This disclosure relates generally to portable electronic devices, and more specifically to a connector for a portable electronic device.
Portable electronic devices include a wide variety of different electronic devices designed to be easily transported by a user. Such electronic devices may include smart phones, digital media players, cellular telephones, mobile computing devices, wearable devices, tablet computing devices, health and fitness monitors, laptop computing devices, and so on.
Manufacturers may be limited by size, weight, and other constraints when designing portable electronic devices to be easily transported. Meeting such constraints may involve omitting components from the portable electronic devices that might otherwise be useful or using smaller but less powerful versions of components.
The present disclosure details systems, apparatuses, and methods related to connectors for portable electronic devices. In some embodiments, an affixing structure of a connector may be configured to attach to an affixing structure interface of a portable electronic device that is configured to also couple the portable electronic device to an attachment member. A connector plug including spring pins or other conductors coupled to an electrical conduit may be coupled to the affixing structure. The spring pins may electrically connect to one or more electric components of the portable electronic device and the electrical conduit may electrically connect to one or more diagnostic and/or other electronic devices.
In some embodiments, an attachment member may include one or more electronic components and spring pins or other conductors connectible to a wearable device. In some embodiments, the attachment member may additionally include a connector operable to connect the wearable device to another electronic device. Such connection may allow transfer of power and/or communications between the attachment member and the electronic device and/or between the wearable device and the electronic device via the attachment member.
In various embodiments, a connector for a portable electronic device includes an affixing structure configured to attach to an affixing structure interface of a portable electronic device. The affixing structure interface may be configured to couple the portable electronic device to an attachment member. The connector may also include a connector plug coupled to the affixing structure. The connector plug may include conductors coupled to an electrical conduit. The conductors may be configured to electrically connect to an electronic component of the portable electronic device when the affixing structure is attached to affixing structure interface and the electrical conduit is configured to electrically connect to a diagnostic device.
In some embodiments, a system for connecting an electronic device to a wearable device may include an affixing structure configured to insert into a channel of a wearable device and a connector plug coupled to the affixing structure. The connector plug may include a pin coupled to an electrical conduit. The pin may be configured to electrically connect to an electronic component of the wearable device when the affixing structure is inserted into the channel and the electrical conduit is configured to electrically connect to an electronic device.
In one or more embodiments, an electronic band for a wearable device may include a band segment including an electronic component; an affixing structure, coupled to the band segment, configured to insert into a channel of a wearable device; and a conductor, coupled to the affixing structure, electrically connected to the electronic component of the band segment. The conductor may be configured to electrically connect the electronic component of the band segment to an electronic component of the wearable device when the affixing structure is inserted into the channel.
It is to be understood that both the foregoing general description and the following detailed description are for purposes of example and explanation and do not necessarily limit the present disclosure. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate subject matter of the disclosure. Together, the descriptions and the drawings serve to explain the principles of the disclosure.
The description that follows includes sample systems, methods, and computer program products that embody various elements of the present disclosure. However, it should be understood that the described disclosure may be practiced in a variety of forms in addition to those described herein.
The present disclosure details systems, apparatuses, and methods related to connectors for portable electronic devices. In various embodiments, an affixing structure (“lug”) of a connector may be configured to attach to an affixing structure interface (“lug interface”) of an electronic device that is configured to also couple the electronic device to an attachment member, such as a band. Conductors of the connector may electrically connect to the electronic device when the affixing structure is attached, facilitating electrical communication between the electronic device and another electronic device using the connector. This electrical communication may enable a variety of different interactions with the electronic device, such as obtaining data from the electronic device, transferring data to the electronic device, obtaining diagnostic information from the electronic device, instructing the electronic device to perform various actions such as running diagnostic tests, and so on.
For example, the affixing structure may be inserted into a channel of a wearable device that is configured to couple the wearable device to a band or band segment. A connector plug, which may include spring pins or other conductors coupled to an electrical conduit, may be coupled to the affixing structure. The spring pins may be coupled to the connector plug by inserting the spring pins through an aperture that extends through the affixing structure. The spring pins may electrically connect to one or more electric components of the portable electronic device and the electrical conduit may electrically connect to one or more diagnostic devices. In this way, the connector may be used to connect the portable electronic device and the diagnostic device so that the diagnostic device can perform various functions such as resetting the portable electronic device to an initial factory configuration.
In some implementations, the spring pins or other conductors may electrically connect to the electronic component of the portable electronic device via an aperture in the affixing structure interface. The affixing structure interface aperture may be covered with a seal, which may be formed of epoxy and/or other polymer, which may be destructively removed prior to connection of the spring pins. In this way, contact pads and/or other components of the affixing structure interface aperture may be protected from corrosion when the connector is not being utilized. Further, support personnel may be able to connect the connector to the portable electronic device without enabling users of the portable electronic device to do so.
In various embodiments, an attachment member may include one or more electronic components and spring pins or other conductors. For example, inserting an affixing structure of a band or band segment to a channel of a wearable device may electrically connect spring pins of the band affixing structure to the wearable device, thereby electrically connecting the electronic component of the band or band segment to the electronic component of the wearable device. In some embodiments, the attachment member may additionally include a connector operable to connect the wearable device to another electronic device. Such connection may allow transfer of power and/or communications between the attachment member and the electronic device and/or between the wearable device and the electronic device via the attachment member.
In some embodiments, an attachment member such as a band may connect to a wearable device. The attachment member may include a connector positioned within a clasp that is operable to connect the attachment member to another electronic device to allow transfer of power and/or communications. The connector may be moveable between an obscured and a revealed position.
For example, a band or other attachment member may include a first portion with a connector positioned on an end and a second portion with a cavity defined in an end. The two ends may be connectible, such as via one or more magnets. Connecting the two ends may insert the connector into the cavity, thus obscuring the connector. Disconnecting the two ends may remove the connector from the cavity, thus revealing the connector.
By way of another example, a band or other attachment member may include multiple portions joined by a clasp mechanism. The clasp mechanism may include clasp portions that are magnetically attachable to each other. The clasp portions may each include one or more magnetic elements. One or more of the magnetic elements may be manipulated between first and second positions. In the first position, the magnets may be operable to attract and/or attach the clasp portions. In the second position, the magnets may no longer attract and/or attach the clasp portions, and may cause the clasp portions to repel each other. One or more of the clasp portions may include a connector positioned in a cavity facing where the clasp portions connect. As such, connecting the clasp portions may obscure the connector and disconnecting the clasp portions may reveal the connector.
By way of a third example, a band or other attachment member may include a clasp mechanism that is operable to transition between an extended and a fastened configuration to extend and/or contract the length of the band without detaching. The clasp mechanism may include multiple extender portions and at least one fastening portion that are flexibly connected to one another. The extender portions may move to fold into and be fastened by the fastening portion when transitioning to the fastened configuration. The fastening portion may unfasten and allow the extender portions to fold out from the fastening portion when transitioning to the extended configuration. A connector may be coupled to one of the extender portions or the fastening portion such that transitioning to the fastened configuration obscures the connector within the clasp mechanism and transitioning to the extended configuration reveals the connector.
The wearable device 101 may include various electronic components not shown. Such components may include one or more processing units, one or more input/output components, one or more communication components, and/or one or more non-transitory storage media (which may take the form of, but is not limited to, a magnetic storage medium; optical storage medium; magneto-optical storage medium; read only memory; random access memory; erasable programmable memory; flash memory; and so on). Generally, these components are not illustrated for purposes of clarity and/or simplicity.
The wearable device 101 may communicate wirelessly with one or more electronic devices. For example, the wearable device may communicate using one or more WiFi antennas, Bluetooth antennas, near field communication antennas, cellular antennas, and so on. Further, the wearable device may communicate either wirelessly or in a wired fashion with electronic components in either or both of the lug and band, if either or both incorporate electronic components.
Wireless communication may not be suitable for all purposes for which electronic devices that communicate with the wearable device 101. For example, writing or reading large amounts of data (such as migrating all data of an electronic device to a replacement device) may be slower over a wireless communication connection than over some wired communication connections.
By way of another example, wireless communication may not be suitable for diagnostic and/or other technical support activities. Wireless communications may be accomplished through wireless communication components of the wearable device 101 and thus not allow direct communication with other hardware components for purposes of obtaining diagnostic information, flashing firmware, and/or other activities. For instance, failure of a wireless communication component could prevent any diagnostic information from being obtained and therefore cause support personnel to be unable to determine precisely which component of the wearable device has failed.
In this way, support personnel may be able to remove the seal 106 to access the access aperture 107, but users of the wearable device 101 may not be able to do so without leaving evidence of that access. For example, one or more warrantees related to the wearable device 101 may be voided if the seal 106 is removed.
With reference to
The spring pins 209 may be mounted in a spring pin block 208 that couples to the flex circuit 205 by conductive material 207 that extends from the spring pins 209 through the spring pin block 208 and the flex circuit to a stiffener 204. The spring pins 209 may include moveable pins 211 that are forceable into pin collars 210 but are spring biased (see
A lug aperture 206 may be aligned with the access aperture 107 such that the connector plug 220 may be at least partially inserted into the lug aperture 206 and access aperture 107 to connect the contacts 212 to contact pads 214 positioned inside the access aperture 107.
Thus, the connector may be used to electrically connect the diagnostic device 290 (and/or another electronic device) to the wearable device 101. Such connection may be usable by the diagnostic device and/or another electronic device to interact with the wearable device 101 in a variety of ways. For example, the diagnostic device 290 may: obtain diagnostic information from one or more electronic components of the wearable device 101, reset the wearable device 101 and/or one or more components to an initial configuration (such as a factory configuration), obtain data stored by one or more components of the wearable device 101, write data to one or more components of the wearable device 101, flash firmware of the wearable device 101, instruct the wearable device 101 to perform one or more operations, and/or perform various other activities.
Although the connector is illustrated and described above as usable to connect the wearable device 101 to the diagnostic device 290, it is understood that this is an example. In various implementations, the connector may be usable to connect the wearable device 101 to any electronic device (such as a desktop computing device, a laptop computing device, a tablet computing device, a mobile computing device, a smart phone, a digital media player, and/or any other electronic device). Such connection may be usable for a variety of purposes such as data transmission between the wearable device 101 and the electronic device, control of the devices by the other, charging of one of the devices by the other, and/or any other action that may be performed by electrically and/or communicably coupling the devices.
As illustrated, the access aperture 107 may be a single aperture in a housing of the wearable device 101 through which the spring pins 209 may be inserted. However, it is understood that this is an example and that in various implementations the access aperture 107 may include separate apertures for each of the spring pins 209. In some implementations, the housing of the wearable device 101 may be formed of metal and the spring pins 209 may be insulated from the metal housing.
As also illustrated, the spring pins 209 may be electrically isolated from the housing of the wearable device 101 by spacing between the spring pins 209 and the housing defined by the access aperture 107. However, in various implementations the access aperture 107 may be configured to not define space between the spring pins 209 and the housing of the wearable device 101. In such implementations the spring pins 209 may include insulating material on the sides of the spring pins 209 positioned between conductive portions of the spring pins 209 (such as the contacts 212) and the housing of the wearable device 101 to electrically isolate the spring pins 209 from the housing.
As further illustrated, the connector plug 220 may have a stepped profile such that the spring pin block 208 has one or more smaller dimensions (width, as shown) than the stiffener 204. As shown, at least a portion of the stiffener 204 may fit within the lug aperture 206, but not within the access aperture 107. However, as also shown, some or all of the spring pin block 208 may fit within the access aperture 107. As such, the spring pin block 208 may bear any shear force or lateral force exerted on the connector plug 220 or between the connector plug 220 and the wearable device 101. In this way, the spring pins 209 may not be loaded with such force and damage to the spring pins 209 may be prevented.
Although the spring pins 209 are illustrated as including six pins mounted to the spring pin block 208, it is understood that this is an example and that various numbers of spring pins 209 (and/or other conductors other than spring pins 209) may be used without departing from the scope of the present disclosure. In various implementations, the spring pins 209 may be used to form a variety of different electrical and/or communication connections. For example, the spring pins 209 may be configured to be one or more power pins, one or more ground pins, one or more communication pins (such as one or more universal serial bus pairs, one or more serial wire debug pairs, and so on), and so on without departing from the scope of the present disclosure.
As discussed above, the connector lug 203 may include various locking mechanisms for locking the connector lug 203 in place to the lug interface channel 104. For example, as illustrated in
By way of another example, as illustrated in
However, it is understood that the tabs 401 and the key 213 are examples of how the connector lug 203 may be locked in place with respect to the lug interface channel 104. In various implementations, locking mechanisms of various kinds and configurations may be used to perform such locking functions without departing from the scope of the present disclosure.
With reference again to
Although the connector plug 220 is illustrated and discussed above as utilizing spring pins 209, it is understood that this is an example. In various implementations, any conductors may be utilized with the connector plug 220 without departing from the scope of the present disclosure. For example, telescoping pins may be used in some embodiments. In other embodiments, rigid conductors may be used. In still other embodiments, the connector plug 220 may utilize magnetic conductive pins operable to be pulled into the access aperture 107 by magnets of the wearable device 101. Any kind of conductor may be utilized with the connector plug 220 without departing from the scope of the present disclosure.
Although
Although
In various implementations, a number of different attachment members or bands (such as the example attachment members 102 of
In some implementations, the wearable device 101 may be attachable to multiple different bands. A first band may not include any electronic components and may not include the connection structure illustrated in
In some cases, a band configured as shown in
For example,
The flow may begin at block 701 where a lug or other affixing structure may be inserted into a channel or other affixing structure interface of a wearable device. The flow may proceed to block 702 where the lug may be locked to the channel.
Next, the flow may proceed to block 703 where a plug may be inserted into an aperture of the lug. The plug may include spring pins or other conductors that electrically connect to a flex circuit or other electrical conduit. Upon insertion of the plug into the aperture, the spring pins may electrically connect to the wearable device and/or one or more electronic components of the wearable device through an aperture in the channel.
The flow may proceed to block 704 where the flex circuit may be connected to a diagnostic device. Finally, the flow may proceed to block 705 where the diagnostic device may be used to interact with the wearable device.
Although the example method 700 is illustrated and described above as including particular operations performed in a particular order, it is understood that this is an example. In various implementations, various orders of the same, similar, and/or different operations may be performed without departing from the scope of the present disclosure.
For example, the method 700 is illustrated and described above as including operations 704 and 705. However, in various implementations these operations may be omitted without departing from the scope of the present disclosure.
The flow may begin at block 801 where a plug may be removed from a lug aperture of a lug or other affixing structure coupled to a channel or other affixing structure interface of a wearable device. The plug may include spring pins or other conductors that electrically connect to a flex circuit or other electrical conduit. Prior to removal of the plug from the aperture, the spring pins may electrically connect to the wearable device and/or one or more electronic components of the wearable device through an aperture in the channel.
The flow may then proceed to block 802 where the lug may be unlocked from the channel of the wearable device. Next, the flow may proceed to block 803 where the lug may be removed from the channel.
Although the example method 800 is illustrated and described above as including particular operations performed in a particular order, it is understood that this is an example. In various implementations, various orders of the same, similar, and/or different operations may be performed without departing from the scope of the present disclosure.
For example, block 802 is illustrated and described above as unlocking the lug from the channel of the wearable device. However, in various implementations the lug may not lock to the channel. In such implementations, block 802 may be omitted.
As also illustrated, detaching the band segment portions 901 and 902 reveals a band connector 904 connected to the band segment portion 902. When the band segment portions 901 and 902 are attached as shown in
As shown, the band connector 904 may be positioned entirely in the cavity 905 when the band segment portions 901 and 902 are attached. The dimensions of the cavity 905 may be matched to the band connector 904 so that the band connector 904 fits snugly within the cavity 905. The fit between the cavity 905 and the band connector 904 may be tight enough in some examples that friction between the band connector 904 and the cavity 905 aids in keeping the band segment portions 901 and 902 attached unless sufficient force is exerted to overcome the frictional attachment and detach the band segment portions 901 and 902.
The band connector 904 may be operable to electrically connect the band segment portion 902 (and/or an electronic component of the band segment portion 902, the electronic attachment member 102 and/or a component thereof, and/or the wearable device 101) to another electronic device. This electrical connection may enable transmission of power and/or communication between the band segment portion 902 (and/or an electronic component of the band segment portion 902, the electronic attachment member 102 and/or a component thereof, and/or the wearable device 101 via the band segment portion 902) and the other electronic device. Such may allow the electronic device to provide power to and/or via the band segment portion 902, control various components of and/or via the band segment portion 902, allow various components of the electronic device to be controlled by and/or via the band segment portion 902 (thus supplementing the functionality of the band segment portion 902 and/or another device such as the wearable device 101 connected to the band segment portion 902), transfer data with and/or via the band segment portion 902, and so on.
For example,
Although the computing device 908 is illustrated as a laptop computing device, it is understood that this is an example. In various implementations, the computing device 908 may be any kind of computing device such as a cellular telephone, a wearable device, a desktop computing device, a tablet computing device, a digital media player, a mobile computing device, a smart phone, and so on.
As illustrated, the conductive material 910 and 911 may be coupled via one or more electronic components 912 (such as one or more batteries operable to power the band segment portion 902 and/or the wearable device 101 and/or other electronic device, processing units, memories and/or other storage media, communication components, user interface components, and/or any other electronic components). However, it is understood that this is an example. In various implementations, the conductive materials 910 and 911 may be directly joined (the band segment portion 902 not including other electronic components other than the conductive materials 910 and 911 in such implementations) without departing from the scope of the present disclosure.
Although various configurations of the electronic attachment member 102 and the band connector 904 are illustrated in
By way of a first example, the band connector 904 is described above as having an obscured position in
In a second example, the electronic attachment member 102 is illustrated and described with respect to
In a third example, the band connector 904 is illustrated as a universal serial bus (USB) connector (or adapter) plug. However, in various implementations any kind of connector plug (such as an Institute of Electrical and Electronics Engineers 1394 connector plug, a Thunderbolt™ connector plug, a Lightning™ connector plug, an Ethernet connector plug, a High-Definition Multimedia Interface connector plug, a serial port connector plug, a parallel port connector plug, a Digital Visual Interface connector plug, a composite video connector plug, an S-Video connector plug, a video graphics array connector plug, a serial ATA connector plug, a SCSI connector plug, and/or any other connector plug) and/or any other electrical connection structure including conductive material without departing from the scope of the present disclosure.
By way of a fourth example, the magnetic elements 906 and 907 are illustrated and described with respect to
Although a particular clasp mechanism 903 is illustrated and described with respect to
For example,
In some implementations of this example, each of the first and second clasp portions 1004 and 1005 may include one or more magnets (not shown). The magnets of the second clasp portion 1005 may be moveable between a first and second position utilizing the manipulation mechanisms 1006 and 1007. In the first position, the magnets of the first and second clasp portions 1004 and 1005 may be configured with polarities that attract each other to attach the first and second clasp portions 1004 and 1005. In the second position, the magnets of the second clasp portion 1005 may move such that the polarities are no longer aligned so that the first and second clasp portions 1004 and 1005 may be separated. In some cases, the polarities may repel in the second position to force the first and second clasp portions 1004 and 1005 to separate. The magnets of the second clasp portion 1005 may be biased toward the first position and may be moved to the second position using the manipulation mechanisms 1006 and 1007. However, it is understood that this is also an example. In various other implementations, one or more mechanical mechanisms may be used to couple the first and second clasp portions 1004 and 1005 instead and/or in addition to magnets and/or to decouple and/or aid in decoupling the first and second clasp portions 1004 and 1005.
Further, the band connector 1013 may be moveable on a hinge 1014 between a projected position and a withdrawn position. The withdrawn position is illustrated in
The band connector 1013 is illustrated as a thin USB plug. However, it is understood that this is an example. In various implementations the band connector 1013 may be any kind of connector plug and/or other electrical connection structure without departing from the scope of the present disclosure.
By way of another example,
As illustrated, the clasp mechanism 1103 may include a first extender portion 1104, a second extender portion 1105, and a fastening portion 1106. The first extender portion 1104 may be flexibly connected (such as by hinges or other flexible and/or rotatable connection mechanism) to the band segment portion 1101 and the second extender portion 1105. Similarly, the second extender portion 1105 may be flexibly connected to the fastening portion 1106, which may in turn be flexibly connected to the band segment portion 1102. The first extender portion 1104, the second extender portion 1105, and the fastening portion 1106 may move with respect to each other when the clasp mechanism is transitioned from the extended configuration to the fastened configuration such that the first and second extender portions fold into the fastening portion 1106. The fastening portion 1106 may include edges 1108 that clasp protrusions 1107 of the first extender portion 1104 to retain the clasp mechanism 1103 in the fastened configuration unless force is exerted on the fastening portion 1106 sufficient to pull the edged 1108 off of the protrusions 1107. Unfastening the fastening portion 1106 in this way may allow the clasp mechanism to be transitioned from the fastened configuration to the extended configuration.
As also illustrated, the a band connector 1109 may be moveably coupled to the second extender portion 1104 by a hinge 1110. Thus, the band connector 1013 may be transitioned between an obscured position (
Further, the band connector 1109 may be moveable on the hinge 1110 between a flush position and a projected position. The flush position is illustrated in
The band connector 1109 is illustrated as a Lightning™ connector plug. However, it is understood that this is an example. In various implementations the band connector 1109 may be any kind of connector plug and/or other electrical connection structure without departing from the scope of the present disclosure.
Although particular examples of clasp mechanisms 903, 1003, and 1103 and band connectors 904, 1013, and 1109 have been illustrated and described above with respect to
As discussed above and illustrated in the accompanying figures, the present disclosure systems, apparatuses, and methods related to connectors for portable electronic devices. In various embodiments, an affixing structure (“lug”) of a connector may be configured to attach to an affixing structure interface (“lug interface”) of an electronic device that is configured to also couple the electronic device to an attachment member, such as a band. Conductors of the connector may electrically connect to the electronic device when the affixing structure is attached, facilitating electrical communication between the electronic device and another electronic device using the connector. This electrical communication may enable a variety of different interactions with the electronic device, such as obtaining data from the electronic device, transferring data to the electronic device, obtaining diagnostic information from the electronic device, instructing the electronic device to perform various actions such as running diagnostic tests, and so on.
In some embodiments, an attachment member may include one or more electronic components and spring pins or other conductors. For example, inserting an affixing structure of a band or band segment to a channel of a wearable device may electrically connect spring pins of the band affixing structure to the wearable device, thereby electrically connecting the electronic component of the band or band segment to the electronic component of the wearable device. In some embodiments, the attachment member may additionally include a connector operable to connect the wearable device to another electronic device. Such connection may allow transfer of power and/or communications between the attachment member and the electronic device and/or between the wearable device and the electronic device via the attachment member.
In the present disclosure, the methods disclosed may be implemented utilizing sets of instructions or software readable by a device. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of sample approaches. In other embodiments, the specific order or hierarchy of steps in the method can be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.
The described disclosure may utilize a computer program product, or software, that may include a non-transitory machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure such as a computer controlled manufacturing process. A non-transitory machine-readable medium includes any mechanism for storing information in a form (e.g., software, processing application) readable by a machine (e.g., a computer). The non-transitory machine-readable medium may take the form of, but is not limited to, a magnetic storage medium (e.g., floppy diskette, video cassette, and so on); optical storage medium (e.g., CD-ROM); magneto-optical storage medium; read only memory (ROM); random access memory (RAM); erasable programmable memory (e.g., EPROM and EEPROM); flash memory; and so on.
It is believed that the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory, and it is the intention of the following claims to encompass and include such changes.
While the present disclosure has been described with reference to various embodiments, it will be understood that these embodiments are illustrative and that the scope of the disclosure is not limited to them. Many variations, modifications, additions, and improvements are possible. More generally, embodiments in accordance with the present disclosure have been described in the context or particular embodiments. Functionality may be separated or combined in blocks differently in various embodiments of the disclosure or described with different terminology. These and other variations, modifications, additions, and improvements may fall within the scope of the disclosure as defined in the claims that follow.
This application is a continuation application of Ser. No. 15/269,876, filed Sep. 19, 2016, which is a continuation of U.S. patent application Ser. No. 14/703,575, filed May 4, 2015, and entitled “Portable Electronic Device Connector,” now U.S. Pat. No. 9,445,633, which claims the benefit to U.S. Provisional Patent Application No. 62/057,658, filed Sep. 30, 2014 and entitled “Portable Electronic Device Connector,” the disclosure of each of which are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3973706 | Boyce et al. | Aug 1976 | A |
6155841 | Spanyar | Dec 2000 | A |
6158884 | Lebby et al. | Dec 2000 | A |
6454608 | Kitahara et al. | Sep 2002 | B1 |
6459890 | Kim | Oct 2002 | B1 |
6619835 | Kita | Sep 2003 | B2 |
6634786 | Dinger et al. | Oct 2003 | B2 |
6854978 | Noirjean et al. | Feb 2005 | B2 |
7345954 | Ehrsam et al. | Mar 2008 | B2 |
7513038 | Koh | Apr 2009 | B2 |
7972160 | Jeong et al. | Jul 2011 | B2 |
8414337 | Villareal et al. | Apr 2013 | B2 |
8467270 | Gossweiler et al. | Jun 2013 | B2 |
8908479 | Teng | Dec 2014 | B2 |
8976628 | Leoni et al. | Mar 2015 | B2 |
9445633 | Tulloch et al. | Sep 2016 | B2 |
9501044 | Jackson | Nov 2016 | B2 |
20040081025 | Chen | Apr 2004 | A1 |
20070064542 | Fukushima et al. | Mar 2007 | A1 |
20090011652 | Koh | Jan 2009 | A1 |
20090081898 | Jeong et al. | Mar 2009 | A1 |
20120295487 | Villarreal et al. | Nov 2012 | A1 |
20160088880 | Heresztyn et al. | Mar 2016 | A1 |
20170085020 | Tulloch et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
103280659 | Sep 2013 | CN |
102856749 | Apr 2015 | CN |
2230580 | Sep 2010 | EP |
2016053961 | Apr 2016 | WO |
Entry |
---|
U.S. Appl. No. 14/703,575, “Non-Final Office Action”, dated Feb. 2, 2016, 13 pages (of-record in parent application). |
U.S. Appl. No. 14/703,575, “Notice of Allowance”, dated May 20, 2016, 18 pages (of-record in parent application). |
U.S. Appl. No. 14/703,575, “Supplemental Notice of Allowability”, dated Jul. 20, 2016, 3 pages (of-record in parent application). |
U.S. Appl. No. 15/269,876, “Non-Final Office Action”, dated Jan. 11, 2017, 10 pages (of-record in parent application). |
U.S. Appl. No. 15/269,876, “Notice of Allowance”, dated Mar. 3, 2017, 8 pages (of-record in parent application). |
U.S. Appl. No. 15/269,876, “Supplemental Notice of Allowance”, dated Mar. 23, 2017, 4 pages (of-record in parent application). |
201620504887.2, “Decision to Grant”, dated Dec. 23, 2016, 2 pages (of-record in parent application). |
CN201620504887.2, “Office Action”, dated Sep. 30, 2016, 1 pages (of-record in parent application). |
PCT/US2015/052823, “International Preliminary Report on Patentability”, dated Apr. 13, 2017, 16 pages (of-record in parent application). |
PCT/US2015/052823, “International Search Report and Written Opinion”, dated Feb. 26, 2016, 19 pages (of-record in parent application). |
PCT/US2015/052823, “Invitation to Pay Additional Fees, and Where Applicable, Protest Fee”, Dec. 16, 2015, 7 pages (of-record in parent application). |
Number | Date | Country | |
---|---|---|---|
62057658 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15269876 | Sep 2016 | US |
Child | 15605724 | US | |
Parent | 14703575 | May 2015 | US |
Child | 15269876 | US |