disclosed herein may be made without departing from the scope of the invention.

Claims
  • 1. A wastewater concentrator system comprising: a portable compact wastewater concentrator including a flare assembly, an air pre-treatment assembly, a concentrator assembly, the concentrator assembly having a quenching section, a venturi section, and an elbow section, a fluid scrubber, and an exhaust section, the exhaust section having a gas exit, an induction fan, and a stack;a pre-treatment and water recovery section;a first truck bed, anda second truck bed,wherein the flare assembly, the air pre-treatment assembly, the concentrator assembly, the fluid scrubber and the exhaust section are mounted on the first truck bed for efficient transportation of the wastewater concentrator system to remote operating locations, the quenching section and the venturi section being removed from the elbow section and the stack being removed from the gas exit, the stack being secured to the first truck bed alongside the fluid scrubber, and the pre-treatment and water recovery section are mounted on the second truck bed.
  • 2. The wastewater concentrator system of claim 1, wherein the first truck bed and the second truck bed are positioned adjacent one another and the compact wastewater concentrator is fluidly connected with the pre-treatment and water recovery section.
  • 3. The wastewater concentrator system of claim 1, wherein the first and second truck beds are located adjacent to a natural gas well pad.
  • 4. The wastewater concentrator system of claim 1, further comprising a residual material bin for storing concentrated slurry.
  • 5. The wastewater concentrator system of claim 1, further comprising a frac tank for storing reclaimed liquid for further use in a fracking operation.
  • 6. The wastewater concentrator system of claim 1, wherein the flooded elbow, a demister, and an induction fan are secured to the first truck bed as a unit.
US Referenced Citations (286)
Number Name Date Kind
2372846 Frederick et al. Apr 1945 A
2387818 Wethly Oct 1945 A
2468455 Metziger Apr 1949 A
2560226 Joos et al. Jul 1951 A
2619421 Greenfield Nov 1952 A
2651647 Greenfield Sep 1953 A
2658349 Keller Nov 1953 A
2658735 Ybarrondo Nov 1953 A
2721065 Ingram Oct 1955 A
2790506 Vactor Apr 1957 A
2867972 Hokderreed et al. Jan 1959 A
2879838 Flynt et al. Mar 1959 A
2890166 Heinze Jun 1959 A
2911421 Greenfield Nov 1959 A
2911423 Greenfield Nov 1959 A
2979408 Greenfield Apr 1961 A
2981250 Steward Apr 1961 A
3060921 Luring et al. Oct 1962 A
3076715 Greenfield Feb 1963 A
3203875 Harris Aug 1965 A
3211538 Gross et al. Oct 1965 A
3212235 Markant Oct 1965 A
3251398 Greenfield May 1966 A
3268443 Cann Aug 1966 A
3284064 Kolm et al. Nov 1966 A
3299651 McGrath Jan 1967 A
3304991 Greenfield Feb 1967 A
3306039 Peterson Feb 1967 A
3323575 Greenfield Jun 1967 A
3405918 Calaceto et al. Oct 1968 A
3432399 Schutt Mar 1969 A
3539549 Greenfield Nov 1970 A
3578892 Wilkinson May 1971 A
3601374 Wheeler Aug 1971 A
3638924 Calaceto et al. Feb 1972 A
3704570 Gardenier Dec 1972 A
3713786 Umstead Jan 1973 A
3716458 Greenfield et al. Feb 1973 A
3730673 Straitz, III May 1973 A
3743483 Shah Jul 1973 A
3754869 Van Raden Aug 1973 A
3756580 Dunn Sep 1973 A
3756893 Smith Sep 1973 A
3762893 Larsen Oct 1973 A
3782300 White et al. Jan 1974 A
3789902 Shah et al. Feb 1974 A
3826096 Hrusch Jul 1974 A
3838974 Hemsath et al. Oct 1974 A
3838975 Tabak Oct 1974 A
3840002 Douglas et al. Oct 1974 A
3855079 Greenfield et al. Dec 1974 A
3870585 Kearns et al. Mar 1975 A
3876490 Tsuruta Apr 1975 A
3880756 Raineri et al. Apr 1975 A
3898134 Greenfield et al. Aug 1975 A
3901643 Reed et al. Aug 1975 A
3915620 Reed Oct 1975 A
3917508 Greenfield et al. Nov 1975 A
3925148 Erwin Dec 1975 A
3944215 Beck Mar 1976 A
3945331 Drake et al. Mar 1976 A
3947215 Peterson et al. Mar 1976 A
3947327 Greenfield et al. Mar 1976 A
3950230 Greenfield et al. Apr 1976 A
3994671 Straitz, III Nov 1976 A
4001077 Kemper Jan 1977 A
4007094 Greenfield et al. Feb 1977 A
4012191 Lisankie et al. Mar 1977 A
4013516 Greenfield et al. Mar 1977 A
4026682 Pausch May 1977 A
4036576 McCracken Jul 1977 A
4070423 Pierce Jan 1978 A
4079585 Helleur Mar 1978 A
4080883 Zink et al. Mar 1978 A
4092908 Straitz, III Jun 1978 A
4118173 Shakiba Oct 1978 A
4119538 Yamauchi et al. Oct 1978 A
4140471 Straitz, III et al. Feb 1979 A
4154570 Schwartz May 1979 A
4157239 Reed Jun 1979 A
4181173 Pringle Jan 1980 A
4185685 Giberson Jan 1980 A
4198198 Straitz, III Apr 1980 A
4227897 Reed Oct 1980 A
4230536 Sech Oct 1980 A
4257746 Wells Mar 1981 A
4259185 Mixon Mar 1981 A
4264826 Ullmann Apr 1981 A
4270974 Greenfield et al. Jun 1981 A
4276115 Greenfield et al. Jun 1981 A
4285578 Yamashita et al. Aug 1981 A
4300924 Coyle Nov 1981 A
4306858 Simon Dec 1981 A
4336101 Greenfield et al. Jun 1982 A
4346660 McGill Aug 1982 A
RE31185 Greenfield et al. Mar 1983 E
4430046 Cirrito Feb 1984 A
4432914 Schifftner Feb 1984 A
4440098 Adams Apr 1984 A
4445464 Gerstmann et al. May 1984 A
4445842 Syska May 1984 A
4450901 Janssen May 1984 A
4485746 Erlandsson Dec 1984 A
4496314 Clarke Jan 1985 A
4518458 Greenfield et al. May 1985 A
4538982 McGill et al. Sep 1985 A
4583936 Krieger Apr 1986 A
4608120 Greenfield et al. Aug 1986 A
4613409 Volland Sep 1986 A
4648973 Hultholm et al. Mar 1987 A
4652233 Hamazaki et al. Mar 1987 A
4658736 Walter Apr 1987 A
4683062 Krovak et al. Jul 1987 A
4689156 Zibrida Aug 1987 A
4693304 Volland Sep 1987 A
4771708 Douglass, Jr. Sep 1988 A
4838184 Young et al. Jun 1989 A
4863644 Harrington et al. Sep 1989 A
4882009 Santoleri et al. Nov 1989 A
4890672 Hall Jan 1990 A
4909730 Roussakis et al. Mar 1990 A
4913065 Hemsath Apr 1990 A
4938899 Oros et al. Jul 1990 A
4952137 Schwartz et al. Aug 1990 A
4961703 Morgan Oct 1990 A
5009511 Sarko et al. Apr 1991 A
5028298 Baba et al. Jul 1991 A
5030428 Dorr et al. Jul 1991 A
5032230 Shepherd Jul 1991 A
5068092 Aschauer Nov 1991 A
5076895 Greenfield et al. Dec 1991 A
5132090 Volland Jul 1992 A
5154898 Ajinkya et al. Oct 1992 A
5176798 Rodden Jan 1993 A
5183563 Rodden Feb 1993 A
5227017 Tanaka et al. Jul 1993 A
5230167 Lahoda et al. Jul 1993 A
5238580 Singhvi Aug 1993 A
5279356 Bruhn Jan 1994 A
5279646 Schwab Jan 1994 A
5336284 Schifftner Aug 1994 A
5342482 Duesel, Jr. Aug 1994 A
D350838 Johnson Sep 1994 S
5347958 Gordon, Jr. Sep 1994 A
5423979 Allen Jun 1995 A
5460511 Grahn Oct 1995 A
5484471 Schwab Jan 1996 A
5512085 Schwab Apr 1996 A
5527984 Stultz et al. Jun 1996 A
5585005 Smith et al. Dec 1996 A
5630913 Tajer-Ardebili May 1997 A
5632864 Enneper May 1997 A
5636623 Panz et al. Jun 1997 A
5648048 Kuroda et al. Jul 1997 A
5656155 Norcross et al. Aug 1997 A
5662802 Heins et al. Sep 1997 A
5695614 Hording et al. Dec 1997 A
5695643 Brandt et al. Dec 1997 A
5735680 Henkelmann Apr 1998 A
5749719 Rajewski May 1998 A
5759233 Schwab Jun 1998 A
5810578 Hystad et al. Sep 1998 A
5865618 Hiebert Feb 1999 A
5879563 Garbutt Mar 1999 A
5925223 Simpson et al. Jul 1999 A
5934207 Echols et al. Aug 1999 A
5951743 Hsieh et al. Sep 1999 A
5958110 Harris et al. Sep 1999 A
5968320 Sprague Oct 1999 A
5968352 Ditzler Oct 1999 A
6007055 Schifftner Dec 1999 A
6119458 Harris et al. Sep 2000 A
6149137 Johnson et al. Nov 2000 A
6250916 Philippe et al. Jun 2001 B1
6276872 Schmitt Aug 2001 B1
6293277 Panz et al. Sep 2001 B1
6332949 Beckhaus et al. Dec 2001 B1
6345495 Cummings Feb 2002 B1
6383260 Schwab May 2002 B1
6391100 Hogan May 2002 B1
6391149 Calfee et al. May 2002 B1
6402816 Trivett et al. Jun 2002 B1
6435860 Brookshire et al. Aug 2002 B1
6468389 Harris et al. Oct 2002 B1
6485548 Hogan Nov 2002 B1
6500216 Takayasu Dec 2002 B1
6616733 Pellegrin Sep 2003 B1
6632083 Bussman et al. Oct 2003 B1
6719829 Schwab Apr 2004 B1
6733636 Heins May 2004 B1
6742337 Hays et al. Jun 2004 B1
6752920 Harris et al. Jun 2004 B2
6913671 Bolton et al. Jul 2005 B2
6919000 Klausner et al. Jul 2005 B2
6926757 Kalliokoski et al. Aug 2005 B2
6936140 Paxton et al. Aug 2005 B2
7037434 Myers et al. May 2006 B2
7069991 Gudmestad et al. Jul 2006 B2
7073337 Mangin Jul 2006 B2
7074339 Mims Jul 2006 B1
7077201 Heins Jul 2006 B2
7111673 Hugill Sep 2006 B2
7142298 Nuspliger Nov 2006 B2
7144555 Squires et al. Dec 2006 B1
7150320 Heins Dec 2006 B2
7156985 Frisch Jan 2007 B1
7166188 Kedem et al. Jan 2007 B2
7214290 Duesel, Jr. et al. May 2007 B2
7225620 Klausner et al. Jun 2007 B2
7288186 Harris Oct 2007 B2
7332010 Steiner Feb 2008 B2
7402247 Sutton Jul 2008 B2
7416172 Duesel, Jr. et al. Aug 2008 B2
7416177 Suzuki et al. Aug 2008 B2
7424999 Xu et al. Sep 2008 B2
7428926 Heins Sep 2008 B2
7438129 Heins Oct 2008 B2
7442035 Duesel, Jr. et al. Oct 2008 B2
7459135 Pieterse et al. Dec 2008 B2
7572626 Frisch et al. Aug 2009 B2
7591309 Minnich et al. Sep 2009 B2
7614367 Frick Nov 2009 B1
7661662 Forstmanis Feb 2010 B2
7681643 Heins Mar 2010 B2
7717174 Heins May 2010 B2
7758819 Nagelhout Jul 2010 B2
7832714 Duesel, Jr. et al. Nov 2010 B2
7955419 Casella Jun 2011 B2
8066844 Duesel, Jr. et al. Nov 2011 B2
8066845 Duesel, Jr. et al. Nov 2011 B2
8114287 Harris Feb 2012 B2
8136797 Duesel, Jr. et al. Mar 2012 B2
8679291 Duesel et al. Mar 2014 B2
20010013666 Nomura et al. Aug 2001 A1
20020069838 Rautenbach et al. Jun 2002 A1
20030104778 Liu Jun 2003 A1
20030127226 Heins Jul 2003 A1
20040000515 Harris et al. Jan 2004 A1
20040031424 Pope Feb 2004 A1
20040040671 Duesel et al. Mar 2004 A1
20040045681 Bolton et al. Mar 2004 A1
20040045682 Liprie Mar 2004 A1
20040079491 Harris et al. Apr 2004 A1
20050022989 Heins Feb 2005 A1
20050074712 Brookshire et al. Apr 2005 A1
20050230238 Klausner et al. Oct 2005 A1
20050242036 Harris Nov 2005 A1
20050279500 Heins Dec 2005 A1
20060000355 Ogura et al. Jan 2006 A1
20060032630 Heins Feb 2006 A1
20070051513 Heins Mar 2007 A1
20070084808 Williamson et al. Apr 2007 A1
20070114683 Duesel et al. May 2007 A1
20070175189 Gomiciaga-Pereda et al. Aug 2007 A1
20070251650 Duesel et al. Nov 2007 A1
20080110417 Smith May 2008 A1
20080115361 Santini et al. May 2008 A1
20080173176 Duesel et al. Jul 2008 A1
20080173590 Duesel et al. Jul 2008 A1
20080174033 Duesel et al. Jul 2008 A1
20080213137 Frisch et al. Sep 2008 A1
20080265446 Duesel et al. Oct 2008 A1
20080272506 Duesel et al. Nov 2008 A1
20080277262 Harris Nov 2008 A1
20090078416 Heins Mar 2009 A1
20090127091 Heins May 2009 A1
20090294074 Forstmanis Dec 2009 A1
20100095763 Harris Apr 2010 A1
20100126931 Capeau et al. May 2010 A1
20100139871 Rasmussen et al. Jun 2010 A1
20100176042 Duesel, Jr. et al. Jul 2010 A1
20100224364 Heins Sep 2010 A1
20100236724 Duesel, Jr. et al. Sep 2010 A1
20110005999 Randal Jan 2011 A1
20110061816 Duesel, Jr. et al. Mar 2011 A1
20110083556 Duesel, Jr. et al. Apr 2011 A1
20110100924 Duesel, Jr. et al. May 2011 A1
20110132815 Angelilli et al. Jun 2011 A1
20110147195 Shapiro et al. Jun 2011 A1
20110168646 Tafoya Jul 2011 A1
20110180470 Harris Jul 2011 A1
20110240540 Harris Oct 2011 A1
20120012309 Noles, Jr. Jan 2012 A1
20120205303 Rosine et al. Aug 2012 A1
20120211441 Harris Aug 2012 A1
20120273367 Themy et al. Nov 2012 A1
Foreign Referenced Citations (19)
Number Date Country
757-2004 May 2007 CL
556 455 Aug 1932 DE
1 173 429 Jul 1964 DE
0 047 044 Mar 1982 EP
2 441 817 Jun 1980 FR
383570 Nov 1932 GB
463770 Apr 1937 GB
60257801 Dec 1985 JP
62121687 Jun 1987 JP
2003021471 Jan 2003 JP
WO-9610544 Apr 1996 WO
WO-2004022487 Mar 2004 WO
WO-2005110608 Nov 2005 WO
WO-2008112793 Sep 2008 WO
WO-2009071763 Jun 2009 WO
WO-2010092265 Aug 2010 WO
WO-2011042693 Apr 2011 WO
WO-2011050317 Apr 2011 WO
WO-2012100074 Jul 2012 WO
Non-Patent Literature Citations (95)
Entry
Jones, “Liquid Circulation in a Draft-Tube Bubble Column,” Chemical Engineering Science, 40(3):449-462 (1985).
Talbert et al., “The Elecrospouted Bed,” IEEE Transactions on Industry Applications, vol. 1 A-20, No. 5, pp. 1220-1223 (1984).
Fox et al., “Control Mechanisms of Flulidized Solids Circulation Between Adjacent Vessels,” AIChE Journal, 35(12):1933-1941 (1989).
Smith, “Sludge-U-Like, As the Ban on Sea Disposal of Sewage Waste Looms, Technologies That Can Deliver Cleaner, Thicker and More Farmer-Friendly Sludges Are Gaining Popularity,” Water Bulletin, 708 (1996).
Durkee et al., “Field Tests of Salt Recovery System for Spent Pickle Brine,” Journal of Food Service, 38:507-511 (1973).
English-language translation of Hage, H., “The MeMon Experiment: A Step towards Large-Scale Processing of Manure,” Applied Science, 4 (1988).
St. Onge et al., “Start-Up, Testing, and Performance of the First Bulb-Type Hydroelectric Project in the U.S.A.,” IEEE Transactions on Power Apparatus Systems, PAS-101(6):1313-1321 (1982).
German Kurz, “Immersion Heater,” OI U. Gasfeuerung, 18(3):171-180 (1973). English-language abstract only.
Hattori et al., “Fluid and Solids Flow Affecting the Solids Circulation Rate in Spouted Beds with a Draft Tube,” Journal of Chemical Engineering of Japan, 37(9):1085-1091 (2004).
Yeh et al., “Double-Pass Heat or Mass Transfer Through a Parallel-Plate Channel with Recycle,” International Journal of Hat and Mass Transfer, 43:487-491 (2000).
International Preliminary Report on Patentability for Application No. PCT/US2008/056702, dated Sep. 15, 2009.
International Search Report and Written Opinion for Application No. PCT/US08/56702, dated Jun. 10, 2008.
International Search Report and Written Opinion for Application No. PCT/US2010/024143, dated Oct. 12, 2010.
Mueller et al., “Rotating Disk Looks Promising for Plant Wastes,” (2007).
Claflin, “Intraparticle Conduction Effects on the Temperature Profiles in Spouted Beds,” Chemeca 85, paper D9b, The Thirteenth Australasian Conference on Chemical Engineering, Perth, Australia, pp. 471-475 (1985).
Dunn, “Incineration's Role in Ultimate Disposal of Process Wastes,” Chemical Engineering, Deskbook Issue, pp. 141-150 (1975).
Fan et al., “Some Remarks on Hydrodynamic Behavior of a Draft Tube Gas-Liquid-Solid Fluidized Bed,” AIChE Symposium Series, No. 234(80):91-97 (1985).
Etzensperger et al., “Phenol Degradation in a Three-Phase Biofilm Fluidized Sand Bed Reactor,” Bioprocess Engineering, 4:175-181 (1989).
Yoshino et al., “Removal and Recovery of Phosphate and Ammonium as Struvite from Supernatant in Anaerobic Digestion,” Water Science and Technology, 48(1):171-178 (2003).
Hocevar et al., “The Influence of Draft-Tube Pressure Pulsations on the Cavitation-Vortex Dynamics in a Francis Turbine,” Journal of Mechanical Engineering, 49:484-498 (2003).
Padial et al., “Three-Dimensional Simulation of a Three-Phase Draft-Tube Bubble Column,” Chemical Engineering Science, 55:3261-3273 (2000).
Swaminathan et al., “Some Aerodynamic Aspects of Spouted Beds of Grains,” Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada, pp. 197-204 (2007).
Williams et al., “Aspects of Submerged Combustion As a Heat Exchange Method,” Trans IChemE, 71(A):308-309 (1993).
Sathyanarayana et al., Circular C.W. Intake System—A Research Opinion, Seventh Technical Conference of the British Pump Manufacturer's Association, paper 21, pp. 293-313, 1981.
Schone, “Oil Removal from Exhaust Steam and Condensate of Piston-Powered Steam Engines,” Braunkohle, 31:82-92 (1932). English-language abstract only.
Shaw LFG Specialties, LLC, 2006 Product Catalog.
Cross et al., “Leachate Evaporation by Using Landfill Gas,” Proceedings Sardinia 97, Sixth Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, pp. 413-422 (1997).
Genck, “Guidelines for Crystallizer Selection and Operation,” CEP, pp. 26-32 (2004). www.cepmagazine.org.
Written Opinion for Application No. PCT/US2010/024143, dated Oct. 12, 2010.
Shimizu et al., “Filtration Characteristics of Hollow Fiber Microfiltration Membranes Used in Membrane Bioreactor for Domestic Wastewater Treatment,” Wat. Res., 30(10):2385-2392 (1996).
Miyake et al., “Performance Characteristics of High Speed-Type Cross Flow Turbine,” 83-0047:2575-2583 (1993).
Ye et al., “Removal and Distribution of Iron, Manganese, Cobalt, and Nickel Within a Pennsylvania Constructed Wetland Treating Coal Combustion By-Product Leachate,” J. Environ. Qual., 30:1464-1473 (2001).
English language translation of an office action from Chilean Patent Application No. 237-2007.
International Preliminary Report on Patentability for Application No. PCT/US2007/001487, dated Jul. 21, 2009.
International Preliminary Report on Patentability for Application No. PCT/US2007/001632, dated Jul. 21, 2009.
International Preliminary Report on Patentability for Application No. PCT/US2007/001633, dated Jul. 21, 2009.
International Preliminary Report on Patentability for Application No. PCT/US2007/001634, dated Jul. 21, 2009.
International Search Report for Application No. PCT/US2006/028515, dated Nov. 14, 2006.
Office action from Chilean Patent Application No. 238-2007.
International Search Report and Written Opinion for Application PCT/US2011/021811, dated Mar. 21, 2011.
MikroPul, “Wet Scrubbers,” (2009). www.mikropul.com.
“Gas Atomized Venturi Scrubbers,” Bionomic Industries, copyright 2008, printed from www.bionomicind.com <http://www.bionomicind.com> on May 25, 2011.
“Waste Heat Recovery Systems,” Bionomic Industries, copyright 2008, printed from www.bionomicind.com <http://www.bionomicind.com> on May 25, 2011.
International Search Report and Written Opinion for Application No. PCT/US10/043647, dated Apr. 27, 2011.
International Search Report and Written Opinion for Application No. PCT/US10/043648, dated Apr. 27, 2011.
EVRAS—Evaporative Reduction and Solidification Systems; Brochure for Web. Believed to be publically available as early as Mar. 5, 2010.
Hill et al., “Produced Water and Process heat Combined Provide Opportunities for Shell CO2”; EVARAS; Facilities 2000: Facilities Engineering in the Next Millennium.
Layne Evaporative Reduction and Solidification System Brochure (2010).
Intevras Technologies, LLC—Innovative solutions for water purification, remediation and process improvement; Power Point Presentation, Oct. 2009.
Office Action issued for U.S. Appl. No. 12/705,462, dated Nov. 6, 2012.
Office Action issued for U.S. Appl. No. 12/846,257, dated Nov. 16, 2012.
International Preliminary Report on Patentability and Written Opinion issued for International Patent application No. PCT/US2011/021811, dated Aug. 14, 2012.
International Search Report for Application No. PCT/US2012/021897, dated Oct. 8, 2012.
Written Opinion for Application No. PCT/US2012/021897, dated Sep. 28, 2012.
English translation of Chinese First Office Action for Application No. 201080012067.7, dated Oct. 12, 2012.
English translation of Chinese Search Report for Application No. 201080012067.7, dated Sep. 12, 2012.
U.S. Office Action for U.S. Appl. No. 12/530,484, dated Apr. 16, 2013.
U.S. Office Action for U.S. Appl. No. 12/846,337, dated Apr. 17, 2013.
Rule 62 EPC Communication issued from the European Patent Office for Application No. 10741828.7, dated Jan. 31, 2013.
Rule 62 EPC Communication issued from the European Patent Office for Application No. 10805027.9, dated Feb. 5, 2013.
Rule 62 EPC Communication issued from the European Patent Office for Application No. 10805026.1, dated Feb. 27, 2013.
International Preliminary Report on Patentability for Application No. PCT/US2010/043647, dated Feb. 9, 2012.
International Preliminary Report on Patentability for Application No. PCT/US2010/043648, dated Feb. 9, 2012.
Shaw LFG Specialties, LCC “Waste Heat Leachate Evaporator System” (2011).
Mussatti, Daniel, Section 6, Particulate Matter Controls. Chapter 2 Wet Scrubbers for Particulate Matter. Innovative Strategies and Economics Group. United States Environmental protection Agency. Jul. 2002.
Office Action for U.S. Appl. No. 12/530,484, dated Feb. 29, 2012.
Office Action for U.S. Appl. No. 12/530,484, dated Oct. 17, 2012.
Office Action for U.S. Appl. No. 12/530,484, dated Apr. 16, 2013.
Office Action for U.S. Appl. No. 12/846,337, dated Apr. 17, 2013.
Chinese Office Action for Application No. 201180014846.5, dated Jun. 18, 2013.
Gaudlip et al; “Marcellus Shale Water Management Challenges in Pennsylvania,” SPE Shale Gas Production Conference, Fort Worth (2008).
Search Report for Chinese Patent Application No. 201180014846.5, dated Jun. 8, 2013.
Alabovskij et al., “Concentration of Boiler Washing Water in Submerged-Combustion Devices,” Promyshl. Energet, 4:38-39 (1975). English-language abstract only.
Bachand et al., “Denitrification in Constructed Free-Water Surface Wetlands: II. Effects of Vegetation and Temperature,” Ecological Engineering, 14:17-32 (2000).
Barrett et al., “The Industrial Potential and Economic Viability of Spouted Bed Processes,” Chemeca 85, paper D4c, The Thirteenth Australasian Conference on Chemical Engineering, Perth, Australia, pp. 401-405 (1985).
Bennett et al., “Design of a Software Application for the Simulation and Control of Continuous and Batch Crystallizer Circuits,” Advances in Engineering Software, 33:365-374 (2002).
Berg, “The Development of the Controlled Buoyancy System for Installation of Submerged Pipelines,” Journal AWWA, Water Technology/Quality, pp. 214-218 (1977).
Brandt et al., “Treatment Process for Waste Water Disposal of the “Morcinek” Mine Using Coalbed Methane,” Conference on Coalbed Methane Utilization, Oct. 5-7, 1994.
Cherednichenko et al., “Disposal of Saline Wastes From Petroleum Refineries, All-Union Scientific-Research and Planning-Design Institute of the Petroleum Refining and Petrochemical Industry,” Khimiya I Tekhnologiya Topliv I Masel, 9:37-39 (1974). Translated.
Claflin et al., “The Use of Spouted Beds for the Heat Treatment of Grains,” Chemeca 81, The 9th Australasian Conference on Chemical Engineering, Christchurch, New Zealand, 4:65-72 (1981).
Final Office Action for U.S. Appl. No. 11/625,002, dated May 26, 2010.
Final Office Action for U.S. Appl. No. 11/625,022, dated Jan. 24, 2011.
Final Office Action for U.S. Appl. No. 11/625,024, dated Dec. 8, 2010.
Hill et al., “Produced Water and Process heat Combined Provide Opportunities for Shell CO2”; EVRAS; Facilities 2000: Facilities Engineering in the Next Millennium.
International Preliminary Report on Patentability for Application No. PCT/US2006/015803, dated Nov. 13, 2007.
International Preliminary Report on Patentability for Application No. PCT/US2006/028515, dated Jan. 22, 2008.
International Preliminary Report on Patentability for Application No. PCT/US2012/021897, dated Aug. 1, 2013.
International Preliminary Report on Patentability for Application No. PCT/US2012/021897, dated Jul. 23, 2013.
International Search Report and Written Opinion for Application No. PCT/US2006/015803, dated Oct. 30, 2007.
LFG Specialties, LLC, Waste Heat Leachate Evaporator System, Jan. 14, 2011.
Notice of Allowance for U.S. Appl. No. 11/625,159, dated Jul. 9, 2010.
Office Action for U.S. Appl. No. 11/625,002, dated Jan. 6, 2010.
Office Action for U.S. Appl. No. 11/625,022, dated Jun. 22, 2010.
Office Action for U.S. Appl. No. 11/625,024, dated Jun. 18, 2010.
Screen shots from video on LFG website taken Jan. 18, 2011 (http://www.shawgrp.com/markets/envservices/envsolidwaste/swlfg).
Related Publications (1)
Number Date Country
20130087487 A1 Apr 2013 US
Provisional Applications (1)
Number Date Country
61545866 Oct 2011 US