The present disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were limited until, in 2002, when SONOS, Inc. began development of a new type of playback system. Sonos then filed one of its first patent applications in 2003, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering its first media playback systems for sale in 2005. The Sonos Wireless Home Sound System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a controller (e.g., smartphone, tablet, computer, voice input device), one can play what she wants in any room having a networked playback device. Media content (e.g., songs, podcasts, video sound) can be streamed to playback devices such that each room with a playback device can play back corresponding different media content. In addition, rooms can be grouped together for synchronous playback of the same media content, and/or the same media content can be heard in all rooms synchronously.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings, as listed below. A person skilled in the relevant art will understand that the features shown in the drawings are for purposes of illustrations, and variations, including different and/or additional features and arrangements thereof, are possible.
The drawings are for the purpose of illustrating example embodiments, but those of ordinary skill in the art will understand that the technology disclosed herein is not limited to the arrangements and/or instrumentality shown in the drawings.
Examples described herein relate to a portable playback device that includes one or more microphones that facilitate performing operations such as noise-canceling, processing voice commands, etc. An example of the portable playback device includes a visual indicator that is hardwired to the microphones such that the visual indicator visually indicates to a user whether any of the microphones are actively receiving and processing audio content. Hardwiring of the visual indicator to the microphones mitigates the risk that malicious instruction code could activate one or more of the microphones without the user's knowledge.
An example of the portable playback device corresponds to headphones, and an example of the visual indicator corresponds to an interior visual indicator that is arranged in a discrete location of the headphones. For instance, in an example, the interior visual indicator is arranged within an earcup of the headphones. When arranged this way, the state of the interior visual indicator cannot be ascertained while the headphones are being worn. On the other hand, when the headphones are placed on a table, a user with direct line of sight to the interior of the earcup can view the interior visual indicator. In this way, the state of the interior visual indicator can be conveyed discretely to the user.
In an example, power is supplied to one or more exterior visual indicators of the portable playback device via a first power supply path. Power is supplied to the interior visual indicator via a second power supply path. Further, the first and second power supply paths are independently operated.
In some examples, the microphones are activated via user interaction with a user interface of the portable playback device. For example, the user can press a switch that activates a microphone circuit for receiving voice commands or for enabling noise cancellation. This, in turn, causes the interior visual indicator to illuminate.
In some examples, subsequent to activation of the microphone circuit, the microphone circuit deactivates after a predetermined period of inactivity of the microphone. When the microphone circuit is deactivated, the interior visual indicator transitions to an unilluminated state.
In some examples, the portable playback device includes multiple microphones. For example, the playback device includes a first microphone arranged on an outside housing of the portable playback devices that is configured to receive ambient noise and facilitate the performance of noise cancellation. A second microphone is arranged on the outside of the housing and facilitates receiving voice commands from a user of the portable playback device. A third microphone is arranged within the earcup of the portable playback device. When any of the first microphone, the second microphone, or the third microphone is actively receiving audio signals, the interior visual indicator transitions to an illuminated state, and when all of the first microphone, the second microphone, and the third microphone are deactivated, the interior visual indicator transitions to an unilluminated state.
In some examples, the interior visual indicator is configured to indicate a plurality of illuminated states. For example, a first illuminated state is associated with the activation of the first microphone. A second illuminated state is associated with activation of the second microphone. And a third illuminated state is associated with activation of the third microphone. In some examples, the various illuminated states correspond to different colors.
While some examples described herein may refer to functions performed by given actors such as “users,” “listeners,” and/or other entities, it should be understood that this is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.
Moreover, some functions are described herein as being performed “based on” or “in response to” another element or function. “Based on” should be understood that one element or function is related to another function or element. “In response to” should be understood that one element or function is a necessary result of another function or element. For the sake of brevity, functions are generally described as being based on another function when a functional link exists; however, such disclosure should be understood as disclosing either type of functional relationship.
In the Figures, identical reference numbers identify generally similar, and/or identical, elements. To facilitate the discussion of any particular element, the most significant digit or digits of a reference number refers to the Figure in which that element is first introduced. For example, element 110a is first introduced and discussed with reference to
As used herein the term “playback device” can generally refer to a network device configured to receive, process, and output data of a media playback system. For example, a playback device can be a network device that receives and processes audio content. In some embodiments, a playback device includes one or more transducers or speakers powered by one or more amplifiers. In other embodiments, however, a playback device includes one of (or neither of) the speaker and the amplifier. For instance, a playback device can comprise one or more amplifiers configured to drive one or more speakers external to the playback device via a corresponding wire or cable.
Moreover, as used herein the term NMD (i.e., a “network microphone device”) can generally refer to a network device that is configured for audio detection. In some embodiments, an NMD is a stand-alone device configured primarily for audio detection. In other embodiments, an NMD is incorporated into a playback device (or vice versa).
The term “control device” can generally refer to a network device configured to perform functions relevant to facilitating user access, control, and/or configuration of the media playback system 100.
Each of the playback devices 110 is configured to receive audio signals or data from one or more media sources (e.g., one or more remote servers, one or more local devices) and play back the received audio signals or data as sound. The one or more NMDs 120 are configured to receive spoken word commands, and the one or more control devices 130 are configured to receive user input. In response to the received spoken word commands and/or user input, the media playback system 100 can play back audio via one or more of the playback devices 110. In certain embodiments, the playback devices 110 are configured to commence playback of media content in response to a trigger. For instance, one or more of the playback devices 110 can be configured to play back a morning playlist upon detection of an associated trigger condition (e.g., presence of a user in a kitchen, detection of a coffee machine operation). In some embodiments, for example, the media playback system 100 is configured to play back audio from a first playback device (e.g., the playback device 100a) in synchrony with a second playback device (e.g., the playback device 100b). Interactions between the playback devices 110, NMDs 120, and/or control devices 130 of the media playback system 100 configured in accordance with the various embodiments of the disclosure are described in greater detail below with respect to
In the illustrated embodiment of
The media playback system 100 can comprise one or more playback zones, some of which may correspond to the rooms in the environment 101. The media playback system 100 can be established with one or more playback zones, after which additional zones may be added, or removed to form, for example, the configuration shown in
In the illustrated embodiment of
In some aspects, one or more of the playback zones in the environment 101 may each be playing different audio content. For instance, a user may be grilling on the patio 101i and listening to hip hop music being played by the playback device 110c while another user is preparing food in the kitchen 101h and listening to classical music played by the playback device 110b. In another example, a playback zone may play the same audio content in synchrony with another playback zone. For instance, the user may be in the office 101e listening to the playback device 110f playing back the same hip hop music being played back by playback device 110c on the patio 101i. In some aspects, the playback devices 110c and 110f play back the hip hop music in synchrony such that the user perceives that the audio content is being played seamlessly (or at least substantially seamlessly) while moving between different playback zones.
Example synchrony techniques involve a group coordinator providing audio content and timing information to one or more group members to facilitate synchronous playback among the group coordinator and the group members. Additional details regarding audio playback synchronization among playback devices and/or zones can be found, for example, in U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is incorporated herein by reference in its entirety.
a. Suitable Media Playback System
The links 103 can comprise, for example, one or more wired networks, one or more wireless networks, one or more wide area networks (WAN), one or more local area networks (LAN), one or more personal area networks (PAN), one or more telecommunication networks (e.g., one or more Global System for Mobiles (GSM) networks, Code Division Multiple Access (CDMA) networks, Long-Term Evolution (LTE) networks, 5G communication network networks, and/or other suitable data transmission protocol networks), etc. The cloud network 102 is configured to deliver media content (e.g., audio content, video content, photographs, social media content) to the media playback system 100 in response to a request transmitted from the media playback system 100 via the links 103. In some embodiments, the cloud network 102 is further configured to receive data (e.g. voice input data) from the media playback system 100 and correspondingly transmit commands and/or media content to the media playback system 100.
The cloud network 102 includes computing devices 106 (identified separately as a first computing device 106a, a second computing device 106b, and a third computing device 106c). The computing devices 106 can comprise individual computers or servers, such as, for example, a media streaming service server storing audio and/or other media content, a voice service server, a social media server, a media playback system control server, etc. In some embodiments, one or more of the computing devices 106 comprise modules of a single computer or server. In certain embodiments, one or more of the computing devices 106 comprise one or more modules, computers, and/or servers. Moreover, while the cloud network 102 is described above in the context of a single cloud network, in some embodiments the cloud network 102 includes a plurality of cloud networks comprising communicatively coupled computing devices. Furthermore, while the cloud network 102 is shown in
The media playback system 100 is configured to receive media content from the networks 102 via the links 103. The received media content can comprise, for example, a Uniform Resource Identifier (URI) and/or a Uniform Resource Locator (URL). For instance, in some examples, the media playback system 100 can stream, download, or otherwise obtain data from a URI or a URL corresponding to the received media content. A network 104 communicatively couples the links 103 and at least a portion of the devices (e.g., one or more of the playback devices 110, NMDs 120, and/or control devices 130) of the media playback system 100. The network 104 can include, for example, a wireless network (e.g., a WiFi network, a Bluetooth, a Z-Wave network, a ZigBee, and/or other suitable wireless communication protocol network) and/or a wired network (e.g., a network comprising Ethernet, Universal Serial Bus (USB), and/or another suitable wired communication). As those of ordinary skill in the art will appreciate, as used herein, “WiFi” can refer to several different communication protocols including, for example, Institute of Electrical and Electronics Engineers (IEEE) 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ac, 802.11ad, 802.11af, 802.11ah, 802.11ai, 802.11aj, 802.11aq, 802.11ax, 802.11ay, 802.15, etc. transmitted at 2.4 Gigahertz (GHz), 5 GHz, and/or another suitable frequency.
In some embodiments, the network 104 includes a dedicated communication network that the media playback system 100 uses to transmit messages between individual devices and/or to transmit media content to and from media content sources (e.g., one or more of the computing devices 106). In certain embodiments, the network 104 is configured to be accessible only to devices in the media playback system 100, thereby reducing interference and competition with other household devices. In other embodiments, however, the network 104 includes an existing household communication network (e.g., a household WiFi network). In some embodiments, the links 103 and the network 104 comprise one or more of the same networks. In some aspects, for example, the links 103 and the network 104 comprise a telecommunication network (e.g., an LTE network, a 5G network). Moreover, in some embodiments, the media playback system 100 is implemented without the network 104, and devices comprising the media playback system 100 can communicate with each other, for example, via one or more direct connections, PANs, telecommunication networks, and/or other suitable communication links.
In some embodiments, audio content sources may be regularly added or removed from the media playback system 100. In some embodiments, for example, the media playback system 100 performs an indexing of media items when one or more media content sources are updated, added to, and/or removed from the media playback system 100. The media playback system 100 can scan identifiable media items in some or all folders and/or directories accessible to the playback devices 110, and generate or update a media content database comprising metadata (e.g., title, artist, album, track length) and other associated information (e.g., URIs, URLs) for each identifiable media item found. In some embodiments, for example, the media content database is stored on one or more of the playback devices 110, network microphone devices 120, and/or control devices 130.
In the illustrated embodiment of
The media playback system 100 includes the NMDs 120a and 120d, each comprising one or more microphones configured to receive voice utterances from a user. In the illustrated embodiment of
b. Suitable Playback Devices
The playback device 110a, for example, can receive media content (e.g., audio content comprising music and/or other sounds) from a local audio source 105 via the input/output 111 (e.g., a cable, a wire, a PAN, a Bluetooth connection, an ad hoc wired or wireless communication network, and/or another suitable communication link). The local audio source 105 can comprise, for example, a mobile device (e.g., a smartphone, a tablet, a laptop computer) or another suitable audio component (e.g., a television, a desktop computer, an amplifier, a phonograph, a Blu-ray player, a memory storing digital media files). In some aspects, the local audio source 105 includes local music libraries on a smartphone, a computer, a networked-attached storage (NAS), and/or another suitable device configured to store media files. In certain embodiments, one or more of the playback devices 110, NMDs 120, and/or control devices 130 comprise the local audio source 105. In other embodiments, however, the media playback system omits the local audio source 105 altogether. In some embodiments, the playback device 110a does not include an input/output 111 and receives all audio content via the network 104.
The playback device 110a further includes electronics 112, a user interface 113 (e.g., one or more buttons, knobs, dials, touch-sensitive surfaces, displays, touchscreens), and one or more transducers 114 (referred to hereinafter as “the transducers 114”). The electronics 112 is configured to receive audio from an audio source (e.g., the local audio source 105) via the input/output 111, one or more of the computing devices 106a-c via the network 104 (
In the illustrated embodiment of
The processors 112a can comprise clock-driven computing component(s) configured to process data, and the memory 112b can comprise a computer-readable medium (e.g., a tangible, non-transitory computer-readable medium, data storage loaded with one or more of the software components 112c) configured to store instructions for performing various operations and/or functions. The processors 112a are configured to execute the instructions stored on the memory 112b to perform one or more of the operations. The operations can include, for example, causing the playback device 110a to retrieve audio data from an audio source (e.g., one or more of the computing devices 106a-c (
The processors 112a can be further configured to perform operations causing the playback device 110a to synchronize playback of audio content with another of the one or more playback devices 110. As those of ordinary skill in the art will appreciate, during synchronous playback of audio content on a plurality of playback devices, a listener will preferably be unable to perceive time-delay differences between playback of the audio content by the playback device 110a and the other one or more other playback devices 110. Additional details regarding audio playback synchronization among playback devices can be found, for example, in U.S. Pat. No. 8,234,395, which was incorporated by reference above.
In some embodiments, the memory 112b is further configured to store data associated with the playback device 110a, such as one or more zones and/or zone groups of which the playback device 110a is a member, audio sources accessible to the playback device 110a, and/or a playback queue that the playback device 110a (and/or another of the one or more playback devices) can be associated with. The stored data can comprise one or more state variables that are periodically updated and used to describe a state of the playback device 110a. The memory 112b can also include data associated with a state of one or more of the other devices (e.g., the playback devices 110, NMDs 120, control devices 130) of the media playback system 100. In some aspects, for example, the state data is shared during predetermined intervals of time (e.g., every 5 seconds, every 10 seconds, every 60 seconds) among at least a portion of the devices of the media playback system 100, so that one or more of the devices have the most recent data associated with the media playback system 100.
The network interface 112d is configured to facilitate a transmission of data between the playback device 110a and one or more other devices on a data network such as, for example, the links 103 and/or the network 104 (
In the illustrated embodiment of
The audio components 112g are configured to process and/or filter data comprising media content received by the electronics 112 (e.g., via the input/output 111 and/or the network interface 112d) to produce output audio signals. In some embodiments, the audio processing components 112g comprise, for example, one or more digital-to-analog converters (DAC), audio preprocessing components, audio enhancement components, a digital signal processors (DSPs), and/or other suitable audio processing components, modules, circuits, etc. In certain embodiments, one or more of the audio processing components 112g can comprise one or more subcomponents of the processors 112a. In some embodiments, the electronics 112 omits the audio processing components 112g. In some aspects, for example, the processors 112a execute instructions stored on the memory 112b to perform audio processing operations to produce the output audio signals.
The amplifiers 112h are configured to receive and amplify the audio output signals produced by the audio processing components 112g and/or the processors 112a. The amplifiers 112h can comprise electronic devices and/or components configured to amplify audio signals to levels sufficient for driving one or more of the transducers 114. In some embodiments, for example, the amplifiers 112h include one or more switching or class-D power amplifiers. In other embodiments, however, the amplifiers include one or more other types of power amplifiers (e.g., linear gain power amplifiers, class-A amplifiers, class-B amplifiers, class-AB amplifiers, class-C amplifiers, class-D amplifiers, class-E amplifiers, class-F amplifiers, class-G and/or class H amplifiers, and/or another suitable type of power amplifier). In certain embodiments, the amplifiers 112h comprise a suitable combination of two or more of the foregoing types of power amplifiers. Moreover, in some embodiments, individual ones of the amplifiers 112h correspond to individual ones of the transducers 114. In other embodiments, however, the electronics 112 includes a single one of the amplifiers 112h configured to output amplified audio signals to a plurality of the transducers 114. In some other embodiments, the electronics 112 omits the amplifiers 112h.
The transducers 114 (e.g., one or more speakers and/or speaker drivers) receive the amplified audio signals from the amplifier 112h and render or output the amplified audio signals as sound (e.g., audible sound waves having a frequency between about 20 Hertz (Hz) and 20 kilohertz (kHz)). In some embodiments, the transducers 114 can comprise a single transducer. In other embodiments, however, the transducers 114 comprise a plurality of audio transducers. In some embodiments, the transducers 114 comprise more than one type of transducer. For example, the transducers 114 can include one or more low frequency transducers (e.g., subwoofers, woofers), mid-range frequency transducers (e.g., mid-range transducers, mid-woofers), and one or more high frequency transducers (e.g., one or more tweeters). As used herein, “low frequency” can generally refer to audible frequencies below about 500 Hz, “mid-range frequency” can generally refer to audible frequencies between about 500 Hz and about 2 kHz, and “high frequency” can generally refer to audible frequencies above 2 kHz. In certain embodiments, however, one or more of the transducers 114 comprise transducers that do not adhere to the foregoing frequency ranges. For example, one of the transducers 114 may comprise a mid-woofer transducer configured to output sound at frequencies between about 200 Hz and about 5 kHz.
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including, for example, a “SONOS ONE,” “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “PLAYBASE,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Other suitable playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, one of ordinary skilled in the art will appreciate that a playback device is not limited to the examples described herein or to SONOS product offerings. In some embodiments, for example, one or more playback devices 110 includes wired or wireless headphones (e.g., over-the-ear headphones, on-ear headphones, in-ear earphones). In other embodiments, one or more of the playback devices 110 comprise a docking station and/or an interface configured to interact with a docking station for personal mobile media playback devices. In certain embodiments, a playback device may be integral to another device or component such as a television, a lighting fixture, or some other device for indoor or outdoor use. In some embodiments, a playback device omits a user interface and/or one or more transducers. For example,
c. Suitable Network Microphone Devices (NMDs)
In some embodiments, an NMD can be integrated into a playback device.
Referring again to
After detecting the activation word, voice processing 124 monitors the microphone data for an accompanying user request in the voice input. The user request may include, for example, a command to control a third-party device, such as a thermostat (e.g., NEST® thermostat), an illumination device (e.g., a PHILIPS HUE® lighting device), or a media playback device (e.g., a Sonos® playback device). For example, a user might speak the activation word “Alexa” followed by the utterance “set the thermostat to 68 degrees” to set a temperature in a home (e.g., the environment 101 of
d. Suitable Control Devices
The control device 130a includes electronics 132, a user interface 133, one or more speakers 134, and one or more microphones 135. The electronics 132 comprise one or more processors 132a (referred to hereinafter as “the processors 132a”), a memory 132b, software components 132c, and a network interface 132d. The processor 132a can be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 132b can comprise data storage that can be loaded with one or more of the software components executable by the processor 302 to perform those functions. The software components 132c can comprise applications and/or other executable software configured to facilitate control of the media playback system 100. The memory 112b can be configured to store, for example, the software components 132c, media playback system controller application software, and/or other data associated with the media playback system 100 and the user.
The network interface 132d is configured to facilitate network communications between the control device 130a and one or more other devices in the media playback system 100, and/or one or more remote devices. In some embodiments, the network interface 132 is configured to operate according to one or more suitable communication industry standards (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G, LTE). The network interface 132d can be configured, for example, to transmit data to and/or receive data from the playback devices 110, the NMDs 120, other ones of the control devices 130, one of the computing devices 106 of
The user interface 133 is configured to receive user input and can facilitate control of the media playback system 100. The user interface 133 includes media content art 133a (e.g., album art, lyrics, videos), a playback status indicator 133b (e.g., an elapsed and/or remaining time indicator), media content information region 133c, a playback control region 133d, and a zone indicator 133e. The media content information region 133c can include a display of relevant information (e.g., title, artist, album, genre, release year) about media content currently playing and/or media content in a queue or playlist. The playback control region 133d can include selectable (e.g., via touch input and/or via a cursor or another suitable selector) icons to cause one or more playback devices in a selected playback zone or zone group to perform playback actions such as, for example, play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode, etc. The playback control region 133d may also include selectable icons to modify equalization settings, playback volume, and/or other suitable playback actions. In the illustrated embodiment, the user interface 133 includes a display presented on a touch screen interface of a smartphone (e.g., an iPhone™, an Android phone). In some embodiments, however, user interfaces of varying formats, styles, and interactive sequences may alternatively be implemented on one or more network devices to provide comparable control access to a media playback system.
The one or more speakers 134 (e.g., one or more transducers) can be configured to output sound to the user of the control device 130a. In some embodiments, the one or more speakers comprise individual transducers configured to correspondingly output low frequencies, mid-range frequencies, and/or high frequencies. In some aspects, for example, the control device 130a is configured as a playback device (e.g., one of the playback devices 110). Similarly, in some embodiments the control device 130a is configured as an NMD (e.g., one of the NMDs 120), receiving voice commands and other sounds via the one or more microphones 135.
The one or more microphones 135 can comprise, for example, one or more condenser microphones, electret condenser microphones, dynamic microphones, and/or other suitable types of microphones or transducers. In some embodiments, two or more of the microphones 135 are arranged to capture location information of an audio source (e.g., voice, audible sound) and/or configured to facilitate filtering of background noise. Moreover, in certain embodiments, the control device 130a is configured to operate as playback device and an NMD. In other embodiments, however, the control device 130a omits the one or more speakers 134 and/or the one or more microphones 135. For instance, the control device 130a may comprise a device (e.g., a thermostat, an IoT device, a network device) comprising a portion of the electronics 132 and the user interface 133 (e.g., a touch screen) without any speakers or microphones. Additional control device embodiments are described in further detail below with respect to
e. Suitable Playback Device Configurations
Each zone in the media playback system 100 may be provided for control as a single user interface (UI) entity. For example, Zone A may be provided as a single entity named Master Bathroom. Zone B may be provided as a single entity named Master Bedroom. Zone C may be provided as a single entity named Second Bedroom.
Playback devices that are bonded may have different playback responsibilities, such as responsibilities for certain audio channels. For example, as shown in
Additionally, bonded playback devices may have additional and/or different respective speaker drivers. As shown in
Playback devices that are merged may not have assigned playback responsibilities, and may each render the full range of audio content the respective playback device is capable of. Nevertheless, merged devices may be represented as a single UI entity (i.e., a zone, as discussed above). For instance, the playback devices 110a and 110n the master bathroom have the single UI entity of Zone A. In one embodiment, the playback devices 110a and 110n may each output the full range of audio content each respective playback devices 110a and 110n are capable of, in synchrony.
In some embodiments, an NMD is bonded or merged with another device so as to form a zone. For example, the NMD 120b may be bonded with the playback device 110e, which together form Zone F, named Living Room. In other embodiments, a stand-alone network microphone device may be in a zone by itself. In other embodiments, however, a stand-alone network microphone device may not be associated with a zone. Additional details regarding associating network microphone devices and playback devices as designated or default devices may be found, for example, in previously referenced U.S. patent application Ser. No. 15/438,749.
Zones of individual, bonded, and/or merged devices may be grouped to form a zone group. For example, referring to
In various implementations, the zones in an environment may be the default name of a zone within the group or a combination of the names of the zones within a zone group. For example, Zone Group 108b can have be assigned a name such as “Dining+Kitchen”, as shown in
Certain data may be stored in a memory of a playback device (e.g., the memory 112c of
In some embodiments, the memory may store instances of various variable types associated with the states. Variables instances may be stored with identifiers (e.g., tags) corresponding to type. For example, certain identifiers may be a first type “a1” to identify playback device(s) of a zone, a second type “b1” to identify playback device(s) that may be bonded in the zone, and a third type “c1” to identify a zone group to which the zone may belong. As a related example, identifiers associated with the second bedroom 101c may indicate that the playback device is the only playback device of the Zone C and not in a zone group. Identifiers associated with the Den may indicate that the Den is not grouped with other zones but includes bonded playback devices 110h-110k. Identifiers associated with the Dining Room may indicate that the Dining Room is part of the Dining+Kitchen zone group 108b and that devices 110b and 110d are grouped (
In yet another example, the media playback system 100 may store variables or identifiers representing other associations of zones and zone groups, such as identifiers associated with Areas, as shown in
In further examples, the playback devices 110 of the media playback system 100 are named and arranged according to a control hierarchy referred to as home graph. Under the home graph hierarchy, the base unit of the home graph hierarchy is a “Set.” A “Set” refers to an individual device or multiple devices that operate together in performing a given function, such as an individual playback device 110 or a bonded zone of playback devices. After Sets, the next level of the hierarchy is a “Room.” Under the home graph hierarchy, a “Room” can be considered a container for Sets in a given room of a home. For example, an example Room might correspond to the kitchen of a home, and be assigned the name “Kitchen” and include one or more Sets (e.g. “Kitchen Island”). The next level of the example home graph hierarchy is “Area,” which includes two or more Rooms (e.g., “Upstairs” or “Downstairs”). The highest level of the home graph hierarchy is “Home.” A Home refers to the entire home, and all of the Sets within. Each level of the home graph hierarchy is assigned a human-readable name, which facilities control via GUI and VUI. Additional details regarding the home graph control hierarchy can be found, for example, in U.S. patent application Ser. No. 16/216,357 entitled, “Home Graph,” which is incorporated herein by reference in its entirety.
The transducers 214 are configured to receive the electrical signals from the electronics 112, and further configured to convert the received electrical signals into audible sound during playback. For instance, the transducers 214a-c (e.g., tweeters) can be configured to output high frequency sound (e.g., sound waves having a frequency greater than about 2 kHz). The transducers 214d-f (e.g., mid-woofers, woofers, midrange speakers) can be configured output sound at frequencies lower than the transducers 214a-c (e.g., sound waves having a frequency lower than about 2 kHz). In some embodiments, the playback device 210 includes a number of transducers different than those illustrated in
In the illustrated embodiment of
Electronics 312 (
Referring to
Referring to
The playback zone region 533b can include representations of playback zones within the media playback system 100 (
The playback status region 533c includes graphical representations of audio content that is presently being played, previously played, or scheduled to play next in the selected playback zone or zone group. The selected playback zone or zone group may be visually distinguished on the user interface, such as within the playback zone region 533b and/or the playback queue region 533d. The graphical representations may include track title, artist name, album name, album year, track length, and other relevant information that may be useful for the user to know when controlling the media playback system 100 via the user interface 531.
The playback queue region 533d includes graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device. In some embodiments, for example, a playlist can be added to a playback queue, in which information corresponding to each audio item in the playlist may be added to the playback queue. In some embodiments, audio items in a playback queue may be saved as a playlist. In certain embodiments, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In some embodiments, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items.
When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped.
At step 650a, the media playback system 100 receives an indication of selected media content (e.g., one or more songs, albums, playlists, podcasts, videos, stations) via the control device 130a. The selected media content can comprise, for example, media items stored locally on or more devices (e.g., the audio source 105 of
At step 650b, the playback device 110a receives the message 651a and adds the selected media content to the playback queue for play back.
At step 650c, the control device 130a receives input corresponding to a command to play back the selected media content. In response to receiving the input corresponding to the command to play back the selected media content, the control device 130a transmits a message 651b to the playback device 110a causing the playback device 110a to play back the selected media content. In response to receiving the message 651b, the playback device 110a transmits a message 651c to the computing device 106a requesting the selected media content. The computing device 106a, in response to receiving the message 651c, transmits a message 651d comprising data (e.g., audio data, video data, a URL, a URI) corresponding to the requested media content.
At step 650d, the playback device 110a receives the message 651d with the data corresponding to the requested media content and plays back the associated media content.
At step 650e, the playback device 110a optionally causes one or more other devices to play back the selected media content. In one example, the playback device 110a is one of a bonded zone of two or more players (
As noted above, certain playback device implementations may be configured for portable use.
As shown in the block diagram of
Referring to
The playback device 710a further includes electronics 712, a user interface 713 (e.g., one or more buttons, knobs, dials, touch-sensitive surfaces, displays, touchscreens), and one or more transducers 714 (referred to hereinafter as “the transducers 714”). The electronics 712 is configured to receive audio from an audio source via the input/output 711, one or more of the computing devices 106a-c via the network 104 (
In the illustrated embodiment of
The network interface 712d is configured to facilitate a transmission of data between the playback device 710a and one or more other devices on a data network such as, for example, the links 103 and/or the network 104 (
In the illustrated embodiment of
The audio components 712g are configured to process and/or filter data comprising media content received by the electronics 712 (e.g., via the input/output 711 and/or the network interface 712d) to produce output audio signals. In some embodiments, the audio processing components 712g comprise, for example, one or more digital-to-analog converters (DAC), audio preprocessing components, audio enhancement components, a digital signal processors (DSPs), and/or other suitable audio processing components, modules, circuits, etc. In certain embodiments, one or more of the audio processing components 712g can comprise one or more subcomponents of the processors 712a. In some embodiments, the electronics 712 omits the audio processing components 712g. In some aspects, for example, the processors 712a execute instructions stored on the memory 712b to perform audio processing operations to produce the output audio signals.
The amplifiers 712h are configured to receive and amplify the audio output signals produced by the audio processing components 712g and/or the processors 712a. The amplifiers 7712h can comprise electronic devices and/or components configured to amplify audio signals to levels sufficient for driving one or more of the transducers 714. In some embodiments, for example, the amplifiers 712h include one or more switching or class-D power amplifiers. In other embodiments, however, the amplifiers include one or more other types of power amplifiers (e.g., linear gain power amplifiers, class-A amplifiers, class-B amplifiers, class-AB amplifiers, class-C amplifiers, class-D amplifiers, class-E amplifiers, class-F amplifiers, class-G and/or class H amplifiers, and/or another suitable type of power amplifier). In certain embodiments, the amplifiers 712h comprise a suitable combination of two or more of the foregoing types of power amplifiers. Moreover, in some embodiments, individual ones of the amplifiers 712h correspond to individual ones of the transducers 714. In other embodiments, however, the electronics 712 includes a single one of the amplifiers 712h configured to output amplified audio signals to a plurality of the transducers 714.
The transducers 714 (e.g., one or more speakers and/or speaker drivers) receive the amplified audio signals from the amplifier 712h and render or output the amplified audio signals as sound (e.g., audible sound waves having a frequency between about 20 Hertz (Hz) and 20 kilohertz (kHz)). In some embodiments, the transducers 714 can comprise a single transducer. In other embodiments, however, the transducers 714 comprise a plurality of audio transducers. In some embodiments, the transducers 714 comprise more than one type of transducer. For example, the transducers 714 can include one or more low frequency transducers (e.g., subwoofers, woofers), mid-range frequency transducers (e.g., mid-range transducers, mid-woofers), and one or more high frequency transducers (e.g., one or more tweeters).
Within example implementations, the playback device 710 may operate in one of a first mode and a second mode. In the first mode, the playback device 710 operates independently of the media playback system 100. While in the second mode, the playback device 710 operates as part of the media playback system 100. Generally, the playback device 710 operates in the first mode while in the physical proximity of the media playback system 100 (e.g., while in the home) to facilitate interoperability with the playback device 110a-n of the media playback system 100 and operates in the second mode while “on the go,” but the playback device 710 may also be operable in the second mode while in the physical proximity of the media playback system 100. The portable playback device 710 may switch between modes manually (e.g., via user input to a user interface 713) or automatically (e.g., based on proximity to one or more playback devices 110a-n).
In the first mode, the portable playback device 710 may interface with other devices of the media playback system 100. For instance, the portable playback device 710 may form synchrony groupings or other arrangements with the playback devices 110a-n and/or other portable playback devices 710 in the first mode. Further, in the first mode, the portable playback device 710 may be controlled by the control device(s) 130 in the same or similar manner as the playback device(s) 110.
In the second mode, rather than operating as one playback device of the media playback system 100, the portable playback device 710 operates independently. As noted above, this mode can be utilized “on the go” to facilitate playback away from the media playback system 100. Further, this mode can be used in proximity to the media playback system 100, which may facilitate more private use of the portable playback device 710a.
Examples of the microphones 808 can be used for a variety of noise capturing functions such as acoustic noise cancellation (ANC), ambient audio pass-through, voice command capture, and telephony. As an example, ambient audio pass-through facilitates conveying ambient audio generated from sources outside of the portable playback device 710a to the transducers of the portable playback device 710a. In an example, one or more of the microphones 808 are arranged on an exterior of the second earcup 804. For instance, a first microphone 808A is arranged on an outside housing of the second earcup 804. An example of the first microphone 808A is configured to receive ambient noise that facilitates the performance of noise cancellation. A second microphone 808B is arranged on the outside of the second earcup 804. An example of the second microphone 808B facilitates receiving voice commands from a user of the portable playback device 710a. In some cases, a single microphone can facilitate the performance of one or more of noise cancellation operations, the receiving of voice commands, and the receiving of audio for telephony.
In some examples, one or more other microphones 808 are arranged on an interior of the second earcup 804. That is, the microphone(s) are arranged on the side of the earcup 804 that faces the user's ear and which cooperates with cushions 811 of the earcup 804 to encapsulate the user's ear when the portable playback device 710a is worn. For instance, in an example, a third microphone 808C is arranged within the second earcup 804. The third microphone 808C facilitates monitoring audio signals communicated from a speaker of the portable playback device 710a and can further facilitate the performance of noise cancellation, ambient audio pass-through, audio equalization, etc.
Examples of the visual indicators 810 correspond to illumination devices such as a light-emitting diode (LED) or the like. In some examples, the visual indicators 810 are configured to indicate different states. For instance, an example of a visual indicator includes a plurality of different colored LEDs (e.g., red, green, blue). Different color combinations can be activated to represent different states such as the charging state and/or battery life of the portable device 710a, whether the portable device 710a is in communication with a network and/or paired with other devices. In some examples, the visual indicators 810 indicate whether one or more microphones 808 are actively monitoring audio such as listening for voice commands, performing noise cancellation, etc.
In an example, one or more of the visual indicators 810 correspond to exterior visual indicators 810A and are arranged on an exterior of the second earcup 804. For instance, an example of the exterior visual indicator 810A indicates the charge state level (e.g., 50% full, 100% full) of the portable playback device 710a. An example of the exterior visual indicator 810A indicates the network/pairing state (e.g., Bluetooth® paired, WiFi Paired) of the playback device. In some instances, a single exterior visual indicator 810 is used to represent multiple states, such as battery level, power state (e.g., on or off), pairing state, etc. The state can be represented by a particular color, flashing rate, or a combination of the two.
In an example, other visual indicators 810 correspond to interior visual indicators 810B and are arranged in or on a user-facing surface 807 of an interior of the second earcup 804. That is, on the side of the earcup 804 that faces the user's ear, and that cooperates with the cushions 811 of the earcup 804 to encapsulate the user's ear when the portable playback device 710a is worn. In this configuration, when the portable playback device 710a is worn by the user, the interior visual indicator 810B is concealed such that an outside observer cannot ascertain whether the interior visual indicator 810B is illuminated. On the other hand, when the portable playback device 710a is, for example, laying on a table, the state of the interior visual indicator 810B (e.g., illuminated or not) can be ascertained by an outside observer having a clear line of sight to the inside of the earcup 804.
In an example, the interior visual indicator 810B is hardwired to microphone circuitry coupled to the microphones 808 such that whenever any of the microphones 808 are actively receiving and processing audio signals, the interior visual indicator 810B is illuminated. For example, when any of the first microphone 808A, the second microphone 808B, or the third microphone 808C described above is actively receiving and processing audio signals, the interior visual indicator 810B is in an illuminated state. When all of the microphones are deactivated, the interior visual indicator 810B is in an unilluminated state. Hardwiring of the interior visual indicator 810B in this manner prevents activation of the microphones without simultaneous alerting of the user of the portable playback device 710a that the microphones 808 are active. For example, the hardwiring as opposed to, for example, separate software activation of the interior visual indicator 810B prevents malicious activation of the microphones 808 without the user's knowledge. In some examples, the particular state that the interior visual indicator 810B is in is independent of whether the portable playback device 710a is being worn. That is, the interior visual indicator 810B remains illuminated or unilluminated, as the case may be, regardless of whether the user is wearing the portable playback device 710a.
As noted above, an example of the playback device 710a can receive user input (e.g., button press on the headphone, a command from a control device) that results in the muting or unmuting of the microphones 808. In response to receiving the user input, the microphone circuitry can mute or turn off one or more of the microphones 808. This, in turn, results in the interior visual indicator 810B being illuminated (i.e., when unmuting) and becoming unilluminated (i.e., when muted).
In an example, the insert 910 is formed from a material that is opaque, semi-transparent, or transparent to light to facilitate the transmission of light through the insert 910. In an example, the material corresponds to clear silicon. In another example, the material corresponds to a clear polymer material. A sealant may be added between the insert 910 and the speaker plate to acoustically seal the visual indicator 902. The acoustic seal prevents acoustic leaks that may affect acoustic performance.
The microphone circuitry 1000 includes a group of pre-amplifier/analog-to-digital (ADC) circuits 1020 and a visual indicator 1010. An example of the visual indicator 1010 corresponds to the interior visual indicator 810B described above. In the example microphone circuitry 1000, each pre-amp/ADC is coupled to a microphone 808. For instance, in an example, a first pre-amp/ADC 1020A is coupled to a first microphone 808A, and the first microphone 808A is configured to receive ambient noise that facilitates the performance of noise cancellation. A second pre-amp/ADC 1020B is coupled to a second microphone 808B and the second microphone 808B facilitates receiving voice commands from a user of the portable playback device 710a. A third pre-amp/ADC 1020C is coupled to a third microphone 808C, and the third microphone 808C facilitates monitoring audio signals communicated from a speaker of the portable playback device 710a and can further facilitate the performance of noise cancellation.
In the example microphone circuitry 1000, the visual indicator 1100 corresponds to an LED, and the LED is coupled in series with the power supply 1005 of the microphone circuitry 1000. In this manner, current is required to flow through the LED to facilitate the operation of the preamp/ADC circuits 1020. This, in turn, ensures that the visual indicator 1010 is illuminated when any of the microphones is actively monitoring audio.
Other examples of the microphone circuitry 1050 can represent the state of the various microphones 808 differently. For instance, in another example, a single LED is configured to flash at a periodic rate. The rate at which the LED flashes can indicate the state of the respective microphones 808. For example, a slow rate can indicate that one microphone is actively listening, and a fast rate can indicate that all of the microphones are actively listening.
In some examples, the switch circuit 1025 includes a timer that operates to deactivate the preamp/ADC circuits 1020 after a predetermined amount of time to prevent the monitoring of audio content received via the microphones 808. In doing so, the visual indicator 1010 transitions to an unilluminated state. In some examples, the predetermined time is set by instruction code based on the type of audio content expected to be received. For example, the predetermined amount of time may be set to one hour or longer when noise cancellation is active. The predetermined amount of time may be set to 10 seconds when the microphones are receiving voice commands from the user. In some examples, the timer corresponds to a so-called watchdog timer that prevents continuous operation of the microphone circuitry 1050 in the case where, for example, the instruction code inadvertently leaves the microphone circuitry 1050 in an operational state and receiving audio content.
At block 1100, the portable playback device 710a receives a power activation indication. For example, a user of the portable playback device 710a may, via a user interface of the portable playback device 710a, cause the portable playback device 710a to be powered on to facilitate playback of audio content. The audio content may be streamed via WIFI, Bluetooth®, cellular, etc. The audio content may be communicated via a patch cord (e.g., 3.5 mm audio cable, data cable) that couples the portable playback device 710a to an audio content source, such as a HiFi receiver or a data interface providing audio data (e.g., Universal Serial Bus (USB)).
At block 1105, in response to receiving the power activation indication, power is supplied to at least one external visual indicator disposed on an outward-facing portion of an earcup of the portable playback device 710a via a first power supply path 1008 of the portable playback device 710a. For example, after receiving the power activation, the first visual indicator described above can be illuminated to indicate that the portable playback device 710a is powered on.
At block 1110, a microphone activation indication associated with at least one microphone of the portable playback device 710a is received by the portable playback device 710a. For example, the user of the portable playback device 710a may, via the user interface of the portable playback device 710a, control the portable playback device 710a to receive and processes a voice command. The user of the portable playback device 710a may activate noise cancellation.
In some examples, the microphone activation indication may occur by way of a controller in communication with the portable playback device 710a that includes a user interface with user interface elements that facilitate activation of at least one microphone. For example, the user may activate noise cancellation of the portable playback device via an app operating on a mobile device. The user may initiate or receive a phone call on a mobile device that is paired to the portable playback device 710, which causes at least one microphone to be activated.
At block 1115, microphone circuitry associated with the microphone may be activated in response to receiving the microphone activation indication. For example, in response to receiving an indication that facilitates voice commands, the second microphone 808B described above, which facilitates receiving voice commands from a user of the portable playback device 710a, may be activated via the microphone circuit. In response to receiving an indication that facilitates noise cancellation, the first microphone 808A or third microphone 808C, described above, which facilitates the performance of noise cancellation operations, may be activated via the microphone circuit.
In some examples, activating the microphone circuit comprises supplying power to the microphone circuit via a second power supply path 1009 that is independently operated from the first power supply path 1008. For instance, as described in
At block 1120, an interior visual indicator disposed within a user-facing surface 807 of an earcup 804 of the portable playback device 710a may be illuminated. As noted above, the earcup is configured to encapsulate an ear of the user. When the portable playback device 710a is worn by the user, the state of the interior visual indicator is concealed.
In some examples, subsequent to activation of the microphone circuit, the microphone circuit is deactivated after a predetermined period of inactivity of the microphone. When the microphone circuit is deactivated, the interior visual indicator is in an unilluminated state.
In some examples, when any of the first microphone 808A, the second microphone 808B, or the third microphone 808C is actively receiving audio signals, the interior visual indicator is in an illuminated state. And when all of the first microphone 808A, the second microphone 808B, and the third microphone 808C are deactivated, the interior visual indicator is in an unilluminated state. Further, in some examples, the interior visual indicator is configured to indicate a plurality of illuminated states. For instance, in an example, a first illuminated state is associated with activation of the first microphone 808A, a second illuminated state is associated with activation of the second microphone 808B, and a third illuminate state is associated with activation of the third microphone 808C. In an example, the plurality of illuminated states correspond to different colors.
Block 1205 involves, responsive to receiving the power activation indication, supplying power to at least one exterior visual indicator disposed on an outward-facing portion of an earcup of the portable playback device via a first power supply path of the portable playback device.
Block 1210 involves receiving, via the portable playback device, a microphone activation indication associated with at least one microphone of the portable playback device.
Block 1215 involves responsive to receiving the microphone activation indication, activating microphone circuitry associated with the at least one microphone.
Block 1220 involves illuminating an interior visual indicator disposed within a user-facing surface of the earcup of the portable playback device, wherein the interior visual indicator is positioned such that when the portable playback device is worn by a user, a state of the interior visual indicator is concealed, and when the portable playback device is not worn by the user, a state of the interior visual indicator is visible.
Some examples involve supplying power to the exterior visual indicator via a first power supply path. Wherein activating the microphone circuit further involves supplying power to the microphone circuit via a second power supply path that is independently operated from the first power supply path.
In some examples, receiving the microphone activation indication further involves receiving a user actuation via a user interface of the portable playback device to activate the at least one microphone.
In some examples, receiving the microphone activation indication further involves receiving a user actuation via a controller in communication with the portable playback device that includes a user interface with user interface elements that facilitate activation of the at least one microphone.
Some examples involve, subsequent to activation of the microphone circuit, deactivating the microphone circuit after a predetermined period of inactivity of the microphone, wherein when the microphone circuit is deactivated, the interior visual indicator transitions to an unilluminated state.
In some examples, the at least one microphone is one of a plurality of microphones that comprise: a first microphone arranged on an outside housing of the portable playback devices that is configured to receive ambient noise and facilitate performance of noise cancellation, a second microphone arranged on the outside housing that facilitates receiving voice commands from a user of the portable playback device, and a third microphone arranged within the earcup the portable playback device configured to encapsulate an ear of the user and which is configured to facilitate monitoring of audio signals communicated from a speaker of the portable playback device. The audio signals of the third microphone may be used to facilitate noise cancellation in addition to or instead of the audio signals of the first microphone.
In some examples, illuminating the interior visual indicator further involves illuminating the interior visual indicator when any of the first microphone, the second microphone, or the third microphone is actively receiving audio signals, the interior visual indicator is in an illuminated state. This example further involves transitioning the interior visual indicator to an unilluminated state when all of the first microphone, the second microphone, and the third microphone are deactivated, the interior visual indicator is in an unilluminated state.
In some examples, the interior visual indicator is configured to indicate a plurality of illuminated states, wherein a first illuminated state is associated with activation of the first microphone, a second illuminated state is associated with activation of the second microphone, and a third illuminated state is associated with activation of the third microphone.
In some examples, the plurality of illuminated states correspond to different colors.
Some examples involves maintaining a state of the interior visual indicator in an illuminated state while the state of the interior visual indicator is concealed.
In some examples, the microphone circuit is configured to control the interior visual indicator to illuminate when the microphone circuit is activated.
In some examples, the microphone circuit is configured to control the interior visual indicator to illuminate when power supply current flows into the microphone circuit.
The above discussions relating to portable playback devices, playback devices, control devices, playback zone configurations, and media content sources provide only some examples of operating environments within which functions and methods described below may be implemented. Other operating environments and configurations of media playback systems, playback devices, and network devices not explicitly described herein may also be applicable and suitable for implementation of the functions and methods.
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only ways) to implement such systems, methods, apparatus, and/or articles of manufacture.
Additionally, references herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of an invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the foregoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application claims priority under 35 U.S.C. § 120 to and is a continuation of U.S. application Ser. No. 17/717,049, titled “Portable Device Microphone Status Indicator,” filed on Apr. 9, 2022, which claims priority under 35 U.S.C. § 120 to and is a continuation of U.S. application Ser. No. 17/074,087, titled “Portable Device Microphone Status Indicator,” filed on Oct. 19, 2020, and issued as U.S. Pat. No. 11,303,988 on Apr. 12, 2022, which claims priority under 35 U.S.C. § 119 to U.S. Prov. App. 62/916,583, titled “Portable Device Microphone Status Indicator,” filed Oct. 17, 2019. The content of all of these applications is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5440644 | Farinelli et al. | Aug 1995 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5923902 | Inagaki | Jul 1999 | A |
6032202 | Lea et al. | Feb 2000 | A |
6256554 | DiLorenzo | Jul 2001 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6469633 | Wachter | Oct 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6757517 | Chang | Jun 2004 | B2 |
6778869 | Champion | Aug 2004 | B2 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143939 | Henzerling | Dec 2006 | B2 |
7236773 | Thomas | Jun 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8234395 | Millington | Jul 2012 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
9507155 | Morimoto | Nov 2016 | B2 |
11222648 | Hansen | Jan 2022 | B1 |
20010042107 | Palm | Nov 2001 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20030157951 | Hasty, Jr. | Aug 2003 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20050195996 | Dunn | Sep 2005 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20150326973 | Marrin | Nov 2015 | A1 |
20170099539 | Di Censo et al. | Apr 2017 | A1 |
20180074351 | Smoot | Mar 2018 | A1 |
20180091639 | Soffer | Mar 2018 | A1 |
20180210492 | Chen et al. | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
1389853 | Feb 2004 | EP |
200153994 | Jul 2001 | WO |
2003093950 | Nov 2003 | WO |
Entry |
---|
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc Scatternet for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 http://www.reviewsonline.com/articles/961906864.htm retrieved Jun. 18, 2014, 2 pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Non-Final Office Action mailed on Nov. 30, 2022, issued in connection with U.S. Appl. No. 17/717,049, filed Apr. 9, 2022, 7 pages. |
Notice of Allowance mailed on Dec. 1, 2021, issued in connection with U.S. Appl. No. 17/074,087, filed Oct. 19, 2020, 10 pages. |
Notice of Allowance mailed on Mar. 15, 2023, issued in connection with U.S. Appl. No. 17/717,049, filed Apr. 9, 2022, 9 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Number | Date | Country | |
---|---|---|---|
20230421943 A1 | Dec 2023 | US |
Number | Date | Country | |
---|---|---|---|
62916583 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17717049 | Apr 2022 | US |
Child | 18334866 | US | |
Parent | 17074087 | Oct 2020 | US |
Child | 17717049 | US |