While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. It is noted that the word “may” is used throughout this application in a permissive sense (i.e., having the potential to, being able to), not a mandatory sense (i.e., must).
Turning now to
It is noted that computer system 10 may include various other components and circuits that have been omitted for simplicity. It is further noted that the components of the computing subsystem are depicted in
In the illustrated embodiment, processor 30 may be illustrative of a microprocessor that implements the x86 architecture. Although in other embodiments, processor 30 may be any type of processor implemented with any type of architecture. In one embodiment, processor 30 may include a memory controller (not shown) to facilitate memory transactions directed to memory 40, for example. In addition, processor 30 may include various interface circuits such as a host interface (not shown) for controlling transactions with I/O unit 50.
I/O unit 50 may be any of a variety of I/O controllers that may include bridging circuits (not shown) that may be used as interfaces between processor 30 and the various I/O devices, displays, and buses to which it is coupled. For example, in one embodiment, I/O unit 50 may be coupled to processor 30 via a HyperTransport™ link 31. In such an embodiment, I/O unit 50 may include one or more HyperTransport™ to peripheral component interconnect (PCI) and/or a HyperTransport™ to universal serial bus (USB) bridges for connection to PCI and USB devices, respectively, for example. In addition, in one embodiment, I/O unit 50 may be coupled to wireless module 70 via a USB, HyperTransport™ or other type of link 57, although other interconnects are contemplated. Further, I/O unit 50 may include graphics circuits (not shown) and graphics functionality for generation of the various signals used in association with display 60 and LR display 65, for example.
The audio subsystem 20 may include audio functionality including analog-to-digital and digital to-analog circuits for generation of the various signals associated with microphone 79 and speaker 78, for example.
Storage 80 may be a mass storage device. For example, in one embodiment storage 80 may include one or more hard disk drives. In other embodiments, storage 80 may include other types of storage media such as a non-volatile random access memory (RAM) device (e.g., a memory stick, flash drive, etc.), compact disk (CD) drive, digital video disk (DVD) drive, tape drive, floppy drive, and the like.
In one embodiment, display 60 may be a liquid crystal display (LCD) or other type of displays such as may be common to portable laptop and notebook computers. In contrast, LR display 65 may be a display such as the type of display used on a mobile telephone or a personal digital assistant (PDA) for example. In one embodiment, LR display 65 may have a lower resolution than display 60. As will be described in greater detail below, in some modes of operation of portable computer system 10, LR display 65 may be used exclusively, while in other modes, display 60 may be used exclusively, and in still other modes, both displays may used concurrently.
As shown, wireless module 70 is coupled to an antenna 77. Wireless module 70 includes a processing unit 71. Wireless module 70 may include the functionality of a wireless communication device such as a mobile telephone, for example. As such, in one embodiment, processing unit 71 may execute instructions and perform functions, and may include analog, digital, radio frequency (RF) and baseband circuits (not shown) that may function to perform such tasks as RF signal reception and transmission, up-conversion and down-conversion of the RF signals, analog-to-digital conversion, digital-to-analog conversion, digital signal processing of the baseband signals, graphics functions for display control, as well as monitoring and control functions. Accordingly, in various implementations, processing unit 71 may include hardware that includes a separate processor such as an advanced RISC machine (ARM) processor, for example, a digital signal processing unit, and/or one or more hardware accelerators for handling complex algorithms.
Wireless module 70 may communicate with a wireless network, such as a wireless telephone network, for example. The wireless network may conform to any of a variety of communication standards that may be compatible with various technologies such as the second (2G), third (3G) and fourth (4G) generation mobile phone technologies. In addition, the wireless network may be a wireless wide area network implemented using such protocols as WiMax, WiBro, NextNet, and others. More particularly, in various embodiments, wireless module 70 may employ a time-division multiple access (TDMA), a code division multiple access (CDMA) and/or a wideband CDMA (WCDMA) technique to implement standards such as the Global System for Mobile Communications (GSM) standard, the Personal Communications Service (PCS) standard, and the Digital Cellular System (DCS) standard, for example. In addition, many data transfer standards that work cooperatively with the various technology platforms may also be supported. For example, wireless module 70 may also implement the General Packet Radio Service (GPRS) standard, the Enhanced Data for GSM Evolution (EDGE) standard, which may include Enhanced General Packet Radio Service standard (E-GPRS) and Enhanced Circuit Switched Data (ESCD), and the high speed circuit switched data (HSCSD) standard, high speed downlink packet access (HSDPA), high speed uplink packet access (HSUPA), evolution data optimized (EV-DO), among others.
In one embodiment, memory 40 may be a system memory that is used to store instructions and data that may be used by processor 30 as well as other devices (e.g., I/O unit 50). In various embodiments, memory 40 may be implemented using any of a variety of volatile or non-volatile memory devices. For example, memory 40 may be implemented using any number of memory devices in the dynamic RAM family of devices. In one embodiment, memory 40 may be implemented using removable or non-removable memory modules with the memory devices affixed thereto. However, other memory device configurations are possible and contemplated.
As shown, memory 40 includes telephony drivers and application software 45 stored therein. It is noted that telephony drivers and application software 45 may be stored more permanently within storage 80 and during run time, at least portions of the instructions and data being executed by processor 30 may be loaded into memory 40.
Portable computer system 10 may include a computing subsystem and a wireless subsystem. In one embodiment, the computing subsystem may include the components that typically make up a general computing platform. For example, the computing subsystem may include processor 30, memory 40, I/O unit 50, display 60, and so on. The wireless subsystem may include wireless module 70, which includes processing unit 71, and LR display 65, and authentication unit 75. As will be described in greater detail below, in one embodiment, portable computer system 10 may operate in various modes. It is contemplated that the system architecture of the computing subsystem may follow a more conventional Personal Computer (PC) architecture that uses a Northbridge and/or Southbridge arrangement. However, this type of architecture is also well-known and is not discussed here for brevity. It is worth mentioning that in such a system, the wireless module 70 may be connected to the Northbridge via any type of interconnect such as a USB link, for example.
During operation of portable computer system 10, either subsystem may be used alone, or both subsystems may be used together in various combinations. For example, in one mode, portable computer system 10 may operate such that only the wireless module 70 may be in operation while the computing subsystem components may be in a standby or low power state. As such, portable computer system 10 may be operated as a wireless communication device such as a mobile telephone or a personal digital assistant (PDA). In such an embodiment, LR display 65 may be used. In another mode, the wireless subsystem may be turned off or placed in a standby mode and portable computer system 10 may operate simply as a laptop or notebook computer. In still other modes, portable computer system 10 may operate using various combinations of computing and wireless communication functionality. It is noted that while portable computer system 10 is operated in the different modes, one or more components may be powered down or placed in a standby mode or other low power states. As such, portable computer system 10 includes a power management unit 90 that may manage the different modes and power states and any switching therebetween.
Depending upon the application software and drivers that may be installed, portable computer system 10 may function as a laptop computer with a fully integrated wireless communication platform that includes voice and data transfer functionality. In addition, due to the integration of the wireless hardware and the telephony drivers and application software 45 on the portable computing platform, the management of various email, address books, and other files may be seamless to a user. For example, the telephony drivers and application software 45 may include instructions that may be used to configure the wireless module 70. In one implementation, a user may select a driver via the operating system or other mechanism, for example. The driver may configure one or more operational characteristics and/or behaviors of wireless module 70. In addition, the telephony drivers and application software 45 may be used to manage email, address books, phone lists, databases, calendars, and other information traditionally used on a mobile telephone. The application software may also include applications that may be run by processor 30 such as spreadsheet, word processing, games, graphics, and the like. Once the user configures the system operation, such operations as managing general IP data traffic, receiving incoming calls, sending outgoing calls, receiving and sending email, and display management may be fully automated from a platform user perspective.
In one embodiment authentication unit 75 may be a device such as a smart card implemented as a subscriber identity module (SIM) card, for example. As such, authentication unit 75 may also include processing functionality configured to generate cryptographic key/signature information. In one embodiment, authentication unit 75 may be used to store a unique number such as the private key of an asymmetric cryptography key pair. The private key may be generated from a unique personal identification number, or the telephone number of the unit, for example. For example, in addition to the unique personal identification number, a unique cryptographic key may be used as a seed value to generate other keys and signatures. The signatures may be used during authentication sequences between the wireless module 70 and the wireless network or other service providers. In one implementation, authentication unit 75 may provide the unique key to wireless module 70, which may be used to uniquely identify to the network the identity of the portable computer system 10. As such, processing unit 71 may be configured to generate key and signature information.
In another implementation, since authentication unit 75 may include processing functionality to generate cryptographic key information, the wireless network may present a challenge to wireless module 70 when wireless module 70 establishes a connection to the network, along with randomly generated number. The randomly generated number may be used with the unique cryptographic key to generate a signature. Wireless module 70 may provide the randomly generated number to authentication unit 75, which may generate the signature. The signature may be sent by wireless module 70 to the network. If the network-generated signature matches the signature generated by authentication unit 75, then the network authenticates portable computer system 10 as being a valid user.
In a similar manner, wireless module 70 may establish an authenticated wireless session with a computer network or service provider via the wireless network using another set of cryptographic keys. For example, using a similar authentication process, the computer or provider network may challenge wireless module 70 and provide a different randomly generated number. Wireless module 70 may provide the new randomly generated number to authentication unit 75, which may generate another signature. This signature may be sent by wireless module 70 to the computer network. If the network-generated signature matches the new signature generated by authentication unit 75, then the computer network or provider may authenticate portable computer system 10 as being an authorized user.
As mentioned above, portable computer system 10 may be used to connect to a wireless network. More particularly, as shown in
In one embodiment, while the user is using the wireless connection, wireless module 70 may be configured to receive an MBMS signal or other video signals such as DVB-H or MediaFLO, for example, on one or more channels from a service provider. As described above, the MBMS signal may be received in a low resolution format as part of a basic use service package. However, in some markets, the user may be able to receive a higher resolution MBMS signal on demand. For example, the user may request the higher resolution feed, which in some cases, may require an additional charge such as may be the case in a pay-per-view arrangement. In one embodiment, the higher resolution may be obtained by receiving an enhancement video data stream that may fill in or supplement the video data. For example, the enhancement video data may be used for infilling or sub-pixel rendering of the basic video data to create it higher resolution images. Accordingly, the MBMS service may provide the enhancement data stream information via one or more additional or “side” channels. As such, the higher resolution video images may be displayed on display 60 instead of display 65. It is noted that the enhancement data stream may not be used without the video feed provided by the basic use service.
Referring to
Once the system settings have been configured, the user may establish a wireless connection to the Internet using an IP protocol, or by via dial-up by calling a telephone number to an ISP, or other network provider 250, for example (block 305). During normal operation, the user may decide to view a streaming video, or a movie, or the like. Accordingly, they user may initiate a connection to a given service provider (e.g., 270) that may provide digital content in the form of an MBMS formatted signal. As such wireless module 70 may establish the connection as described above. For example, one or more authentication mechanisms may allow the service provider to authenticate the user (block 310). If the service provider 270 determines that the user is not authorized for a given reason (block 315), the service provider 270 may deny the requested service (block 320). If, on the other hand, the service provider 270 determines the user is authorized to obtain the content (block 315), the service provider 270 may provide the MBMS signal to the network provider 250, who may in turn begin streaming the basic use video feed over one or more wireless channels (block 325).
Since portable computer system 10 also includes a higher resolution display (e.g., display 60) available, the user may request to the service provider 270 a high resolution format of the MBMS video feed (block 330). Depending upon the specific service arrangement, the service provider 270 may determine whether the user is authorized to receive the extended MBMS service (block 335). For example, the user may or may not be pre-authorized to purchase extended services. If the user is not authorized, the service provider 270 may deny the requested service as described above in block 320. However, if the user is authorized to obtain the content (block 335), the service provider 270 may provide the extended MBMS signal to the network provider 250, who may in turn begin streaming the enhancement video feed over one or more additional side wireless channels (block 340).
As described above, the enhancement video feed data may be used in combination with the basic video feed data by graphic circuits (e.g., graphic circuits within I/O unit 50) to create higher resolution video images than is possible with just the basic video feed. Depending on the specific implementation, the enhancement video may be used to infill the basic video, for example.
It is noted that in other embodiments, the user may be able to configure the system settings such that upon making the initial request for the MBMS video stream, the service provider may automatically send the extended MBMS signal based upon the user's preferences.
Referring to
Portable computer system 10 also includes a microphone 78, speakers 79A and 79B, and a keyboard 456, and a touch activated mouse control 415 that are mounted on a top surface of the housing 420. In addition, portable computer system 10 includes an additional display unit (e.g., LR display 65) mounted to the top surface of housing 420. As described above, in one embodiment, display 65 may be a low-resolution display. In various other embodiments, LR display 65 may also be an input device (e.g., touch-activated screen) to facilitate use of a pointing device such as a stylus, for example. As such, LR display 65 may include analog-to-digital conversion circuits to input data from the screen. It is noted that the location and type of LR display 65 are also implementation details. As such, LR display 65 may be located in any desired location, another example of which is shown in
Referring to
Although the embodiments above have been described in considerable detail, numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.