1. Technical Field
The present invention relates to electronic and data processing devices and systems, and more particularly relates to portable electronic and data processing devices and systems with built-in expansion and retraction capability.
2. Description of Related Art
Technological advances in the computer and communication industry have resulted in improved integration capabilities. For example, integrated circuit densities are increasing which allow more functionality to be packaged into integrated circuit (IC) devices. This allows computers and other types of electronic devices to be built with fewer discreet components than previously required. Fewer components means that the resulting product can be packaged in a smaller package. Laptop computers weighing 5 pounds and less have computing capability similar to that of mainframe computers that existed twenty years ago. Personal digital assistants and cell phones, both of which have built in computational capability, can easily fit in a shirt pocket using today's technology.
This increase in electronic packaging density is not without problems, however. Heat dissipation is rapidly becoming a critical limiting factor in system design, potentially limiting the ability to achieve full size reduction due to physical mass requirements for dissipation of heat generated by the electronic device.
In addition, some devices cannot take full advantage of electronic packaging shrinkage due to the human factor effect, where a device must maintain a certain physical size to allow ease of human interaction. Cell phones with keyboards are an example where a device cannot be shrunk to its absolute smallest physical size, but rather must maintain a certain physical mass to allow a user to conveniently input keystrokes on the keyboard. While certain of these devices, such as personal digital assistants, have attempted to overcome this hurdle by eliminating the keyboard, they have introduced their own problems by requiring a user to learn a new input language that allows interaction via a touch sensitive display screen.
Another concern with shrinkage of physical packaging is the loss of system configuration capability. For example, many types of personal computers are built with a tower type of chassis. The tower chassis has many different physical compartments, allowing for a single style of tower to support many different types of computer configurations. Drive bays can be populated with a mixture of hard disk drives, floppy disk drives, compact disk drives, DVD drives, etc., allowing for a computer system to be customizable for a particular application. Numerous card slots on a motherboard contained with the tower chassis are user accessible, allowing a user to further configure/customize their system to include different types of adapter cards such as display adapters, SCSI adapters, USB adapters, network adapters, modems, etc. Some of the flexibility provided by these tower chassis is lost when a user instead uses a portable electronic device such as a laptop computer. Laptops (and portable electronic devices in general) have limited upgrade capabilities. For example, a laptop may allow an installed floppy disk drive to be removed and replaced with a CD drive. PCMCIA cards also allow for limited add-on capability, such as by connecting an external hard disk drive to the laptop using a USB adapter that is PCMCIA compatible. However, the number of available PCMCIA slots is typically limited to one or two in current laptop computers. Docking stations have been introduced to partially mitigate this loss of upgradeability and functionality, where a laptop is docked into the docking station when a user is in their office or home. This docking station may provide functionality that is available to the user, but only while their laptop is actually docked in the station. Other types of portable electronic devices, such as digital cameras, cell phones, etc. generally only have a memory expansion slot. Thus, as devices get smaller and smaller, their adaptability and configurability is similarly reduced. The present invention is directed to solving these problems.
The present invention is directed to a portable device that has improved configurability and adaptability. The portable device has a case or chassis that can be placed in either an open or closed position, to thereby allow for insertion and removal of other devices within the portable device. When increased functionality is required or desired, the device's case is expanded by placing it in an open position, to allow additional devices to be operated in conjunction with the portable device. These devices can provide various types of electronic or computer operations, such ma electronic adapters or media drives, as well as mechanical operations such as air movement with one or more additional fans or other types of heat sink. When decreased functionality is required or desired, such as to reduce the overall size and weight of the portable device, the device's case is contracted by placing it in a closed position. This allows on-demand expansion and contraction capability for the portable device. The expandable case provides dual functionality by also providing improved cooling for the portable device when in an open position.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
a-3c show side views of the portable electronic device with collapsible/expandable chassis in a fully expanded, rear expanded and front expanded position, respectively.
a-5b show front views of the collapsible/expandable chassis, in a fully expanded and fully collapsed position, respectively.
a-6c show side views of the collapsible/expandable chassis in a fully expanded, rear expanded and front expanded position, respectively.
a-7b show front and back views, respectively, of the expandable chassis with its associated installed devices.
a-8b show a front view of the collapsible/expandable chassis, in a fully expanded and fully collapsed position, respectively, and having hinged fans attached to the bottom of the chassis.
a-10b show a front view of the collapsible/expandable chassis, in a fully expanded and fully collapsed position, respectively, and having a hinged board/backplane attached to the bottom of the chassis.
Referring now to
Case 12 typically contains additional electronic components that make up the computer, such as a main electronic board (not shown, since it's inside the case), sometimes called a motherboard, and various peripheral devices such as a floppy disk drive 22, compact disc (CD) drive 24, one or more battery packs (not shown), and other types of I/O adapter cards such as PCMCIA form factor cards that are pluggable into computer 10 at 26 to provide further I/O functionality such as a universal serial bus (USB) interface, wireless or wired network attachment, and the like. Due to the ever increasing types of new I/O devices that are being introduced into the marketplace at an ever increasing rate, it is easy for computer 10 to have all available expansion and I/O ports filled with adapters and other types of devices, such that it is not possible to add a new device without removal of an existing adapter/device.
Referring now to
Additionally, the expanded mode of operation can be used to improve passive cooling of computer 10, whereby collapsible/expandable portion 28 is locked in an expanded position, but instead of adding additional devices into the additional chassis space, the space is left vacant to create a greater amount of air surface for electronic components within the computer.
Referring now to
This type of collapsible/expandable operation is particularly useful when lower portion 28 is internally divided into a series of device bays running along both the front and back. In the position shown in
One exemplary layout for such internal bays is shown in
Collapsible/expandable portion 28 is mechanically configured to an open or closed position using any one of numerous types of mechanical means, such as along a substantially linear cam track/path with detent guide pins. Referring now to
b shows chassis 30 in a retracted position, where expandable/retractable portion 28 is held within fixed portion 32 by the detent pins 62 and cam track/path surface 60, with the detent pins positively engaged with the lower portion of cam track 60.
a is an exploded side view similar to
As can be seen in
The use of detent guide pins with the linear cam mechanism advantageously allows for both a linear extension/retraction of the lower case, as well as a pivotal hinge when only the front or rear portion is extended or retracted. However, other mechanical mechanisms can be used instead of a cam and pin for expanding and collapsing the case. For example, and without limitation: a ratchet and wheel; a ratch and pawl; an adjustable hinge; a threaded shaft and thumbwheel; or a spring could also be utilized for this purpose.
a shows a front external view of expandable chassis 30 in a fully expanded position. Upper portion 32 is shown having a floppy disk drive 22 and CD drive 24 contained therein. Lower collapsible/expandable portion 28 is shown with three front bays (as previously described with respect to FIG. 4), each being covered with an optional removable cover 66 to mitigate dirt and dust when no devices are installed in a particular bay. Detent pins 62 for locking lower portion 28 in a particular position are also shown.
b shows a rear view of chassis 30 in a fully expanded position. Lower collapsible/expandable portion 28 is shown with three rear bays (as previously described with respect to FIG. 4). The two outer bays 68 are shown each having a cooling fan (with slotted cooling vents) contained therein. The inner bay 70 could be left empty or contain its own device such as a media drive, battery pack, or yet another cooling fan. Because the bays are standardized in the preferred embodiment, it is easy to mix and match from a plurality of devices that conform to the mechanical size and shape of these bays.
Improved cooling characteristics are also provided by the expandable chassis 30. For example, opening lower section 28 into its expanded position increases natural convection air-flow into and out of computer 10, allowing heat to escape from the computer. In this instance, one or more of the optional removable covers 66 are not attached to chassis 30, in order to increase air flow inside chassis 30. In an alternate embodiment, one or more fans are installed in lower section 28 to further increase air flow, as previously described.
In yet a further refinement of the above described collapsible/expandable case 30, it is possible to store one or more fans in the case, either in the upper portion 32 or lower portion 28. When the lower portion is in its retractable position, the fan(s) similarly retract, and when the lower portion is in its expandable position, the fan(s) extend to be in an operating position. Referring now to
Depending upon the physical location of electronics such as main planar board in the upper section 32 of case 30, it may be desirable to have the bays 40-50 of
To help mitigate these physical constraints, such as when the upper section 32 needs to contain large numbers or sizes of physical objects, bays 40-44 can optionally be collapsible, similar to the fans 72 and 74 of
Another feature and advantage of the present invention pertains to usability and human factors of the portable electronic device. As can be seen with reference to
It should be appreciated that the above embodiments of the present invention are only exemplary and are not intended to describe or imply any structural or functional limitations of the present invention. Modifications to the particular mechanism for providing the hinged lower surface will be apparent to those of ordinary skill in the art in view of the present disclosure and may be used without departing from the spirit and scope of the present invention. For example, in an alternative embodiment of the present invention, a spring and teeth based mechanism may be used for dropping the lower surface of the housing of the present invention. In such an embodiment, a spring-loaded peg or other type of mechanism having teeth formed in a surface thereon, may be used to engage teeth formed on a vertical support member. By pressing on the peg, the engagement of the teeth formed on the peg and the teeth formed on the vertical support member is released so that the bottom surface may be moved. When the peg is released, the teeth formed in the peg again engage the teeth in the vertical support member and are thereby locked in place. Such a spring-piston based mechanism may be provided at a plurality of locations on the bottom surface of the housing and corresponding locations on the side surfaces of the housing.
In yet another embodiment of the present invention a support beam may be provided along the center of the bottom of the housing. The support beam may be attached to the housing at the sides surfaces of the housing. The bottom surface of the housing may be provided in two parts both parts hinged at the support beam such that the first part may be dropped to provide an opening toward the front of the housing and the second part may be dropped to provide an opening towards the back of the housing. Both the first and second parts may be dropped at the same time providing openings in both the front and back of the housing. Support members may be provided at front, back and side positions of the two parts so as to provide extra load bearing members.
In addition, these alternative embodiments may be used in conjunction with the embodiments previously discussed. Of course other embodiments may be used in place of or in combination with the above described embodiments without departing from the spirit and scope of the present invention.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
5061001 | Madden et al. | Oct 1991 | A |
5242056 | Zia et al. | Sep 1993 | A |
5248180 | Hussaini | Sep 1993 | A |
5393241 | Honda et al. | Feb 1995 | A |
5504648 | Honda et al. | Apr 1996 | A |
5552960 | Nelson et al. | Sep 1996 | A |
5732140 | Thayer | Mar 1998 | A |
5738537 | Setoguchi et al. | Apr 1998 | A |
5762250 | Carlton et al. | Jun 1998 | A |
5898568 | Cheng | Apr 1999 | A |
5910642 | Daoud | Jun 1999 | A |
5913926 | Anderson et al. | Jun 1999 | A |
5995025 | Sternglass et al. | Nov 1999 | A |
6034871 | Cheng | Mar 2000 | A |
6116447 | Daoud | Sep 2000 | A |
6181554 | Cipolla et al. | Jan 2001 | B1 |
6266241 | Van Brocklin et al. | Jul 2001 | B1 |
6353535 | Yoshida | Mar 2002 | B1 |
6359218 | Koch et al. | Mar 2002 | B1 |
6402031 | Hall | Jun 2002 | B1 |
6421235 | Ditzik | Jul 2002 | B1 |
6457277 | Meyers | Oct 2002 | B1 |
6459573 | DiStefano et al. | Oct 2002 | B1 |
6496369 | Nakamura | Dec 2002 | B1 |
6515856 | Hidesawa | Feb 2003 | B1 |
6599090 | Ozaki et al. | Jul 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20040212958 A1 | Oct 2004 | US |