Portable electronic device connection systems

Information

  • Patent Grant
  • 10763630
  • Patent Number
    10,763,630
  • Date Filed
    Thursday, October 18, 2018
    6 years ago
  • Date Issued
    Tuesday, September 1, 2020
    4 years ago
Abstract
A connection system for a portable electronic device may allow for modular components to be coupled together. A primary module may comprise computing components, such as a processor, hard drive, wireless chip, battery, etc. Various secondary modules may be removably coupled to the primary module, such as batteries, charging stations, storage units, LTE hotspot devices, cover plates, cameras, virtual reality units, speakers, video screens, user interfaces, etc. The secondary modules may comprise connection posts which mate with receiving slots in the primary module to couple the primary and secondary components together.
Description
FIELD

The present disclosure generally relates to portable electronic devices, and more particularly to systems and methods for connecting portable electronic device components together.


BACKGROUND

The use of portable and wearable electronic devices is rapidly increasing. In order to decrease size and cost of electronic devices, some devices may utilize modular components which connect together to provide different functionalities to a device. However, existing connection mechanisms tend to be cumbersome and limited in functionality.


SUMMARY

A portable electronic device may comprise a primary module comprising: a mating surface; a receiving slot located in the mating surface; and a contact pad recessed into the mating surface. The portable electronic device may comprise a secondary module configured to couple to the primary module, the secondary module comprising: a connection post configured to mate with the receiving slot; and a pin configured to contact the contact pad.


In various embodiments, the pin may be a pogo pin. The pin may comprise a plunger, a body, and a spring located within the body. The receiving slot may comprise a ramp extending from the mating surface to a recessed surface. The primary module may comprise an alignment depression in a center of the mating surface. The secondary module may comprise an alignment post in a center of the secondary module. The primary module may comprise a wireless chip. The secondary module may comprise a battery. The secondary module may be configured to couple to the primary module by inserting the connection post in the receiving slot and rotating the secondary module relative to the primary module. The secondary module may be configured to connect to an LTE network.


A modular portable electronic device system may comprise a primary module comprising a processor, a hard drive, a wireless chip, a battery, and a mating surface comprising a receiving slot. A first secondary module may comprise a first connection post, wherein the first secondary module is configured to couple to the primary module by inserting the first connection post in the receiving slot and rotating the first secondary module. A second secondary module may comprise a second connection post, wherein the second secondary module is configured to couple to the primary module by inserting the second connection post in the receiving slot and rotating the second secondary module.


In various embodiments, the first secondary module may comprise a cover plate, and the second secondary module may comprise a storage module. For example, primary module may comprise seventeen contact pads. These exemplary seventeen contact pads may be arranged in a first row of six contact pads, a second row of five contact pads, and a third row of six contact pads. The receiving slot may comprise a ramp extending from the mating surface to a recessed surface.


A modular portable electronic system may comprise a phone case comprising a battery, first pins, and a first reception cavity; a primary module configured to be inserted within the first reception cavity, wherein the primary module comprises second pins; and a phone jack configured to interface with a phone.


In various embodiments, the first pins in the phone case are configured to mate with the second pins on the primary module. The phone case may comprise wires configured to electrically connect the battery, the primary module, and the phone jack. The phone case may comprise a second reception cavity configured to receive the phone. The primary module may comprise a USB Type C port.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding may be derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar elements throughout the Figures, and:



FIG. 1 illustrates a side view of a portable electronic device according to various embodiments of the disclosure;



FIG. 2 illustrates a side view of the PED with the secondary module rotated with respect to the primary module according to various embodiments;



FIG. 3 illustrates a perspective view of the PED with the secondary module separated from the primary module according to various embodiments;



FIG. 4 illustrates a perspective view of the primary module according to various embodiments;



FIG. 5 illustrates a perspective view of the primary module and a secondary module according to various embodiments;



FIG. 6 illustrates a cross-section view of a pin according to various embodiments;



FIG. 7 illustrates a side view of the secondary module with the connection posts inserted into the receiving slots according to various embodiments;



FIG. 8 illustrates a side view of the secondary module coupled to the primary module according to various embodiments;



FIG. 9 illustrates a bottom view of the primary module including a pin diagram according to various embodiments;



FIG. 10 illustrates a perspective view of a primary module comprising an edge pin configuration according to various embodiments;



FIG. 11 illustrates a pin diagram of the primary module of FIG. 10, according to various embodiments;



FIG. 12 illustrates a phone case with a primary module and a phone, according to various embodiments; and



FIG. 13 illustrates a secondary module comprising a battery, according to various embodiments.





DETAILED DESCRIPTION

The detailed description of exemplary embodiments herein makes reference to the accompanying drawings and pictures, which show various embodiments by way of illustration. While these various embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that logical and mechanical changes may be made without departing from the spirit and scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not limited to the order presented. Moreover, any of the functions or steps may be outsourced to or performed by one or more third parties. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component may include a singular embodiment.


Systems, methods and computer program products are provided. In the detailed description herein, references to “various embodiments,” “one embodiment,” “an embodiment,” “an example embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.


Connection systems for portable electronic device components are disclosed herein. The connection systems may allow for modular components to be coupled together. A primary module may comprise computing components, such as a processor, hard drive, wireless chip, battery, etc. Various secondary modules may be removably coupled to the primary module, such as batteries, charging stations, storage units, LTE hotspot devices, cover plates, cameras, virtual reality units, speakers, video screens, user interfaces, etc. The secondary modules may comprise connection posts which mate with receiving slots in the primary module to couple the primary and secondary components together. An alignment post on the secondary module may mate with an alignment depression in the primary module. Metallic pins on the secondary module may contact pads on the primary module to allow for the exchange of electronic signals between the primary module and the secondary module.


The primary module may wirelessly receive and transmit files and communications from other devices, such as cameras, smartphones, televisions, game consoles, tablets, personal computers, printers, etc. The primary module may communicate across platforms, such as with Apple® devices, Android® devices, Windows® devices, UNIX® devices, or any other suitable devices. In various embodiments, the primary module may allow a user to access their files wherever the user goes. For example, a user may have a document stored on a laptop computer. The user may transmit the document from the laptop computer to the primary module wirelessly. In various embodiments, the primary module may communicate directly with other devices without using a network. Thus, information may be transmitted securely between the primary module and other devices. However, in various embodiments, the primary module may communicate over a network using a wireless chip in the primary module. For more information regarding the capabilities of a primary module, see U.S. patent application Ser. No. 15/367,961 titled “SYSTEMS AND METHODS FOR MEMORY CARD EMULATION,” and filed on Dec. 2, 2016, the contents of which are incorporated by reference herein in their entirety.


Referring to FIG. 1, a side view of a portable electronic device (“PED”) 100 is illustrated according to various embodiments. The PED 100 may comprise a primary module 110 and a secondary module 120 coupled to the primary module 110. The PED 100 is illustrated in the locked position, in which the primary module 110 and the secondary module 120 may remain coupled together and be used together.


Referring to FIG. 2, a side view of the PED 100 with the secondary module 120 rotated with respect to the primary module 110 is illustrated according to various embodiments. The secondary module 120 may be rotated in order to disconnect the secondary module 120 from the primary module 110. A user may grasp the secondary module 120 and apply a torque to rotate the secondary module 120 relative to the primary module 110. The act of rotating the secondary module 120 relative to the primary module 110 may unlock the PED 100 such that the secondary module 120 may be separated from the primary module 110.


Referring to FIG. 3, a perspective view of the PED 100 with the secondary module 120 separated from the primary module 110 is illustrated according to various embodiments. The illustrated secondary module 120 may be a cover plate, which is intended to cover and protect various components of the primary module 110. The secondary module 120 may comprise a generally planar square baseplate 122 with rounded corners 123. The secondary module 120 may comprise an alignment post 124. In various embodiments, the alignment post 124 may comprise a portion of a sphere extending from a top surface 121 of the baseplate 122. The alignment post 124 may be located in a center of the baseplate 122. The alignment post 124 may be configured to be inserted into an alignment depression 112 in the center of a mating surface 111 of the primary module 110. The secondary module 120 may be configured to rotate about the alignment post 124 when the alignment post 124 is located within the alignment depression 112.


The secondary module 120 may comprise connection posts 130. In various embodiments, the secondary module 120 may comprise two connection posts 130. The connection posts 130 may be located between the alignment post 124 and the edge 126 of the secondary module 120. In various embodiments, the connection posts 130 may be separated by 180 degrees about the alignment post 124, such that the alignment post 124 is located at a midpoint between the two connection posts 130. However, in various embodiments, the secondary module 120 may comprise one, two, three, four, or any other suitable number of connection posts 130.


Each connection post 130 may comprise a base 132 extending from the top surface 121 of the baseplate 122. Each connection post 130 may comprise a locking plate 134 coupled to the base 132 and separated from the baseplate 122 by the base 132. The locking plate 134 may comprise a diameter greater than a diameter of the base 132. The locking plate 134 may be parallel to the baseplate 122.


Referring to FIG. 4, a perspective view of the primary module 110 is illustrated according to various embodiments. The mating surface 111 of the primary module may comprise receiving slots 330. The mating surface 111 may comprise one receiving slot 330 for each connection post. In the illustrated embodiment, the mating surface 111 comprises two receiving slots 330. Each receiving slot 330 may comprise a ramp 332. The ramp 332 may extend from the mating surface 111 to a recessed surface 334 in the receiving slot 330. A width of the receiving slot 330 in the area of the ramp 332 may be greater than a width of a locking aperture 314 in the mating surface 111 in the area of the recessed surface 334. The primary module 110 may comprise contact pads 416. The contact pads 416 may comprise electrical contacts recessed from the mating surface 111 in contact pad apertures 417.


Referring to FIG. 5, a perspective view of the primary module 110 and a secondary module 520 illustrated according to various embodiments. The secondary module 520 may be a battery which provides additional battery life to the primary module 110. The secondary module 520 may comprise electronic components which may interface with the primary module 110 via pins 526. The pins 526 may be configured to contact the contact pads 416 and exchange electronic signals between the primary module 110 and the secondary module 520.


A user may couple the secondary module 520 to the primary module 110 by positioning the alignment post 534 within the alignment depression 112 in the mating surface 111 and rotating the secondary module 520 with respect to the primary module 110. As the secondary module 520 is rotated, the connection posts 530 may contact the ramps 332. The connection posts 530 may slide along the ramps 332 and into the locking apertures 314. The secondary module 520 may continue rotating until the connection posts 530 contact the edge of the locking apertures 314 and prevent further rotation.


As the connection posts 530 slide along the ramps 332 and into the primary module 110, the distance between the mating surface 111 and the secondary module 520 may decrease. The pins 526 may contact the mating surface 111. In various embodiments, the pins 526 may be pogo pins, in which a spring biases the pins 526 to project from the secondary module 520, and the pins 526 may be pressed into the secondary module 520 in response to a force on the pins 526, such as contact from the mating surface 111.


Referring to FIG. 6, a cross-section view of a pin 526 is illustrated according to various embodiments. The illustrated pin 526 is a pogo pin. The pin 526 may comprise a plunger 621 located at least partially within a body 622. The body 622 may comprise a hollow cylinder coupled to a base 623. The base 623 may be configured to contact a printed circuit board. The pin 526 may comprise a spring 624 located within the body 622. In response to a downward pressure (in the direction of arrow P) on the plunger 621, the plunger 621 may compress the spring 624, and the plunger 621 may retract into the body 622. In response to the pressure being removed, the spring 624 may bias the plunger 621 to project out the body 622.


Referring to FIG. 7, a side view of the secondary module 520 in the process of being coupled to the primary module 110 is illustrated according to various embodiments. The connection posts may be inserted into the receiving slots. The pins 526 may contact the mating surface and begin to compress within the secondary module 520.


Referring to FIG. 8, a side view of the secondary module 520 coupled to the primary module 110 is illustrated according to various embodiments. The connection posts may be located within the locking apertures, which may prevent the primary module 110 and secondary module 520 from separating without an intentional rotation of the secondary module 520 relative to the primary module 110. The pins may be located within the contact pad apertures and contact the contact pads. Thus, the secondary module 520 and the primary module 110 may be both electronically and mechanically coupled together.


Referring to FIG. 9, a bottom view of the primary module 110 including a pin diagram 900 is illustrated according to various embodiments. The pin diagram 900 describes the location and function of the pins and contact pads described with reference to FIGS. 1-8. As illustrated, the primary module 110 may comprise a first row of six contact pads J1, J2, J3, J4, J5, and J6. The primary module 110 may comprise a second row of five contact pads J7, J8, J9, J10, and J11. The primary module 110 may comprise a third row of six contact pads J12, J13, J14, J15, J16, and J17. The second row may be staggered from the first and third rows. The secondary modules may have seventeen corresponding pins. The contact pads J1 and J2 may connect to a power source, such as a 3.8VDC supply. The contact pads J3 and J4 may connect to ground. The contact pads J5, J6, J7, and J8 may be for LTE Universal Asynchronous Received Transmitter (“UART”). The contact pads J10 and J11 may provide UART access to main unit Micro Controller Unit (“MCU”) or CPI to communicate with MCU/CPU without the need to open the main unit. The contact pads J12, J13, J14 provide a JTAG connection to the MCU that allows porting JTAG function to other elements in the primary module 110. The contact pad J15 allows the UART to talk to the MCU or CPU. The pad directs traffic to one or the other. The contact pad J16 provide LTE DTR signal to force LTE into a low power mode. The contact pad J17 may provide a signal to the primary module 110 indicating whether an external batter, LTE, or other accessory is attached.


Referring to FIG. 10, a perspective view of a primary module 1000 comprising an edge pin configuration is illustrated according to various embodiments. The primary module 1000 may perform similar or identical functions to the primary module 110 described with reference to FIGS. 1-9. The primary module 1000 may comprise computing components, such as a processor, hard drive, wireless chip, battery, etc. The primary module 1000 may generally comprise the shape of a rectangular cuboid, such that the primary module 1000 comprises six sides, each of which are rectangular. The primary module 1000 may comprise a first pin set 1010 and a second pin set 1020. The first pin set 1010 and the second pin set 1020 may be located at a junction between a top side 1002 and a front side 1004 of the primary module 1000. The first pin set 1010 and the second pin set 1020 may be configured to contact corresponding pins in a secondary module.


The primary module 1000 may further comprise a connection port 1030. The connection port 1030 may be configured to receive a cord to connect the primary module 1000 to other components, such as a computer, camera, printer, etc. In various embodiments, the connection port 1030 may be a USB Type C port, any other USB Type port, a serial port, or any other type of connection port capable of connecting to other devices. However, the USB Type C port allows the primary module to be constructed in a very thin package. For example, in various embodiments, a height of the primary module 1000 is less than 0.3 inches. In various embodiments, the connection port 1030 may be located on the front side 1004 of the primary module 1000 between the first pin set 1010 and the second pin set 1020.


Referring to FIG. 11, a pin diagram of the primary module 1000 is illustrated according to various embodiments. The first pin set 1010 may comprise a first pin 1101, a second pin 1102, a third pin 1103, a fourth pin 1104, a fifth pin 1105, a sixth pin 1106, a seventh pin 1107, an eighth pin 1108, a ninth pin 1109, and a tenth pin 1110. The second pin set 1020 may comprise a first pin 1201, a second pin 1202, a third pin 1203, a fourth pin 1204, a fifth pin 1205, a sixth pin 1206, a seventh pin 1207, an eighth pin 1208, a ninth pin 1209, and a tenth pin 1210.


For the first pin set 1010, the first pin 1101 may comprise a battery pack positive pin, the second pin 1102 may comprise a battery pack positive pin, the third pin 1103 may comprise a system ground pin, the fourth pin 1104 may comprises a USB 2.0 Data (+) pin, the fifth pin 1105, may comprise a USB 2.0 Data (−) pin, the sixth pin 1106 may comprise a system ground pin, the seventh pin 1107, may comprise a UART data receive pin, the eighth pin 1108 may comprise a UART data transmit pin, the ninth pin 1109 may comprise a system ground pin, and the tenth pin 1110 may comprise a system ground pin.


For the second pin set 1020, the first pin 1201 may comprise an external power positive pin, the second pin 1202 may comprise an external power positive pin, the third pin 1203 may comprise a battery pack temperature sensor pin, the fourth pin 1204 may comprise an on switch/signal (low) pin, the fifth pin 1205 may comprise a reset signal (low) pin, the sixth pin 1206 may comprise a mode select (low) pin, the seventh pin 1207 may comprise a serial com data pin, the eighth pin 1208 may comprise a serial com clock pin, the ninth pin 1209 may comprise a system ground pin, and the tenth pin 1210 may comprise a system ground pin.


Referring to FIG. 12, a phone case 1230, the phone case 1230 with the primary module 1000 installed in the phone case 1230, and a phone 1240 installed in the phone case 1230 are illustrated according to various embodiments. The phone case 1230 may function as a secondary module to the primary module 1000. The phone case 1230 may be manufactured to the desired dimensions in order to fit any particular phone model. The phone case 1230 may comprise a housing 1231, with a battery 1232 located within the housing. In various embodiments, the battery 1232 may be permanently encapsulated within the housing 1231. However, in various embodiments, the battery 1232 may be removable from the phone case 1230.


The phone case 1230 may comprise a first pin set 1233 and a second pin set 1234. The first pin set 1233 and the second pin set 1234 may be configured to interface with the pins on the primary module 1000. In various embodiments, the first pin set 1233 and the second pin set 1234 on the phone case 1230 may be male pins, and the pins on the primary module 1000 may be female pins. In various embodiments, the pins on the primary module 1000 may be male pins, and the first pin set 1233 and the second pin set 1234 may be female pins.


The phone case 1230 may comprise a module reception cavity 1235. The module reception cavity 1235 may be configured to receive the primary module 1000. The module reception cavity 1235 may comprise the same size and shape as the primary module 1000. The phone case 1230 may further comprise a phone reception cavity 1236 which is configured to receive the phone 1240. The module reception cavity 1235 may comprise a back wall 1237 which is configure to keep the primary module 1000 within place between the back wall 1237 and the phone 1240 when the phone 1240 is inserted within the phone reception cavity 1236.


The phone case 1230 may comprise a phone jack 1238. The phone jack 1238 may be configured to electrically connect the battery 1232 and/or primary module 1000 to the phone 1240 via a connection port in the phone 1240. The connection port may be a standard port typically used to charge and transfer data to/from the phone 1240. The phone case 1230 may comprise internal wires 1239 which connect the primary module 1000, the battery 1232, and the phone jack 1238.


Referring to FIG. 13, the primary module 1000 is shown inserted in a secondary module 1300 comprising a battery 1310. The secondary module 1300 may comprise a housing 1320 which may enclose the primary module 1000 and the battery 1310. The secondary module 1300 may comprise a first reception cavity configured to receive the primary module 1000, and a second reception cavity configured to receive the battery 1310. In various embodiments, the battery 1310 may be permanently installed within the housing 1320, or the battery 1310 may be removably installed in the housing 1320. The secondary module 1300 may comprise a connection port 1330, such as a USB Type C port, which allows the secondary module 1300 to electrically connect to a power source (e.g. outlet) to charge the battery 1310 or transfer data to other components, such as computers, using a cord. The battery 1310 may provide power to the primary module 1000 when the primary module 1000 is installed within the secondary module 1300. The secondary module 1300 may also comprise pins configured to mate with the pins previously described on the primary module 1000, and/or the secondary module 1300 may comprise wires which electrically connect the primary module 1000, the battery 1310, and the connection port 1330.


As described with reference to FIGS. 1-9, the primary module 1000 may be capable of wirelessly communicating with other devices. However, in various embodiments, the primary module 1000 may be able to transfer and receive data faster using a wired connection than a wireless connection. Thus, by electrically connecting the primary module 1000 to the phone as shown in FIG. 12, or by electrically connecting the primary module 1000 to an external device using a cable as describe in FIG. 13, the primary module 1000 may be able to more quickly transfer and receive data.


Those skilled in the art will recognize that various pin configurations may be utilized. Additionally, although only two secondary modules have been illustrated, many different sizes, shapes, and functions of secondary modules may couple to the primary module. Although the illustrated embodiments comprise connection posts and pins on the secondary modules, in various embodiments, the connection posts and/or the pins may be located on the primary module, and the receiving slots and/or contact pads may be located on the secondary modules.


The terms “computer program medium” and “computer usable medium” are used to generally refer to media such as removable storage drive and a hard disk installed in hard disk drive. These computer program products provide software to the PED.


In various embodiments, software may be stored in a computer program product and loaded into the PED using removable storage drive, hard disk drive or communications interface. The control logic (software), when executed by the processor, causes the processor to perform the functions of various embodiments as described herein. The term “non-transitory” is to be understood to remove only propagating transitory signals per se from the claim scope and does not relinquish rights to all standard computer-readable media that are not only propagating transitory signals per se. Stated another way, the meaning of the term “non-transitory computer-readable medium” and “non-transitory computer-readable storage medium” should be construed to exclude only those types of transitory computer-readable media which were found in In Re Nuijten to fall outside the scope of patentable subject matter under 35 U.S.C. § 101.


Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. Reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to ‘at least one of A, B, and C’ or ‘at least one of A, B, or C’ is used in the claims or specification, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Although the disclosure includes a method, it is contemplated that it may be embodied as computer program instructions on a tangible computer-readable carrier, such as a magnetic or optical memory or a magnetic or optical disk. All structural, chemical, and functional equivalents to the elements of the above-described exemplary embodiments that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present disclosure, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.

Claims
  • 1. A modular portable electronic device system comprising: a primary module comprising a processor, a hard drive, a wireless chip, a battery, and a mating surface comprising a receiving slot;a first secondary module comprising a first connection post, wherein the first secondary module is configured to couple to the primary module by inserting the first connection post in the receiving slot and rotating the first secondary module; anda second secondary module comprising a second connection post, wherein the second secondary module is configured to couple to the primary module by inserting the second connection post in the receiving slot and rotating the second secondary module;wherein the primary module comprises seventeen contact pads.
  • 2. The modular portable electronic device system of claim 1, wherein the first secondary module comprises a cover plate, and wherein the second secondary module comprises a storage module.
  • 3. The modular portable electronic device system of claim 1, wherein the seventeen contact pads are arranged in a first row of six contact pads, a second row of five contact pads, and a third row of six contact pads.
  • 4. The modular portable electronic device system of claim 1, wherein the receiving slot comprises a ramp extending from the mating surface to a recessed surface.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to, and the benefit of, U.S. Provisional Patent Application No. 62/574,594 filed on Oct. 19, 2017 entitled “PORTABLE ELECTRONIC DEVICE CONNECTION SYSTEMS.” The content of the foregoing application is hereby incorporated by reference for all purposes.

US Referenced Citations (285)
Number Name Date Kind
5303388 Kreitman et al. Apr 1994 A
5664228 Mital Sep 1997 A
5678015 Goh Oct 1997 A
5689287 Mackinlay et al. Nov 1997 A
5689654 Kikinis et al. Nov 1997 A
5729471 Jain et al. Mar 1998 A
5956038 Rekimoto Sep 1999 A
5963215 Rosenzweig Oct 1999 A
5982295 Goto et al. Nov 1999 A
6002403 Sugiyama et al. Dec 1999 A
6008809 Brooks Dec 1999 A
6029183 Jenkins et al. Feb 2000 A
6160488 Honda Dec 2000 A
6489932 Chitturi et al. Dec 2002 B1
6497367 Conzola et al. Dec 2002 B2
6581068 Bensoussan et al. Jun 2003 B1
6597358 Miller Jul 2003 B2
6652170 Arnold Nov 2003 B1
6710788 Freach et al. Mar 2004 B1
6922815 Rosen Jul 2005 B2
6938218 Rosen Aug 2005 B1
7054963 Betts-LaCroix et al. May 2006 B2
7134095 Smith et al. Nov 2006 B1
7149836 Yu et al. Dec 2006 B2
7216305 Jaeger May 2007 B1
7428702 Cervantes et al. Sep 2008 B1
7480872 Ubillos Jan 2009 B1
7516484 Arnouse Apr 2009 B1
7533408 Arnouse May 2009 B1
7725839 Michaels May 2010 B2
7761813 Kim et al. Jul 2010 B2
D654931 Lemelman et al. Feb 2012 S
8111255 Park Feb 2012 B2
8117563 Ok et al. Feb 2012 B2
8260828 Dijk et al. Sep 2012 B2
8264488 Ueno Sep 2012 B2
8386686 Lin et al. Feb 2013 B2
8390255 Fathollahi Mar 2013 B1
8405502 Teague Mar 2013 B2
8483758 Huang Jul 2013 B2
8497859 Hickman et al. Jul 2013 B1
8510680 Kang et al. Aug 2013 B2
8587590 Erickson et al. Nov 2013 B2
8614885 Solomon et al. Dec 2013 B2
8634883 Hong Jan 2014 B2
8699218 Xu Apr 2014 B2
8745535 Chaudhri et al. Jun 2014 B2
8810430 Proud Aug 2014 B2
8924862 Luo Dec 2014 B1
8935438 Ivanchenko Jan 2015 B1
9047050 Medica et al. Jun 2015 B2
9178976 Djordjevic Nov 2015 B2
9247303 Phang et al. Jan 2016 B2
9288295 Ivanovski et al. Mar 2016 B2
9360991 Celebisoy Jun 2016 B2
9378588 Song Jun 2016 B2
9390082 Stolte et al. Jul 2016 B1
9405435 Hendricks Aug 2016 B2
9437038 Costello et al. Sep 2016 B1
9495375 Huang et al. Nov 2016 B2
9584402 Christmas et al. Feb 2017 B2
9626341 Guan et al. Apr 2017 B1
9684887 Majeti et al. Jun 2017 B2
9886229 Christmas et al. Feb 2018 B2
10075502 Malpass Sep 2018 B2
10084688 Christmas et al. Sep 2018 B2
10095873 Christmas et al. Oct 2018 B2
10122483 Gonzales, Jr. Nov 2018 B2
10123153 Christmas et al. Nov 2018 B2
10231013 Besehanic Mar 2019 B2
10411406 Hill Sep 2019 B1
20010028369 Gallo et al. Oct 2001 A1
20010033654 Wieser Oct 2001 A1
20010044578 Ben-Haim et al. Nov 2001 A1
20020085681 Jensen Jul 2002 A1
20020105529 Bowser et al. Aug 2002 A1
20020105551 Kamen et al. Aug 2002 A1
20020138543 Teng et al. Sep 2002 A1
20030074529 Crohas Apr 2003 A1
20030126272 Cori et al. Jul 2003 A1
20030126335 Silvester Jul 2003 A1
20030131050 Vincent Jul 2003 A1
20030142136 Carter et al. Jul 2003 A1
20030217097 Eitel Nov 2003 A1
20040088280 Koh et al. May 2004 A1
20040104932 Brebner Jun 2004 A1
20040205091 Mulcahy et al. Oct 2004 A1
20050005246 Card et al. Jan 2005 A1
20050076216 Nyberg Apr 2005 A1
20050097008 Ehring et al. May 2005 A1
20050185364 Bell et al. Aug 2005 A1
20050224589 Park et al. Oct 2005 A1
20050237704 Ceresoli Oct 2005 A1
20050271207 Frey Dec 2005 A1
20060020888 Kang et al. Jan 2006 A1
20060057960 Tran Mar 2006 A1
20060075225 Flynn et al. Apr 2006 A1
20060085741 Weiner et al. Apr 2006 A1
20060090122 Pyhalammi et al. Apr 2006 A1
20060112270 Erez May 2006 A1
20060130004 Hughes et al. Jun 2006 A1
20060149825 Kim Jul 2006 A1
20060161631 Lira Jul 2006 A1
20060200518 Sinclair et al. Sep 2006 A1
20060239275 Zlateff et al. Oct 2006 A1
20060239375 Kim et al. Oct 2006 A1
20060294386 Yuval et al. Dec 2006 A1
20070050778 Lee et al. Mar 2007 A1
20070120846 Ok et al. May 2007 A1
20070130541 Louch et al. Jun 2007 A1
20070158408 Wang et al. Jul 2007 A1
20070160198 Orsini et al. Jul 2007 A1
20070168614 Jianjun et al. Jul 2007 A1
20070245048 Mezet et al. Oct 2007 A1
20070271580 Tischer et al. Nov 2007 A1
20070273675 Wangler Nov 2007 A1
20070279852 Daniel et al. Dec 2007 A1
20070282601 Li Dec 2007 A1
20080024976 Hardson et al. Jan 2008 A1
20080069358 Yang Mar 2008 A1
20080080709 Michtchenko et al. Apr 2008 A1
20080181141 Krantz et al. Jul 2008 A1
20080186305 Carter Aug 2008 A1
20080222238 Ivanov et al. Sep 2008 A1
20080223890 Tecchiolli et al. Sep 2008 A1
20080235629 Porter et al. Sep 2008 A1
20080241809 Ashmore et al. Oct 2008 A1
20080250179 Moon Oct 2008 A1
20080305738 Khedouri et al. Dec 2008 A1
20080313450 Rosenberg Dec 2008 A1
20080317068 Sagar et al. Dec 2008 A1
20090009605 Ortiz Jan 2009 A1
20090089692 Morris Apr 2009 A1
20090116445 Samar et al. May 2009 A1
20090144653 Ubillos Jun 2009 A1
20090146775 Bonnaud et al. Jun 2009 A1
20090239468 He et al. Sep 2009 A1
20090240598 Kargman Dec 2009 A1
20090300025 Rothschild et al. Dec 2009 A1
20100007768 Yong et al. Jan 2010 A1
20100020035 Ryu et al. Jan 2010 A1
20100050129 Li et al. Feb 2010 A1
20100078343 Hoellwarth et al. Apr 2010 A1
20100088634 Tsuruta et al. Apr 2010 A1
20100093412 Serra et al. Apr 2010 A1
20100122207 Kim et al. May 2010 A1
20100153449 Baba et al. Jun 2010 A1
20100161743 Krishnamurthi et al. Jun 2010 A1
20100169639 Jeffries et al. Jul 2010 A1
20100169836 Stallings et al. Jul 2010 A1
20100225735 Shaffer et al. Sep 2010 A1
20100238089 Massand Sep 2010 A1
20100256624 Brannon et al. Oct 2010 A1
20100268929 Fumiyoshi Oct 2010 A1
20100281138 Froimchuk et al. Nov 2010 A1
20100309228 Mattos et al. Dec 2010 A1
20100313154 Choi et al. Dec 2010 A1
20100315225 Harrison et al. Dec 2010 A1
20100315417 Cho et al. Dec 2010 A1
20110051642 Krishnaswamy Mar 2011 A1
20110063211 Hoerl et al. Mar 2011 A1
20110090534 Terao et al. Apr 2011 A1
20110107269 Chiu et al. May 2011 A1
20110113251 Lu et al. May 2011 A1
20110131660 Claessen et al. Jun 2011 A1
20110134110 Song et al. Jun 2011 A1
20110138175 Clark et al. Jun 2011 A1
20110179368 King et al. Jul 2011 A1
20110252098 Kumar Oct 2011 A1
20110283208 Gallo Nov 2011 A1
20110287808 Huang Nov 2011 A1
20110294474 Barany et al. Dec 2011 A1
20110295392 Cunnington Dec 2011 A1
20110296339 Kang Dec 2011 A1
20110310100 Adimatyam et al. Dec 2011 A1
20120011200 Zhang et al. Jan 2012 A1
20120034897 Kreitzer et al. Feb 2012 A1
20120047517 Townsend et al. Feb 2012 A1
20120098754 Kim Apr 2012 A1
20120128172 Alden May 2012 A1
20120155510 Hirsch et al. Jun 2012 A1
20120166953 Affronti et al. Jun 2012 A1
20120194976 Golko et al. Aug 2012 A1
20120200567 Mandel et al. Aug 2012 A1
20120209630 Ihm et al. Aug 2012 A1
20120242845 Tan Sep 2012 A1
20120260218 Bawel Oct 2012 A1
20120267432 Kuttuva Oct 2012 A1
20120282858 Gill et al. Nov 2012 A1
20120293509 Barnsley Nov 2012 A1
20130028419 Das et al. Jan 2013 A1
20130050117 Cho et al. Feb 2013 A1
20130073692 Isaza et al. Mar 2013 A1
20130077529 Lueckenhoff et al. Mar 2013 A1
20130080541 Herbert Mar 2013 A1
20130097239 Brown et al. Apr 2013 A1
20130111038 Girard May 2013 A1
20130125000 Fleischhauer et al. May 2013 A1
20130145384 Krum Jun 2013 A1
20130152113 Conrad et al. Jun 2013 A1
20130159080 Wu et al. Jun 2013 A1
20130159178 Colon et al. Jun 2013 A1
20130163195 Pelletier Jun 2013 A1
20130173798 Micucci Jul 2013 A1
20130201176 Lee et al. Aug 2013 A1
20130205277 Seven et al. Aug 2013 A1
20130212112 Blom et al. Aug 2013 A1
20130217448 Kim Aug 2013 A1
20130219479 Desoto et al. Aug 2013 A1
20130227420 Pasquero et al. Aug 2013 A1
20130235037 Baldwin et al. Sep 2013 A1
20130238711 Lashkari et al. Sep 2013 A1
20130256403 Mackinnon Oct 2013 A1
20130260819 Suzuki et al. Oct 2013 A1
20130266065 Paczkowski Oct 2013 A1
20130266129 Pattan et al. Oct 2013 A1
20130268802 Ito et al. Oct 2013 A1
20130268955 Conrad Oct 2013 A1
20130272196 Li et al. Oct 2013 A1
20130273983 Hsu Oct 2013 A1
20130290440 Pratt et al. Oct 2013 A1
20130300740 Snyder et al. Nov 2013 A1
20130303160 Fong et al. Nov 2013 A1
20130317835 Matthew Nov 2013 A1
20130346911 Sripada Dec 2013 A1
20140012913 Varoglu et al. Jan 2014 A1
20140026204 Buntinx et al. Jan 2014 A1
20140039804 Park et al. Feb 2014 A1
20140040777 Jones et al. Feb 2014 A1
20140052522 Irani et al. Feb 2014 A1
20140052618 Drozd et al. Feb 2014 A1
20140055822 Hannaway et al. Feb 2014 A1
20140078136 Sohn et al. Mar 2014 A1
20140082547 Ding Mar 2014 A1
20140106677 Altman Apr 2014 A1
20140123033 Uhma et al. May 2014 A1
20140132594 Gharpure et al. May 2014 A1
20140132736 Chang et al. May 2014 A1
20140136429 Psihos May 2014 A1
20140141713 Shirinfar et al. May 2014 A1
20140156725 Mandyam Jun 2014 A1
20140189532 Sivaraman et al. Jul 2014 A1
20140207657 Gacs et al. Jul 2014 A1
20140218356 Distler Aug 2014 A1
20140232817 Jones et al. Aug 2014 A1
20140258938 Christmas et al. Sep 2014 A1
20140337640 Sharma et al. Nov 2014 A1
20140351181 Canoy et al. Nov 2014 A1
20140355761 Kawamura et al. Dec 2014 A1
20150009531 Kawaguchi Jan 2015 A1
20150012617 Park et al. Jan 2015 A1
20150019628 Li Jan 2015 A1
20150095777 Lim et al. Apr 2015 A1
20150101018 Forte Apr 2015 A1
20150106837 Li et al. Apr 2015 A1
20150133000 Kim May 2015 A1
20150145889 Hanai May 2015 A1
20150194833 Fathollahi et al. Jul 2015 A1
20150271271 Bullota et al. Sep 2015 A1
20150271299 Bullota et al. Sep 2015 A1
20150279470 Cerrelli et al. Oct 2015 A1
20150281439 Dudai Oct 2015 A1
20150339867 Amon Nov 2015 A1
20150367230 Bradford et al. Dec 2015 A1
20150382169 Burba Dec 2015 A1
20160014574 Christmas et al. Jan 2016 A1
20160037055 Waddington Feb 2016 A1
20160100279 Christmas et al. Apr 2016 A1
20160134941 Selvaraj May 2016 A1
20160162244 Christmas et al. Jun 2016 A1
20160188468 Rao Jun 2016 A1
20160195899 Plante Jul 2016 A1
20160226730 Schumacher Aug 2016 A1
20160260319 Jeffery et al. Sep 2016 A1
20160269468 Malpass Sep 2016 A1
20170134803 Shaw May 2017 A1
20170160992 Christmas et al. Jun 2017 A1
20170371378 Christmas et al. Dec 2017 A1
20180146378 Christmas et al. May 2018 A1
20190007477 Malpass Jan 2019 A1
20190012473 Christmas et al. Jan 2019 A1
20190020576 Christmas et al. Jan 2019 A1
20190037381 Christmas et al. Jan 2019 A1
20190319993 Christmas Oct 2019 A1
20200010049 Christmas Jan 2020 A1
Foreign Referenced Citations (67)
Number Date Country
2013352236 Nov 2018 AU
103945003 Jul 2001 CN
1881164 Dec 2006 CN
101388815 Mar 2009 CN
101401341 Apr 2009 CN
102376133 Mar 2012 CN
102591571 Jul 2012 CN
103077462 May 2013 CN
103095852 May 2013 CN
103546181 Jan 2014 CN
106797337 May 2018 CN
105706033 May 2019 CN
0800144 Oct 1997 EP
1168769 Feb 2002 EP
1761048 Mar 2007 EP
1806649 Jul 2007 EP
3022638 Apr 2018 EP
1242492 Jun 2018 HK
09-091155 Apr 1997 JP
2007-049606 Feb 2007 JP
2010-535351 Nov 2010 JP
2011-134159 Jul 2011 JP
2011-147136 Jul 2011 JP
2011-248489 Dec 2011 JP
2013-214801 Oct 2013 JP
6310477 Apr 2018 JP
2018-514845 Jun 2018 JP
6479026 Feb 2019 JP
10-2004-0108122 Dec 2004 KR
10-2005-0098078 Oct 2005 KR
10-20090059672 Jun 2009 KR
10-20100056594 May 2010 KR
10-20120092487 Aug 2012 KR
10-2012-0059488 May 2013 KR
10-2017-0047866 May 2017 KR
2421800 Jun 2011 RU
201214150 Apr 2012 TW
201320681 May 2013 TW
201349811 Dec 2013 TW
629910 Jul 2018 TW
2000033545 Jun 2000 WO
2005050393 Jun 2005 WO
2006107324 Oct 2006 WO
2006125027 Nov 2006 WO
2007076494 Jul 2007 WO
2007103908 Sep 2007 WO
2008090902 Jul 2008 WO
2009016612 Feb 2009 WO
2010018551 Aug 2010 WO
2012087847 Jun 2012 WO
2014012486 Jan 2014 WO
2014016622 Jan 2014 WO
2014085502 Jun 2014 WO
2014138187 Sep 2014 WO
2014141235 Sep 2014 WO
2014151925 Sep 2014 WO
2015009944 Jan 2015 WO
2015048684 Apr 2015 WO
2015112506 Jul 2015 WO
2016007780 Jan 2016 WO
2016057091 Apr 2016 WO
2016145126 Sep 2016 WO
2017096245 Jun 2017 WO
2018098313 May 2018 WO
2018144833 Aug 2018 WO
2018232186 Dec 2018 WO
2019079628 Apr 2019 WO
Non-Patent Literature Citations (145)
Entry
USPTO; Office Action dated Oct. 8, 2015 in U.S. Appl. No. 14/092,165.
USPTO; Office Action dated Sep. 18, 2015 in U.S. Appl. No. 14/164,919.
USPTO; Office Action dated Apr. 5, 2016 in U.S. Appl. No. 14/500,363.
USPTO; Final Office Action dated Jun. 3, 2016 in U.S. Appl. No. 14/092,165.
USPTO; Final Office Action dated Apr. 26, 2016 in U.S. Appl. No. 14/164,919.
USPTO; Office Action dated Jun. 22, 2016 in U.S. Appl. No. 14/745,100.
USPTO; Office action dated Apr. 22, 2016 in U.S. Appl. No. 14/709,231.
USPTO; Notice of Allowance dated Aug. 16, 2016 in U.S. Appl. No. 14/092,165.
USPTO; Office Action dated Oct. 6, 2016 in U.S. Appl. No. 14/197,517.
USPTO; Final Office Action dated Oct. 26, 2016 in U.S. Appl. No. 14/500,363.
USPTO; Final Office Action dated Oct. 11, 2016 in U.S. Appl. No. 14/709,231.
USPTO; Notice of Allowance dated Oct. 14, 2016 in U.S. Appl. No. 14/164,919.
USPTO; Final Office Action dated Dec. 20, 2016 in U.S. Appl. No. 14/745,100.
USPTO; Office Action dated Nov. 25, 2016 in U.S. Appl. No. 14/795,210.
USPTO; Office Action dated Apr. 7, 2017 in U.S. Appl. No. 14/500,363.
USPTO; Office Action dated Apr. 14, 2017 in U.S. Appl. No. 14/905,639.
USPTO; Office Action dated Apr. 6, 2017 in U.S. Appl. No. 14/709,231.
USPTO; Office Action dated May 4, 2017 in U.S. Appl. No. 14/745,100.
USPTO; Final Office Action dated Jun. 30, 2017 in U.S. Appl. No. 14/197,517.
USPTO; Final Office Action dated Aug. 17, 2017 in U.S. Appl. No. 14/795,210.
USPTO; Notice of Allowance dated Oct. 11, 2017 in U.S. Appl. No. 14/905,639.
USPTO; Final Office Action dated Oct. 3, 2017 in U.S. Appl. No. 14/500,363.
USPTO; Final Office action dated Sep. 29, 2017 in U.S. Appl. No. 14/709,231.
USPTO; Office Action dated Oct. 25, 2017 in U.S. Appl. No. 15/435,884.
USPTO; Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/745,100.
USPTO; Notice of Allowance dated Nov. 29, 2017 in U.S. Appl. No. 14/905,639.
USPTO; Non-Final Office Action dated Dec. 12, 2017 in U.S. Appl. No. 15/367,961.
USPTO; Non-Final Office Action dated Jan. 8, 2018 in U.S. Appl. No. 15/065,713.
USPTO; Notice of Allowance dated Feb. 26, 2018 in U.S. Appl. No. 14/745,100.
USPTO; Non-Final Office Action dated Mar. 8, 2018 in U.S. Appl. No. 14/197,517.
USPTO; Notice of Allowance dated May 7, 2018 in U.S. Appl. No. 15/065,713.
USPTO; Notice of Allowance dated May 17, 2018 in U.S. Appl. No. 14/709,231.
USPTO; Non-Final Office Action dated May 18, 2018 in U.S. Appl. No. 15/644,556.
USPTO; Notice of Allowance dated May 22, 2018 in U.S. Appl. No. 15/435,884.
USPTO; Notice of Allowance dated May 29, 2018 in U.S. Appl. No. 15/065,713.
USPTO; Notice of Allowance dated Jun. 20, 2018 in U.S. Appl. No. 15/435,884.
USPTO; Non-Final Office Action dated Jun. 28, 2018 in U.S. Appl. No. 14/795,210.
USPTO; Notice of Allowance dated Jun. 29, 2018 in U.S. Appl. No. 15/065,713.
USPTO; Notice of Allowance dated Jul. 5, 2018 in U.S. Appl. No. 14/745,100.
USPTO; Notice of Allowance dated Jul. 10, 2018 in U.S. Appl. No. 14/709,231.
USPTO; Final Office Action dated Aug. 10, 2018 in U.S. Appl. No. 15/367,961.
USPTO; Notice of Allowance dated Sep. 28, 2018 in U.S. Appl. No. 15/644,556.
USPTO; Final Office Action dated Oct. 18, 2018 in U.S. Appl. No. 14/197,517.
EP; Extended Search Report dated Sep. 17, 2015 in Application Serial No. 15740208.2.
Sweden; Office Action dated Nov. 18, 2015 in Application Serial No. 1551071-2.
EP; Supplemental Search Report dated Jun. 14, 2016 in Application Serial No. 13859205.0.
EP; Supplemental Search Report dated Oct. 20, 2016 in Application Serial No. 14760041.5.
EP; Extended Search Report dated Jan. 24, 2017 in Application Serial No. 14760041.5.
EP; Supplemental Search Report dated Mar. 2, 2017 in Application Serial No. 14826056.5.
EP; Extended Search Report dated Mar. 21, 2017 in Application Serial No. 14846886.1.
MX; Examination Report dated Feb. 24, 2017 in Application Serial No. 2015/006550.
MX; Examination Report dated Apr. 21, 2017 in Application Serial No. 2015/011314.
JP; Examination Report dated Jul. 28, 2017 in Application Serial No. 2015-545200.
CN; Examination Report dated Jul. 28, 2017 in Application Serial No. 20138007041.5X [Assoc did not report OA Until Sep. 27, 2017].
CN; 2nd Examination Report dated Apr. 18, 2018 in Application Serial No. 201380070415.X.
CN; Examination Report dated May 9, 2018 in Application Serial No. 201480023946.8.
CN; 1st Office Action dated Nov. 20, 2018 in Application Serial No. 201580016416.5.
MX; 2nd Examination Report dated Oct. 24, 2017 in Application Serial No. 2015/011314.
MX; 3rd Examination Report dated Jul. 2, 2018 in Application No. 2015/011314 (Received on Sep. 7, 2018).
EP; Supplemental Search Report dated Sep. 15, 2017 in Application Serial No. 15740208.2.
MX; Office Action dated Jan. 23, 2018 in Application Serial No. MX/a/2016/003798.
TW; Office Action dated Jan. 24, 2018 in Application Serial No. 104102514.
TW; Notice of Allowance dated May 15, 2018 in Application Serial No. 104102514.
EP; Extended Search Report dated Apr. 9, 2018 in Application Serial No. 15848371.9.
EP; Supplementary Search Report dated Apr. 30, 2018 in Application Serial No. 15848371.9.
EP; Extended Search Report dated Apr. 24, 2018 in Application Serial No. 15819468.8.
JP; Office Action dated Aug. 2, 2017 in Application Serial No. 2015-545200.
JP; Notice of Allowance dated Mar. 17, 2018 in Application Serial No. 2015-545200.
JP; Office Action dated Feb. 2, 2018 in Application Serial No. 2016-549317.
AU; 1st Office Action dated Apr. 13, 2018 in Application Serial No. 2013352236.
EP; Extended Search Report and Supplementary Search Report dated Oct. 19, 2018 in Application Serial No. 16762464.2.
AU; 1st Office Action dated Oct. 24, 2018 in Application Serial No. 2015287705.
MX; 2nd Examination Report dated Oct. 4, 2018 (Received from Mexico Counsel on Nov. 6, 2018) in Application Serial No. MX/a/2016/003798.
CN; 3rd Examination Report dated Oct. 31, 2018 in Application Serial No. CN 201380070415.
EPO; Examination Report dated Nov. 8, 2018 in Application No. EP 15740208.2.
AU; Examination Report dated Dec. 19, 2018 in Application Serial No. AU 2014225864.
PCT; International Search Report dated Jul. 4, 2014 in Application No. US2014/020624.
PCT; Written Opinion dated Jul. 4, 2014 in Application No. US2014/020624.
PCT; International Preliminary Report on Patentability dated Sep. 8, 2015 in Application No. US2014/020624.
PCT; International Search Report dated Nov. 13, 2014 in US2014/047054.
PCT; Written Opinion dated Nov. 13, 2014 in US2014/047054.
PCT; International Preliminary Report on Patentability dated Jan. 19, 2016 in US2014/047054.
PCT; International Search Report dated Jan. 6, 2015 in US2014/058126.
PCT; Written Opinion dated Jan. 6, 2015 in US2014/058126.
PCT; International Search Report dated Mar. 5, 2014 in US2013042089.
PCT; Written Opinion dated Mar. 5, 2015 in US2013/072089.
PCT; International Preliminary Report on Patentability dated Jun. 2, 2015 in US2013072089.
PCT; International Search Report dated Apr. 24, 2015 in US2015/012063.
PCT; Written Opinion dated Apr. 24, 2015 in US2015/012063.
PCT; International Search Report and Written Opinion dated Oct. 6, 2015 in US2015/036801.
PCT; International Search Report and Written Opinion dated Nov. 2, 2015 in US2015/039797.
PCT; International Preliminary Report on Patentability dated Apr. 14, 2016 in US2014/058126.
PCT; International Search Report and Written Opinion dated Jul. 11, 2016 in US2016/021627.
PCT; International Search Report and Written Opinion dated Mar. 20, 2017 in US/2016/064744.
PCT; International Search Report and Written Opinion dated Feb. 20, 2018 in US/2017/063061 received May 31, 2018.
PCT; International Search Report and Written Opinion dated Aug. 9, 2018 in International Application PCT/US2018/016610.
Kim, Young-Gon, and Moon-Seog Jun. A design of user authentication system using QR code identifying method. Computer Sciences and Convergence Information Technology (ICCIT), 6th International Conference on IEEE. Nov. 29-Dec. 1, 2011.
Application Programming Interface by David Orenstein, published Jan. 10, 2000 on Computerworld.com.
Gerd Kortuem et al., “Architectural Issues in Supporting Ad-hoc Collaboration with Wearable Computers,” In: Proceedings of the Workshop on Software Engineering for Wearable and Pervasive Computing at the 22nd International Conference on Software Engineering, 2000.
3rd party observation dated Dec. 22, 2015 against Patent Application No. 1551071-2 in Sweden.
Revault Product Data Sheet dated Mar. 19, 2015.
Dusk Jockeys; Dust Jockeys Android Apps dated Mar. 7, 2012, pp. 1-5.
Sue White: Wi-Fi and Bluetooth Coexistence, Electronic Component News, Mar. 2, 2012, pp. 1-7, XP05504386, Retrieved from Internet: URL: https://www.ecnmag.com/article/2012/03/wi-fi-andbluetooth-coexistence [retrieved on Sep. 6, 2017].
“Class Persistent Manager,” https://web.archive.org/web/20131110042918/https://tomcat.apache.org/tomcat-4.1-doc/catalina/docs/api/org/apache/catalina/session, 3 Pages, (Oct. 2018).
USPTO; Non-Final Office Action dated Feb. 6, 2019 in U.S. Appl. No. 15/644,556.
USPTO; Final Office Action dated Feb. 7, 2019 in U.S. Appl. No. 14/795,210.
USPTO; Non-Final Office Action dated Mar. 7, 2019 in U.S. Appl. No. 15/367,961.
USPTO; Advisory Action dated Mar. 12, 2019 in U.S. Appl. No. 14/197,517.
CN; 1st Office Action dated Nov. 26, 2018 in Application Serial No. 201480065117.6.
CN; Notice of Intent to Grant dated Feb. 11, 2019 in Application No. CN 201380070415.
EP; Notice of Intent to Grant dated Jan. 4, 2019 in Application No. EP14760041.5.
CN; Notice of Intent to Grant dated Jan. 30, 2019 in Application No. CN 201480023946.8.
EP; Examination Report dated Feb. 5, 2019 in Application No. EP 13859205.0.
JP; Notice of Allowance dated Dec. 30, 2018 in Application No. JP 2016-549317.
TW; Search Report dated Dec. 10, 2018 in Application No. TW 107119353.
TW; First Office Action dated Dec. 6, 2018 in Application No. TW 107119353.
EP; Examination Report dated Jan. 3, 2019 in Application No. EP 15848371.9.
PCT; International Search Report and Written Opinion dated Oct. 12, 2018 in International Application PCT/US2018/037643.
Rico Fabio et al., “A Testbed for Developing, Simulating and Experimenting Multipath Aggregation Algorithms,” Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), IEEE, pp. 1-4, (Sep. 2014).
USPTO; Notice of Allowance dated May 21, 2019 in U.S. Appl. No. 15/644,556.
USPTO; Non-Final Office Action dated May 30, 2019 in U.S. Appl. No. 16/114,531.
USPTO; Non-Final Office Action dated Jun. 14, 2019 in U.S. Appl. No. 14/197,517.
USPTO; Restriction Requirement dated Jun. 20, 2019 in U.S. Appl. No. 16/152,342.
USPTO; Non-Final Office Action dated Sep. 30, 2019 in U.S. Appl. No. 16/152,342.
USPTO; Notice of Allowance dated Aug. 28, 2019 in the U.S. Appl. No. 15/821,212.
AU; 2nd Examination Report Mar. 20, 2019 in Application No. AU 2014225864.
MX; 3rd Examination Report dated Mar. 21, 2019 in Application No. MX/a/2016/003798.
CA; Office Action dated Nov. 23, 2018 in Application No. CA 2892664.
CA; 2nd Office Action dated Feb. 14, 2019 in Application No. CA 2892664.
AU; Examination Report dated Feb. 8, 2019 in Application No. AU 2015328723.
RU; Examination Report dated Jan. 31, 2019 in Application No. RU 2017113541.
EP; Examination Report dated Apr. 18, 2019 in Application No. EP 15819468.8.
JP; Examination Report dated May 8, 2019 in Application No. 2017-518492.
MX; Examination Report dated Jun. 19, 2019 in Application No. MX/a/2017/004463.
MX; Examination Report dated May 27, 2019 in Application No. MX/a/2016/000616.
MX; Notice of Allowance dated Oct. 14, 2019 in Application No. MX/a/2016/003798.
Sweden; Office Action dated Jul. 17, 2019 in Application No. 1551071-2.
CN; Second Office Action dated Apr. 29, 2019 in Application No. 201480065117.6.
CN; Third Office Action dated Aug. 8, 2019 in Application No. 201480065117.6.
PCT; International Search Report and Written Opinion dated Feb. 12, 2019 in International Application PCT/US2019/056562.
PCT; International Preliminary Report on Patentability dated Jan. 19, 2017 in the International Application No. PCT/US2015/039797.
PCT; International Preliminary Report on Patentability dated Aug. 15, 2019 in the International Application No. PCT/US2018/016610.
PCT; International Search Report and Written Opinion dated Mar. 22, 2019 in the International Application No. PCT/US2018/063468.
PCT; International Search Report and Written Opinion dated Aug. 9, 2019 in the International Application No. PCT/US2019/027993.
USPTO; Non-Final Office Action dated Jan. 10, 2020 in the U.S. Appl. No. 16/387,464.
Related Publications (1)
Number Date Country
20190123501 A1 Apr 2019 US
Provisional Applications (1)
Number Date Country
62574594 Oct 2017 US