1. Field of the Invention
The present invention relates in general to portable energy consuming devices and, in its broadest sense, the novel invention utilizes an external power source to store kinetic energy in a portable energy device and simultaneously store electrical energy in an internal power source in the device only during the storing of the kinetic energy such that when the external power source is separated from the device, the internal power source is used to maintain the stored kinetic energy. In particular, the novel invention relates to improved portable energy consuming devices such as hair management devices and flat clothes iron devices that are brought to a desired operating level, such as temperature, with an external power source and then the external power source is disconnected and an internal power supply, e.g. batteries, maintains only the desired operating level thereby extending the life of the internal power supply as well as the life of the energy consuming device, e.g. heating elements.
2. Description of Related Art
There are many portable energy consuming devices. There are hair management devices such as hair curlers or blow dryers that use batteries to supply the necessary heat.
These devices cause a large current drain on the batteries and shorten the useful span of the batteries. In commonly assigned U.S. Pat. Nos. 6,449,870 and 6,718,651, circuits are disclosed for manually controlling a desired set temperature of the energy consuming device. In commonly assigned co-pending provisional patent applications Ser. No. 60/545,783; and Ser. No. 60/573,716; and in commonly assigned U.S. Pat. No. 6,732,447, circuits are disclosed for automatically providing input power, Pin, in an amount equal to the power losses, P1, (e.g. cooling and system losses) of the portable device so that the power output, Po, is equal to the residual power, Pr, (e.g. kinetic energy such as heat, mass rotation, and the like). Thus, at a desired operating level, such as a desired temperature, the input power supplied is simply equal to the power losses and the residual power is equal to the output power of the device.
While these devices function well, there is an immense current drain on the batteries to get the portable device to obtain a desired operating level. For instance, where a mass is required to be heated to a particular temperature, it takes a great deal of battery current to heat the mass (such as the metal mass of a hair curling iron) to the desired temperature. By controlling the current drain on the batteries as disclosed in the co-pending provisional patent applications, the remaining life of the batteries can indeed be extended.
However, it would desirable to use an external power source to cause the mass to reach the desired temperature and then disconnect the external power source and enable the internal power supply, i.e. the batteries, to only maintain the desired temperature of the novel portable energy consuming device. In this novel system, the battery life is extended much further because very little current drain from the batteries is used UNTIL the desired operating level is already reached and the device is then used as a portable device with the internal power source simply maintaining that desired operating level (e.g. temperature). Should the internal power supply fail for any reason, the energy consuming device can be directly connected to the external power supply and used in a conventional manner.
With the present invention, the energy consuming device (e.g. hair curling iron, soldering guns, hot glue guns, flat clothes irons, mass rotors, and the like) is brought to a desired operating level (e.g. temperature, rotational speed, and the like) by a power source external to the energy consuming device such as an alternating current (ac) source or an external direct current (dc) source. Once the device reaches the desired operating level, the external power source is disconnected from the device and an internal power source automatically begins to supply power to the energy consuming device in an amount only sufficient to maintain the desired operating level. In other words, it supplies just enough energy to compensate for power and system losses in the device thereby enabling the residual energy (e.g. temperature, mass rotation, and the like) to be maintained equal to the desired output power.
The external power source may be ac, dc, RF energy, magnetically coupled energy, and the like. Hereafter, for simplicity, the external power source will be identified as simply ac or dc. The energy consuming device, when a temperature controlled device, may have either a single heating element for accepting an external dc power source output for preheating as well as the internal power source (batteries) output to maintain the desired operating level or an ac heating element for connection to an ac external power source to obtain the desired operating level and a dc heating element for connection to the internal power source to maintain the desired operating level.
When both an ac heating element and a dc heating element is used, the resistive heating elements may be of several types such as ribbon type resistances arranged in different relationships such as electrically insulated coils wound together in adjacent interposed relationship with each other or in superimposed, electrically insulated, fashion. The resistive elements may also be of any known type such as wire wound, ceramic, and the like.
A switch may be arranged internally of the energy consuming device that disconnects the internal power source from the load (e.g. resistive heating element) when, and only when, the external power source is connected to the energy consuming device. Thus, when a connector (plug) connects the energy consuming device to the external power source, the connector engages and opens a switch so that the internal power source cannot supply current to the load.
However, when the device reaches the desired operating level and the external power source is disconnected from the device by removing the connector from engagement with the device, the switch in the device is closed thereby enabling the internal power source to maintain the desired operating level with the use of signals that control an electronic switch (such as a power FET) that couples the internal power source to the load.
When the energy consuming device is a flat clothes iron, it is mounted on a base that has connectors that engage corresponding mating connectors on the flat clothes iron.
Again, either a single dc heating element or both a dc heating element and an ac heating element may be used as the heating element in the flat iron. In either case, the proper power source is coupled to the corresponding connectors on the flat iron to first bring it to the desired operating temperature and then the flat iron is removed from the base and becomes a portable flat iron. The internal power source then maintains the desired operating temperature using the control signals.
If desired, the flat iron may have no heating element for an external power source but would have the internal power source that can be coupled to an internal heating element.
In such case, the flat iron is mounted on a base unit having a flat heating surface that is powered by an external power source. The heat is transferred by conduction, metal to metal, to the flat iron until the flat iron reaches the proper desired operating temperature. Connectors on the base unit again engage corresponding connectors on the flat iron to prevent the internal power supply from supplying power to the heating element until the flat iron is removed from the base unit. The removed connectors then allow an internal switch to close and connect the internal power supply to the internal heating element to only maintain the desired heat.
In such case, it is clear that the internal power supply may consist of the batteries without the novel pulsing circuit disclosed herein. Thus, the unit is heated to the desired temperature with the external power source and then, when the unit is removed from the external power source, the internal power supply, the batteries alone, may be connected to the heating element to maintain the desired heat as long as the batteries last. The internal batteries will not last as long as when the novel pulsing circuit is used to pulse battery power to the load but they will last longer than a portable unit that uses the batteries alone to not only bring the unit to the desired temperature but also to maintain the desired temperature.
It is to be understood that with an internal power source, the power source must be insulated from the heat generated in the device. This can be accomplished in a number of ways. With a hair curling iron, the power supply (e.g. batteries) can be placed in the handle thereof which is on the opposite end of the curling iron from the heating element. The power source may consist of a plurality of series connected battery cells, a stick type battery, or other type power source (hereafter “power source”) that can simply be inserted in or removed from the handle as necessary.
With a flat clothes iron, the batteries can again be placed in the handle of the flat iron which is already heat insulated from the ironing surface to enable a user to hold the iron by the handle. Again, the batteries may consist of a plurality of series connected battery cells or a stick type power source assembly that can simply be inserted in or removed from the handle as necessary. The internal power source, as stated earlier, may be charged when the energy consuming device is placed on a base unit.
Thus, it is an object of the present invention to provide a portable energy consuming device that uses an external power source to enable a desired operating level to be achieved and an internal power source to only maintain the desired operating level once the device is disconnected from the external power source to make it portable.
It is another object of the present invention to provide a single dc load in the portable energy consuming device for both bringing the device to the desired operating level with an external dc power source and to maintain the desired operating level with the internal dc power source when the device is disconnected from the external power source and becomes portable.
It is also another object of the present invention to provide a first ac load for bringing the energy consuming device to a desired operating level with an external power source and a second dc load for maintaining the desired operating level with an internal power source when the device is disconnected from the external power source and the device becomes portable.
It is still another object of the present invention to provide a base unit on which the energy consuming device may be placed; the base unit having an external power source to enable the energy consuming device to be brought to a desired operating level and, optionally, for charging the internal power source in the energy consuming device only during the time that the external power source is supplying power to the energy consuming device.
It is yet another object of the present invention to couple a control circuit between the internal power source and the energy consuming load to automatically maintain the desired operating level thereby conserving the internally located power source as well as prolonging the life of the energy consuming load.
Thus the present invention relates to a method of creating a portable energy consuming device comprising the steps of forming a body portion with an energy consuming load associated therewith; causing the energy consuming load to achieve a desired operating level using a power source located externally of the body portion; removing externally supplied energy from the energy consuming load when the desired operating level is reached; and only maintaining the desired operating level of the energy consuming load using a power source located internally of the body portion thereby creating a portable energy consuming device.
These and other objects of the present invention will be more fully disclosed when taken in conjunction with the following DETAILED DESCRIPTION OF THE DRAWINGS in which like numerals represent like elements and in which:
It is well known that devices that require significant power to enable them to reach a desired operating level or condition are difficult to make into portable devices because of the size of the batteries or internal power source that are (is) required to just get the device to the desired operating level. By the time the desired operating level is reached, the internal power source (e.g. batteries) is (are) so depleted of energy that there is little internal power source energy remaining to use to just maintain the desired operating level.
If the device could be brought to the desired operating level or condition with the use of an external power source and then the device was made portable by disconnecting the external power supply, an internal power supply could then be used to just maintain the desired operating level. The device would then be truly portable and could be used without the physical interference of an ac cord.
The present invention meets these requirements by using an external power source to store kinetic energy (such as temperature or a rotating mass) in a selected energy consuming device until a desired operating level is reached and then the external power source is disconnected from the device to make the device portable. An internal power source is then automatically used to just maintain the kinetic energy at the desired operating level.
Such a device is disclosed in
The internal power source 20 may, as stated earlier, consist of internal batteries only and, in such case, the external power source 14 brings the device to the proper operating temperature and then it is disconnected and the internal batteries, alone, are connected to the device to maintain the temperature of the device. The batteries or power source 14 will not last as long as when used with the pulsing circuit disclosed herein but will last longer than a device that uses the internal batteries to both heat the device to a desired temperature and then maintain that desired temperature.
Of course, the internal power source 20 may consist of the internal batteries and a pulsing circuit as will shown hereafter to pulse the power of the internal batteries to the load. In such case, the life of the internal batteries is extended even longer as will be disclosed hereafter.
Consider, as an example only, a hair curling iron. The iron has a metal mass serving as the heated surface and it must be raised to a sufficiently high temperature to enable it to be used. This is accomplished in the prior art by the use of alternating current (ac) and it takes several minutes to bring the metal mass to a temperature sufficient for use in curling hair. Then when it is used, the ac cord must remain attached to keep the iron hot.
It is highly desirable to make the curling iron portable and eliminate the physical interference of the ac cord. However, if the curling iron is made portable, no cord is attached and no ac is used. Thus, the internal power source must be placed under a severe power drain to bring the device to the desired operating level (in this example, temperature).
Thus, it can be seen with the block diagram of
In the generalized embodiment shown in
Once the accord is disconnected from the device 12, the internal power source 20 is automatically connected to its own dc heating element 22, as will be explained hereafter, to cause the device 12 to maintain its desired temperature.
Also, as shown in
Of course, the device 12 illustrated generally in
Further, when a blow dryer represents the hair management device, the life of the batteries can be further extended by causing the air generated by the blower fan to pass over the batteries and cool them. It is well known that as batteries are used continuously over an extended time period, the internal resistance of the batteries increases. This increased resistance causes the batteries to heat as well as to decrease their external output voltage. If the batteries are then cooled, the output voltage returns to a higher level. Thus, this unique method of using the blower fan to cool the batteries extends the life of the batteries during a given RUN cycle as well as extending the entire life of the battery. Such improvement is a valuable asset to the use of portable devices.
At the same time, if desired, the ac input can be connected to an ac/dc converter 30, either internal or external (shown here as internal) that can be used to charge the internal batteries 20 in a conventional manner.
When the ac heating element 18 causes the device 12, here a temperature device, to reach the desired operating level (temperature in this case), the connector 26 is withdrawn from the mating receptacle to make the device portable. When that happens, switch 28 returns to its normally closed position thereby connecting internal power source 20 to its own dc load 22 on line 36. As will be shown hereafter in relation to
The circuit shown schematically in
An electronic switch 40, such as a power FET, is opened and closed by the control circuit 38 with the use of Pulse Time Modulated signals to modulate the power signal to load 22 from the internal power source 20. A light emitting diode (LED) 42 may be utilized, if desired, to let the user know that the control circuit 38 is functioning.
The novel invention works well with any load requiring heavy current to bring it to a desired operating level as explained earlier.
It will be noted in
The flat iron 46 could, if desired, have only one heating element and that is a dc heating element that would be used first during the preheating on the base unit 44 and then, when the flat iron 46 is disconnected from the base unit 44 to make the flat iron portable, the single dc heating element would be connected to the internal power source 20 to just maintain the desired temperature. As shown in
When two heating elements, an ac and a dc element, are desired to be used, they may be formed in any desired manner. For example, if the device is a hair curling iron, the resistive heating elements may be wound in a circular fashion about a non-electrically conductive cylinder 17 as shown in
If the heating elements are of the flat resistive types, one may be superimposed over the other in a non-electrical conducting relationship as shown in
The ac input from the external power source is connected directly to connector 62 on the base unit 44 while the dc power for simultaneously charging the internal power source comes from an ac/dc converter 58 whose dc output is coupled to connector 60.
The power cord 16 terminates at the base unit 44 with a connector 56. Advantageously, connector 56 is identical to the connector 62 on base unit 44. If, for any reason, the portable operation of the device 64 is prohibited, the ac connector 56 can be plugged directly into the device 64 where power is normally supplied by connector 62. In such case, the hair curling iron 64 may advantageously continue to be used as a conventional cord attached, non-portable hair curling device.
In any use of batteries with a heating device, the batteries must not be subject to heating from the heating elements. In a hair curling iron, the batteries may be placed in a heat insulated handle as is well-known in the art and which is heat insulated from the heating element.
When the novel invention is used with a flat clothes iron, the batteries must be especially protected from the heat maintained by the large metal mass. One such way of heat insulating the batteries is shown in
In this embodiment, the flat clothes iron 46 has no internal heating element for preheating. In this embodiment, the base unit 68 has an upper plate 70 that is preheated by the external power source represented by wall plug 14 through cord 16. The flat clothes iron 46 simply sits on the heated plate 70 in metal to metal contact to preheat the flat iron 46. When the flat iron 46 is preheated, as may be indicated in a well known fashion by LED 76, it is made portable by removing it from the base unit upper plate 70. At least one connector 72 has prevented the internal power source 20 from powering the dc heating element during preheating. When the flat iron 46 is removed from the base unit 68, the at least one connector 72 is removed from a corresponding receptacle that enables the portable, internal power, operation as explained previously with respect to
Of course, in all of the embodiments described above, a switch 74 diagrammatically illustrated in
Briefly, however, unit 78 is a detector that senses the desired operating level (e.g. a temperature sensor 80 as shown in
However, as explained earlier, to save the internal batteries, the device has, in this instance, an ac heating element 18 that is heated to bring the device to the desired operating temperature. As can be seen in
An LED 103, if desired, may be coupled across FET 102 and pulses with the pulsing of the FET to indicate to the user that the control circuit is functioning.
Thus, there has been disclosed a novel improved portable energy consuming device that uses an external power source to cause the device to reach a desired operating level and then when the device is removed from its base, the external power source is disconnected from the device and the internal power supply is then automatically connected to a dc load to maintain the desired operating level of the device. A control circuit is coupled between the internal power source and the dc load to Pulse Time Modulate the signal applied thereto to replace only load losses and to just maintain the desired operating level. As explained earlier, the desired operating level is intended to mean a desired operating temperature, a desired operating rpm, or any other type of load operating condition that has kinetic energy that will maintain the desired operating condition if sufficient energy is provided to just replace the device losses.
While particular embodiments of the invention have been shown and described in detail, it will be obvious to those skilled in the art that changes and modifications of the present invention, in its various embodiments, may be made without departing from the spirit and scope of the invention. Other elements, steps, methods, and techniques that are insubstantially different from those described herein are also within the scope of the invention. Thus, the scope of the invention should not be limited by the particular embodiments described herein but should be defined by the appended claims and equivalents thereof.
It is to be understood that the term “electronic switch” as used herein is intended to cover suitable switch that can be controlled to intermittently supply power to a load including mechanically operated switches such as a relay or a solid state switch such as a Field Effect Transistor (FET) as discussed herein previously.
This application claims the benefit of Provisional Application Ser. No. 60/600,208, filed Aug. 10, 2004.
| Number | Date | Country | |
|---|---|---|---|
| 60600208 | Aug 2004 | US |