The present disclosure relates to portable electronic devices, including but not limited to portable electronic devices having touch screen displays and their control.
Electronic devices, including portable electronic devices, have gained widespread use and may provide a variety of functions including, for example, telephonic, electronic messaging and other personal information manager (PIM) application functions. Portable electronic devices include several types of devices including mobile stations such as simple cellular telephones, smart telephones, wireless PDAs, and laptop computers with wireless 802.11 or Bluetooth capabilities.
Portable electronic devices such as PDAs or smart telephones are generally intended for handheld use and ease of portability. Smaller devices are generally desirable for portability. A touch-sensitive display, also known as a touchscreen display, is particularly useful on handheld devices, which are small and have limited space for user input and output. The information displayed on the touch-sensitive displays may be modified depending on the functions and operations being performed. With continued demand for decreased size of portable electronic devices, touch-sensitive displays continue to decrease in size.
Improvements in devices with touch-sensitive displays are desirable.
The following describes an electronic device and a method including detecting a touch at a touch location on a touch-sensitive display of an electronic device, identifying a first tactile feedback associated with the touch location, and providing the first tactile feedback in response to determining that a force value meets the first threshold value.
For simplicity and clarity of illustration, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. Numerous specific details are set forth to provide a thorough understanding of the embodiments described herein. The embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the embodiments described herein. The description is not to be considered as limited to the scope of the embodiments described herein.
The disclosure generally relates to an electronic device, which in the embodiments described herein is a portable electronic device. Examples of portable electronic devices include mobile, or handheld, wireless communication devices such as pagers, cellular phones, cellular smart-phones, wireless organizers, personal digital assistants, wirelessly enabled notebook computers, and the like. The portable electronic device may also be a portable electronic device without wireless communication capabilities such as a handheld electronic game device, digital photograph album, digital camera, or other device.
A block diagram of an example of a portable electronic device 100 is shown in
The processor 102 interacts with other devices, such as a Random Access Memory (RAM) 108, memory 110, a display 112 with a touch-sensitive overlay 114 operably connected to an electronic controller 116 that together comprise a touch-sensitive display 118, one or more actuators 120, one or more force sensors 122, an auxiliary input/output (I/O) subsystem 124, a data port 126, a speaker 128, a microphone 130, short-range communications 132 and other device subsystems 134. User-interaction with a graphical user interface is performed through the touch-sensitive overlay 114. The processor 102 interacts with the touch-sensitive overlay 114 via the electronic controller 116. Information, such as text, characters, symbols, images, icons, links, and other items that may be displayed or rendered on a portable electronic device, is displayed on the touch-sensitive display 118 via the processor 102. The processor 102 may also interact with an accelerometer 136 that may be utilized to detect direction of gravitational forces or gravity-induced reaction forces.
To identify a subscriber for network access, the portable electronic device 100 uses a Subscriber Identity Module or a Removable User Identity Module (SIM/RUIM) card 138 for communication with a network, such as the wireless network 150. Alternatively, user identification information may be programmed into the memory 110.
The portable electronic device 100 also includes an operating system 146 and software programs or components 148 that are executed by the processor 102 and are typically stored in a persistent, updatable store such as the memory 110. Additional applications or programs may be loaded onto the portable electronic device 100 through the wireless network 150, the auxiliary I/O subsystem 124, the data port 126, the short-range communications subsystem 132, or any other suitable subsystem 134.
A received signal such as a text message, an e-mail message, or web page download is processed by the communication subsystem 104 and input to the processor 102. The processor 102 processes the received signal for output to the display 112 and/or to the auxiliary I/O subsystem 124. A subscriber may generate data items, for example e-mail messages, which may be transmitted over the wireless network 150 through the communication subsystem 104. For voice communications, the overall operation of the portable electronic device 100 is similar. The speaker 128 outputs audible information converted from electrical signals, and the microphone 130 converts audible information into electrical signals for processing.
The touch-sensitive display 118 may be any suitable touch-sensitive display, such as a capacitive, resistive, infrared, or surface acoustic wave (SAW) touch-sensitive display, as known in the art. A capacitive touch-sensitive display includes the display 112 and a capacitive touch-sensitive overlay 114. The overlay 114 may be an assembly of multiple layers in a stack including, for example, a substrate, LCD display 112, a ground shield layer, a barrier layer, one or more capacitive touch sensor layers separated by a substrate or other barrier, and a cover. The capacitive touch sensor layers may be any suitable material, such as patterned indium tin oxide (ITO).
One or more touches, also known as touch contacts or touch events, may be detected by the touch-sensitive display 118. The processor 102 may determine attributes of the touch, including a location of a touch. Touch location data may include an area of contact or a single point of contact, such as a point at or near a center of the area of contact. The location of a detected touch may include x and y components, e.g., horizontal and vertical components, respectively, with respect to one's view of the touch-sensitive display 118. For example, the x location component may be determined by a signal generated from one touch sensor, and the y location component may be determined by a signal generated from another touch sensor. A signal is provided to the controller 116 in response to detection of a touch. A touch may be detected from any suitable object, such as a finger, thumb, appendage, or other items, for example, a stylus, pen, or other pointer, depending on the nature of the touch-sensitive display 118. Multiple simultaneous touches may be detected.
The actuator 120 may be depressed by applying sufficient force to the touch-sensitive display 118 to overcome the actuation force of the actuator 120. The actuator 120 may be actuated by pressing anywhere on the touch-sensitive display 118. The actuator 120 may provide input to the processor 102 when actuated. Actuation of the actuator 120 provides the user with tactile feedback.
The actuator 120 may comprise one or more piezoelectric (piezo) actuators that provide tactile feedback.
A block diagram of components of the portable electronic device 100 is shown in
The piezo actuators 120 are connected to a piezo driver 404 that communicates with the controller 402. The controller 402 is also in communication with the main processor 102 of the portable electronic device 100 and may receive and provide signals to and from the main processor 102. The piezo actuators 120 and the force sensors 122 are operatively connected to the main processor 102 via the controller 402. The controller 402 controls the piezo driver 404 that controls the current/voltage to the piezoelectric devices 302 and thus controls the charge/voltage and the force applied by the piezo actuators 120 on the touch-sensitive display 118. Each of the piezoelectric devices 302 may be controlled substantially equally and concurrently. Optionally, the piezoelectric devices 302 may be controlled separately. In the example described below, depression and release of a dome switch is simulated. Other switches, actuators, keys, and so forth may be simulated, or a non-simulated tactile feedback may be provided. When an applied force, on the touch-sensitive display 118 meets a depression threshold, the charge/voltage at the piezo actuators 120 is modulated to impart a force on the touch-sensitive display 118 to simulate depression of a dome switch. When the applied force, on the touch-sensitive display 118, meets a release threshold, after simulation of depression of a dome switch, the charge/voltage at the piezo actuators 120 is modulated to impart a force, by the piezo actuators 120, to simulate release of a dome switch. A value meets a threshold when the value is at or beyond the threshold.
A flowchart illustrating a method of providing tactile feedback at the electronic device 100 is shown in
Information is displayed 502 on the display 112. The information may be from an application, such as a web browser, contacts, email, calendar, music player, spreadsheet, word processing, operating system interface, and so forth.
When a touch is detected 504 at a touch location on the touch-sensitive display 118, tactile feedback is identified 506. The tactile feedback is based on the touch location and may be identified utilizing, for example, a look-up table, or any other suitable method of associating the tactile feedback with locations on the touch-sensitive display 118. The processor 102 generates and provides one or more actuation signals to the actuators 120 to provide tactile feedback to the touch-sensitive display 118. The actuation signal may comprise voltage waveforms or signals that drive the actuators 120. Data representing the voltage waveforms or signals may be stored in memory 110 such that the processor 102 retrieves the data and generates the actuation signals. The tactile feedback may simulate actuation of a switch, vibrate the touch-sensitive display, create a pulse, or create any other suitable tactile feedback or combination of types of tactile feedback. The type of tactile feedback, the magnitude of the force, and the duration of time during which tactile feedback is provided may vary based on the touch location.
A force value related to the on the touch-sensitive display 118, based on signals from the force sensors 122, is compared 508 to the depression force threshold and when the force value does not meet the depression force threshold, the process continues at 504. When the force value meets the depression force threshold, the process continues at 510. The force value may be repeatedly determined, e.g., at a predetermined sample rate. The tactile feedback, identified at 506 based on the touch location, is provided 510 utilizing the piezoelectric actuators 120.
When the touch location is associated with a function, as determined at 512, the function is performed 514. The function may include, for example, selection of a feature that is associated with the touch location on the touch-sensitive display 118. The force value is compared 516 to the release force threshold. When the force value meets the release force threshold, tactile feedback may be provided 518.
The depression and release force thresholds may also be based on the location of the touch on the touch-sensitive display such that the thresholds may be higher for a touch at one area than the thresholds at another area of the touch-sensitive display.
Examples of touches on a touch-sensitive display 118 of a portable electronic device 100 are shown in
In the example of
In the example of
In the example of
Optionally, a location that is not associated with a selectable feature or option may be associated with a lack of tactile feedback, such that the piezo actuators 120 are not charged or discharged in response to a touch at the location.
Tactile feedback may vary for different locations on the touch-sensitive display. Different tactile feedback may be utilized and provided based on touch location, for example, to confirm selection of a feature or features on the portable electronic device 100. Touch location-based Tactile feedback provides confirmation of selection. Selection errors may be detected based on the tactile feedback and may be quickly corrected, prior to further selections being made or, for example, an emergency call being connected.
A method includes detecting a touch at a touch location on a touch-sensitive display of an electronic device, identifying a first tactile feedback associated with the touch location, and providing the first tactile feedback in response to determining that a force value related to the touch meets a first threshold value.
A computer-readable medium has computer-readable code executable by at least one processor of a portable electronic device to perform the above method.
An electronic device includes a touch-sensitive display configured to detect a touch at a touch location, an actuator, a force sensor configured to determine a force value related to the touch, and at least one processor operably connected to the touch-sensitive display, the actuator and the force sensor and configured to identify a first tactile feedback associated with the touch location and provide the first tactile feedback, utilizing the actuator, in response to determining that the force value meets a first threshold value.
The present disclosure may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the present disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.