1. Field of the Invention
The present invention relates to portable computers, and more particularly, to a portable computer with excellent thermal dissipation.
2. Discussion of the Related Art
Portable (e.g. notebook or laptop) computers have many advantages, such as light weight, small volume, and excellent mobility. At the same time, the processing power of portable computers continues to increase. Because of heat produced by microprocessors, disk drives, power supplies and other components increases with increased processing power, challenges exist for computer manufacturers regarding dissipation of heat from portable computers. The thermal ceiling for portable computers is now being reached. Adding large passive heat sinks and/or active cooling devices, such as fan/heatsink combinations to dissipate heat defeats the goals of a small, light, thin computer with a long-life battery. In addition, controlling temperature is also important for proper functionality, reliability and human comfort.
Referring to
The braided wire 50 is flexible and made from copper, or other metals having a thermal conductivity at least as high as copper. The braided wire 50 can quickly conduct heat generated from the heat generating device 21 of the main body 20 into the heat dissipating module 32 of the cover 30. However, because the braided wire 50 is used, a certain space in the portable computer 10 is needed to contain the braided wire 50, thus the design of the portable computer 10 is made complicated and the assembly is more difficult. Furthermore, the braided wire 50 is flexible, and when the portable computer 10 is used, the braided wire 50 must be bent. Thus after using a time, the braided wire 50 will be change shape and even be damaged so as to influence the thermal properties of the portable computer 10.
What is needed, therefore, is a portable computer with excellent thermal property and simple structure.
A portable computer with excellent thermal property according to one preferred embodiment includes a main body, a cover and a thermally conductive hinge. The main body has at least one heat generating device and a heat conductor having a first end thermally coupled to the at least one heat generating device and an opposite second end. The cover has a cover heat dissipating module. The thermally conductive hinge rotatably couples the cover to the main body. The thermally conductive hinge includes an inner axle coupled to the cover and an outer tube coupled to the main body and receiving the inner axle therein. The inner axle is in thermal contact with the outer tube and is thermally coupled to the cover heat dissipating module. The outer tube is thermally coupled to the second end of the heat conductor.
Compared with conventional portable computer, the present portable computer enjoys several advantages. The present portable computer only uses the thermally conductive hinge rotatably coupling the cover and the main body for permitting the cover to be movable relative to the main body, so the present portable computer has a simple configuration and may be assembled easily. Furthermore, the thermally conductive hinge can quickly conduct heat generated from the heat generating device to the cover heat dissipating module of the cover, thus the heat can be dissipated quickly. The present portable computer has excellent thermal properties.
Other advantages and novel features will become more apparent from the following detailed description of the present portable computer, when taken in conjunction with the accompanying drawings.
Many aspects of the present portable computer can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, the emphasis instead being placed upon clearly illustrating the principles of the present portable computer. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Reference will now be made to the drawings to describe a preferred embodiment of the present portable computer with excellent thermal property in detail.
Referring to FIGS. 1 to 3, a portable computer 100 with excellent thermal property in accordance with a preferred embodiment is shown. The portable computer 100 includes a main body 200, a cover 300 and a thermally conductive hinge 400 rotatably coupling the cover 300 to the main body 200 for permitting the cover 300 to be movable relative to the main body 200 between an open position and an closed position.
The main body 200 includes at least one heat generating device 210, a main body heat dissipating module 220 and a heat conductor 230. The heat generating device 210 may be a microprocessor. The main body heat dissipating module 220 may be a heat sink and is arranged on the heat source 210 for dissipating the heat generated from the heat source 210. The heat conductor 230 may be a heat pipe and has a first end 231 thermally coupled to the at least one heat generating device 210 and an opposite second end 232 extending to the thermally conductive hinge 400.
The cover 300 mainly includes a display screen 310 and a cover heat dissipating module 320 arranged behind the display screen 310. The display screen 310 is arranged an inner side of the cover 300 facing to the main body 200. The cover heat dissipating module 320 is arranged at a corresponding opposite side of the cover 300 and behind the display screen 310. In the present embodiment, the cover heat dissipating module 320 includes a chamber 321 and a working fluid 322 received therein. The cover heat dissipating module 320 is similar to a heat pipe, which can dissipate heat quickly.
The hinge 400 is a thermally conductive hinge. The hinge 400 includes an inner axle 410 and an outer tube 420. The inner axle 410 is coupled to the cover 300, and the outer tube 420 is coupled to the main body 200. The inner axle 410 is in thermal contact with the outer tube 420 and is thermally coupled to the cover heat dissipating module 320. The outer tube 420 is thermally coupled to the second end 232 of the heat conductor 230. The inner axle 410 and the outer tube 420 can be engaged so that the cover 300 is mounted on the main body 200 and can be movable relative to the main body 200 between the open position and the closed position. As the hinge 400 is the thermally conductive hinge, the inner axle 410 and the outer tube 420 are also thermal conductive components. In the present embodiment, the inner axle 410 is a hollow axle with a working fluid contained therein.
The inner axle 410 is extended from the cover 300 and thermally coupled to the chamber 321 the cover heat dissipating module 320. The working fluid 322 in the chamber 321 may flow into the inner axle 410, and the working fluid 411 in the inner axle 410 may also flow into the chamber 321. The cover heat dissipating module 320 further includes a clapboard 330 arranged in the chamber 321 configured for leading the working fluid 322 into the inner axle 410.
The outer tube 420 is a hollow tube. The outer tube 420 is coupled to the main body 200 and connected with the main body heat dissipating module 220 by the heat conductor 230. The outer tube 420 is thermally coupled to the second end 232 of the heat conductor 230. Therefore, the heat generated from the heat generating device 210 can be quickly conducted to the outer tube 420. A thermal interface material layer 422 is arranged on the inner side of the outer tube 420. When the inner axle 410 is received in the outer tube 420, the thermal interface material layer 422 is between the inner axle 410 and the outer tube 420 for enhancing the thermal property therebetween. The thermal interface material layer 422 is made from thermal interface material, and for preventing the thermal interface material from becoming separated from the outer tube 420, two sealing members 424, 412 are arranged at a distal ends of the thermally conductive hinge 400.
Assembly is achieved by simply pressing the inner axle 410 into the outer tube 420. The present portable computer 100 has a simple configuration and can be assembled easily.
In operation, the heat generated from the heat generating device 210 can be partly dissipated by the main body heat dissipating module 220, and other heat can be quickly conducted and dissipated into the cover dissipating module 320 by the heat conductor 230 and the thermally conductive hinge 400. Therefore, the present portable computer has excellent thermal properties.
It is to be understood that the above-described embodiment is intended to illustrate rather than limit the invention. Variations may be made to the embodiment without departing from the spirit of the invention as claimed. The above-described embodiments are intended to illustrate the scope of the invention and not restrict the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200510037499.4 | Sep 2005 | CN | national |