This invention relates to an improvement to pneumatic guns, air rifles, pellet rifles, paintball guns and the like. Such pneumatic guns are typically driven by either hand or electrically cocked springs, compressed gas, or hand operated pumps and suffer from a number of disadvantages outlined in more detail below.
Air rifles have been around for many years and have seen numerous evolutionary changes over the years. The most common methods for propelling the projectile use the energy from compressed gas or from a spring. There are four major techniques shown in the prior art for launching the projectile with many variations based upon such teachings. These techniques include: (i) the use of stored compressed gas in the form of carbon dioxide cylinders or other high pressure storage tanks; (ii) using a powerful spring to push a piston which compresses air which then pushes the projectile; (iii) using a hand pump to pressurize the air for subsequent release; and (iv) using a direct acting means such as a solenoid plunger or centrifugal force to push the projectile out of the barrel. All of these methods have distinct disadvantages when compared to the present invention.
The first technique requires a source of compressed air, such as a tank or canister. Filling, transporting and using such a canister represents an inconvenience and potential safety hazard for the user. Often, additional equipment such as regulators, evaporation chambers, and other controls are required to reduce the pressure in the cylinder to a level suitable for launching the projectile. This peripheral equipment increases the cost and complexity of such an air gun. Additionally, for carbon dioxide driven air or paintball guns, the velocity of the projectile can vary significantly depending on the canister temperature. Furthermore, these tanks store a large amount of energy which, can be suddenly released through a tank fault, creating a potential safety issue. Additional teachings such as those contained in U.S. Pat. Nos. 6,516,791, 6,474,326, 5,727,538 and 6,532,949 teach of various ways of porting and controlling high pressure air supplies to improve the reliability of air guns (specifically paintball guns and the like) by differentiating between the air stream which is delivered to the bolt which facilitates chambering the projectile and the air stream which pushes the projectile out of the barrel. All of these patents still suffer from the major inconvenience and potential safety hazard of storing a large volume of highly compressed gas within the air gun. Additionally, as they combine electronic control with the propulsion method of stored compressed gas, the inherent complexity of the mechanism increases, thus, increasing cost and reliability issues. An additional teaching in this area in U.S. Pat. No. 6,142,137 shows an electrical means to assist in the trigger control of a compressed air gun. In this patent, an electromotive device is used in conjunction with electronics to define various modes of fire control such as single shot, burst or automatic modes. This addresses the ability of multiple modes of fire, but does not solve the fundamental propulsion issues of safety and inconvenience associated with gas cylinders.
A second technique which has been used for quite a few years in many different types of pellet, “bb” or air rifles has a basic principle of storing energy in a spring which is subsequently released to rapidly compress air. The highly compressed air created by a spring acting on a piston pushes the projectile out of the barrel at high velocity. Problems with this method include the need to “cock” the spring between shots thus limiting its use to single shot devices and low rates of fire. Furthermore, the unwinding of the spring results in a double recoil effect. The first recoil is from the initial forward movement of the spring, but a second recoil occurs when the spring slams the piston into the end of the cylinder (i.e. forward recoil). Additionally, spring air rifles require a significant amount of maintenance and, if dry-fired, the mechanism is easily damaged. Finally, the effort required for such “cocking” is often substantial and can be difficult for many individuals. References to these style air guns can be found in U.S. Pat. Nos. 3,128,753, 3,212,490, 3,523,538, and 1,830,763. Additional variations on the above technique have been attempted through the years including using an electric motor to cock the spring that drives a piston. This variation is detailed in U.S. Pat. Nos. 4,899,717 and 5,129,383. While this innovation solves the problem of cocking effort, the resulting air rifle still suffers from a complicated mechanism, double recoil and maintenance issues associated with the spring piston system. Another mechanism which uses a motor to wind a spring is shown in U.S. Pat. Nos. 5,261,384 and 6,564,788. Herein, a motor is used to compress a spring which is connected to a piston. The spring is subsequently quickly released allowing it to drive a piston compressing air which pushes a projectile out the barrel. This implementation still suffers from similar limitations inherent in the spring piston systems. Hu teaches of using a motor to wind a spring in these patents. Because there is no compression valve, the spring must quickly compress the air against the projectile to force it out the barrel at good velocity. This requires a strong spring to rapidly compress the air when the mechanism releases. Springs in such systems are highly stressed mechanical elements that are prone to breakage and which increase the weight of the air gun. A further disadvantage of Hu's teaching is that the spring is released from the rack pinion under full load causing the tips of the gear teeth to undergo severe tip loading. This causes high stress and wear on the mechanism especially the gear teeth. This is the major complaint for those guns in the commercial market and is a major reliability issue with this style mechanism. A further disadvantage of this type of mechanism is that upon scale up to accept larger projectiles or projectile with more energy, there occurs much increased wear and a forward recoil which is the result of the piston impacting the front end of the cylinder. In a dry fire (no projectile), the mechanism can be damaged as the piston slams against the face of the cylinder. Hu teaches use of a breech shutoff, that is common in virtually all toy guns since the air must be directed down the barrel and the flow into the projectile inlet port must be minimized. Hu specifically does not incorporate an air compression valve in his patents which is a restrictive valve against which the piston compresses the air for subsequent release. Thus, forward recoil, high wear and low power are drawbacks in these types of mechanisms. A similar reference can be seen in U.S. Pat. No. 1,447,458 which shows a spring winding and then delivery to a piston to compress air and propel a projectile. In this case, the device is for non-portable operation.
The third technique, using a hand pump to pressurize the air, is often used on low end devices and suffers from the need to pump the air gun between 2 to 10 times to build up enough air supply for sufficient projectile velocity. This again limits the air rifle or paintball gun to slow rates of fire. Additionally, because of the delay between when the air is compressed and when the compressed air is released to the projectile, variations in the projectile velocity are quite common in these style air guns. Further taught in U.S. Pat. Nos. 2,568,432 and 2,834,332 is a method to use a solenoid to directly move a piston which compresses air and forces the projectile out of the air rifle. While this solves the obvious problem of manually pumping a chamber up in order to fire a gun, these devices suffer from the inability to store sufficient energy in the air stream. Solenoids are inefficient devices and can only convert very limited amounts of energy due to their operation. Furthermore, since the air stream is coupled directly to the projectile in this technique as it is in spring piston designs, the projectile begins to move as the air is being compressed. This limits the ability of the solenoid to store energy in the air stream to a very short time period and further relegates its use to low energy air rifles. In order to improve the design, the piston must actuate in an extremely fast time frame in order to prevent significant projectile movement during the compression stroke. This results in a very energetic piston mass similar to that shown in spring piston designs and further results in the undesirable double recoil effect as the piston mass must come to a halt. Additionally, this technique suffers from dry-fire in that the air is compressed between the piston and the projectile. A missing projectile allows the air to communicate to the atmosphere through the barrel and can damage the mechanism in a dry-fire scenario. Another variant of this approach is disclosed in U.S. Pat. No. 1,375,653, which uses an internal combustion engine instead of a solenoid to act against the piston. Although this solves the issue of sufficient power, it is no longer considered an air rifle as it becomes a combustion driven gun. Moreover, it suffers from the aforementioned disadvantages including complexity and difficulty in controlling the firing sequence. Further taught in U.S. Pat. Nos. 4,137,893 and 2,398,813 to Swisher is the use of an air compressor coupled to a storage tank which is then coupled to the air gun. Although this solves the issue of double recoil, it is not suitable to a portable system due to inefficiencies of compressing air and the large tank volume required. This type of system is quite similar to existing paintball guns in that the air is supplied via a tank and not compressed on demand. Using air in this fashion is inefficient and not suitable for portable operation since much of the air compression energy is lost to the environment thru the air tank via cooling. Forty percent or more (depending on the compression ratio) of the compressed air energy is stored as heat and is lost to do work when the air is allowed to cool. Furthermore, additional complexity and expense is required to regulate the air pressure from the tank so that the projectile velocity is repeatably controlled. A variation of the above is to use a direct air compressor as shown in U.S. Pat. No. 1,743,576. Again, due to the large volume of air between the compression means and the projectile, much of the heat of compression is lost leading to inefficient operation. Additionally, this patent teaches of a continuously operating device which suffers from a significant lock time (time between trigger pull and projectile leaving the barrel) as well as the inability to run in a semiautomatic or single shot mode. Further disadvantages of this device include the pulsating characteristics of the air stream which are caused by the release and reseating of the check valve during normal operation.
The fourth technique is to use direct mechanical action on the projectile itself. The teachings in U.S. Pat. Nos. 1,343,127 and 2,550,887 represent such mechanisms. Limitations of this approach include difficulty in achieving high projectile velocity since the transfer of energy must be done extremely rapidly between the impacting hammer and the projectile. Further limitations include the need to absorb a significant impact as the solenoid plunger must stop and return for the next projectile. This causes a double-recoil or forward recoil. Since the solenoid plunger represents a significant fraction of the moving mass (i.e. it often exceeds the projectile weight), this type of system is very inefficient and limited to low velocity, low energy air guns as may be found in toys and the like. Variations of this method include those disclosed in U.S. Pat. No. 4,694,815 in which a hammer driven by a spring contacts the projectile. The spring is “cocked” via an electric motor, but again, this does not overcome the prior mentioned limitations.
All of the currently available devices suffer from one or more of the following disadvantages:
In accordance with the present invention, a piston is driven by a rack and pinion mechanism to compress air within a cylinder against a mechanical compression valve. During the forward stroke of the piston, the bolt is moved forward enough to chamber the projectile and close off the projectile inlet port. At predetermined release position, the mechanical valve opens releasing high-pressure air thru the air passageways behind the projectile forcefully launching the projectile out the barrel. The piston and rack assembly then disconnects from the rack pinion and is reset to its initial position via a return spring. The return spring plays little or no part in the compression of the air for propelling the projectile and can be of small size. During the return of the piston to its initial position, a check valve replenishes the air to the air cylinder. An electric motor, which derives its power from a rechargeable battery pack, is coupled, to the rack thru a reduction mechanism and rack pinion. The rack and piston assembly is coupled to a bolt such that the bolt moves in cooperation with the movement of the piston. This coupling preferably includes springs and sliding members to reduce the travel of the bolt to a fractional percentage of the overall piston movement and to limit the force that the bolt can exert in shutting off the projectile inlet port. Shutting off the projectile feed port is a near separate and independent function and is not to be confused with the function performed by the compression valve.
Accordingly, besides the objects and advantages of the portable electric air gun as described, several objects and advantages of the present invention are:
To provide an electric motor driven gun in which the compressed air release is controlled mechanically thereby simplifying operation, reducing cost and improving reliability.
Further objects and advantages will become more apparent from a consideration of the ensuing detailed description and drawings.
Reference numbers for the drawings are shown below.
Although the following relates substantially to one embodiment of the design, it will be understood by those familiar with the art that changes to materials, part descriptions and geometries can be made without departing from the spirit of the invention. Additional designs can be created by combining various described elements. These may have particular advantages depending on the design requirements of the particular electric air gun.
In this embodiment, the front end of the piston (5), the cylinder (14) and the cylinder end cap (29) which in the preferred embodiment is a surface of the compression valve (7) define the volume of the forward air chamber (21) as shown in
Referring to
An advantage found was that by removing or cutting down one or more teeth past the initial engagement tooth, the alignment tolerance for engagement between the rack (4) and the rack pinion (35) at the start of the cycle is substantially improved. This significantly improves the wear characteristics of the mechanism since it increases the engagement tolerance of the rack pinion to the rack by more then 50% making it far less likely that the initial teeth mesh in an interfering fashion. The motor (1) continues to rotate transferring energy through the drive train (31) which is a series of gears forming a reduction apparatus. This in turn rotates the rack pinion (35). This moves the rack (4) and the piston (5) towards the compression valve (7) compressing the air in the forward air chamber (21). The air in the forward air chamber is compressed in such a way that the compression exponent is greater then 1. Compression exponents greater then 1 yield higher air pressures then would be expected for a given compression ratio thus making a more efficient design. The simplified formula for compression can be written as: PVn=K. Where P is pressure, V is volume, n is the compression exponent and K is a constant. For air in isothermal compression the exponent is 1, for adiabatic compression it is about 1.4. In an efficient design, the compression cycle is sufficiently short as to yield a compression exponent of approximately at least 1.10. The air in the forward air chamber (21) is held between the piston (5) and the cylinder end cap (29) until the compression valve (7) opens. By trapping the air in the forward air chamber (21), the compressed air in the forward air chamber (21) can be released while the rack pinion still has good engagement to the rack (4) as clearly shown in
Further attached to the rack (4) is a bolt link (15) which can slide along the bolt rod (19). As the rack (4) moves forward it contacts the lost motion coupling (23) which slides along the bolt rod (19). As the rack (4) and piston (5) continue forward, the bolt link (15) pushes on the lost motion coupling (23) to cause it to engage the bolt limit spring (30). The lost motion coupling (23) allows the motion of the bolt (6) to be limited to a fraction of the movement of the piston (5) thus increasing the efficiency of the design. The movement of the bolt is limited to less then approximately 80% of the movement of the piston.
The bolt limit spring (30) compresses against the bolt rod (19) moving the bolt (6) forward chambering the projectile (9) and further shutting off the projectile inlet port (16) as shown in
Two parameters play importantly in the design of the valve (7): the pressure drop through the compression valve (7), and the valve opening time. It was originally thought that standard valve designs used in air guns would be suitable for the present design, but upon testing, it was found that they were structurally inefficient and not suitable for an electric air gun. The compression valve (7) in the preferred embodiment is referred to as a mechanical snap acting valve in which the valve has an opening speed of less then 20 milliseconds from initial cracking to greater then substantially 70% of full flow. One way to meet this requirement is that the actuation or opening force is approximately a minimum of 1.5 times the maintaining force for the valve. The preferred embodiment of the compression valve (7) is shown in
The interrupted rack pinion (35) and rack (4) together form a linear motion converter which converts the rotational motion of the motor to the linear motion of the rack. Alternative embodiments to the rack (4) and rack pinion (35) include a slider crank, eccentric or cam drive which power the piston (5) in a lineal direction to compress air in the forward air chamber (21) against the cylinder end cap (29) and compression valve (7). These alternative embodiments have useful advantages including the elimination of engagement and disengagement as well as elimination of the piston return spring (32). This embodiment would provide for a positive return of the piston (7) to an initial position thus potentially simplifying the apparatus and improving its reliability.
Circuit Operation:
A schematic of the preferred control circuit (3) is shown in
An additional advantage of the present embodiment over prior designs is afforded by the use of the sensors (12). Using these sensors, it is possible to maximize the firing rate of the device by monitoring the start switch (10) after a cycle is initiated. One such technique is to monitor and store an additional actuation of the start switch (10) while the apparatus is in operation. The stored actuation is used in cooperation with a timer which begins a countdown when the additional start switch (10) actuation is recorded. The timer is set to correspond to a delay of less then 200 milliseconds and preferably 100 milliseconds. The stored actuation can automatically initiate a followup cycle if the sensor (12) detects that the rack (4) is back in the initial position before the timer setpoint is exceeded. This permits a more seamless operation of the apparatus and increases the firing rate since the initiation of a cycle does not have to be timed to the completion of the prior cycle. We call this feature shot storage.
Although the aforementioned elements are used in the preferred design, it is understood by those familiar with the art that considerable simplification is possible without departing from the spirit of the invention. It is further understood by those skilled in the art that the sensors can be used in conjunction with other circuit elements to allow location at different places and that sensors can be of many forms including but not limited to limit switches, hall effect sensors, photosensors, reed switches and current or voltage sensors without departing from the spirit of the invention.
Further preferred circuit embodiments include: low battery indicators, pulse control of motor power, communication ports, status or error displays, lock out on fault conditions, password or keyswitch requirements for operation. Additionally, the circuit could allow for various firing modes such as burst mode for example.
Thus, although there have been described particular embodiments of the present invention of a new and useful PORTABLE ELECTRIC-DRIVEN COMPRESSED AIR PROJECTILE LAUNCHER, it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.
The present invention claims priority under 35 USC section 119 based on provisional application 60/772,367 on Feb. 10, 2006. This utility application is the Continuation-In-Part application of the nonprovisional utility U.S. patent application Ser. No. 11/052,542 filed Feb. 7, 2005 which claims benefit of patent application Ser. No. 10/764,793 filed on Jan. 26, 2004, (now U.S. Pat. No. 6,857,422) which claims benefit from the U.S. Provisional Application Nos. 60/477,591 filed on Jun. 12, 2003 and 60/517,069 filed on Nov. 5, 2003, and 60/772,367 filed Feb. 10, 2006 each of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3561319 | Joyce et al. | Feb 1971 | A |
3951038 | Van Langenhoven | Apr 1976 | A |
5261384 | Hu | Nov 1993 | A |
5282454 | Bell et al. | Feb 1994 | A |
5531210 | Meiser et al. | Jul 1996 | A |
5791325 | Anderson | Aug 1998 | A |
5794606 | Deak | Aug 1998 | A |
5816232 | Bell | Oct 1998 | A |
6305367 | Kotsiopoulos et al. | Oct 2001 | B1 |
6564788 | Hu | May 2003 | B1 |
6857422 | Pedicini et al. | Feb 2005 | B2 |
7077117 | Chu | Jul 2006 | B1 |
7100592 | Yang | Sep 2006 | B1 |
7191775 | Lo | Mar 2007 | B1 |
20030098019 | Hu | May 2003 | A1 |
20050000505 | Pedicini et al. | Jan 2005 | A1 |
20050183709 | Marsac | Aug 2005 | A1 |
20050188974 | Pedicini et al. | Sep 2005 | A1 |
20060231083 | Tsurumoto | Oct 2006 | A1 |
20060243263 | Tsurumoto | Nov 2006 | A1 |
20070000483 | Tsurumoto | Jan 2007 | A1 |
20070261689 | Tai et al. | Nov 2007 | A1 |
20070289586 | Tsurumoto | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
06257993 | Sep 1994 | JP |
2002168594 | Jun 2002 | JP |
Number | Date | Country | |
---|---|---|---|
60772367 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11052542 | Feb 2005 | US |
Child | 11549510 | US |