The present invention is directed to a portable fan for the use in firefighting and other ventilation use-cases. A portable fan provides firefighters the ability to provide positive pressure ventilation in use for fighting fires, which does not require power cables or combustible fuel powered motors, to provide increased portability, reduced risk, and reduced deployment time associated with managing and fighting a fire.
Firefighters increasingly use a method of managing fires using a method commonly referred to as Positive Pressure Ventilation (PPV) which is a ventilation technique use by fire fighters to remove smoke, heat, and other combustion products from a structure. The use of PPV allows firefighters to perform tasks in a more controlled environment resulting in a more efficient management of a fire affected structure and a reduction of risk. In practice, PPV allows fire fighters to positively pressurize a structure in which they have strategically opened vent locations elsewhere in the structure. When the structure is placed under positive pressure when performing a PPV operation, the combustion products are directed toward the vent locations, where they exit the vent locations and are exhausted away from the structure. In certain scenarios, firefighters may pressurize a structure without vent locations to force combustion products to flow to a “protected” area wherein the combustion products are isolated away from individuals trapped within the structure. The PPV process is commonly accepted and found to be effective by the National Institute of Safety and of Standards and Technology. (Kerber, Stephen, et al. Go With the Flow: NIST Study Proves PPV Can Save Lives & Improve Safety. Tech Focus, FireRescue Magazine, November 2009 [online], [retrieved on De. 11, 2019]. Retrieved from Internet URL:https://tsapps.nist.gov/publication/get_pdfcfm?pub id=904210).
The act of fighting fires is inherently dangerous where the difference of seconds in performing certain operations can mean the difference between life and death. Smoke inhalation is the primary cause of fire-related deaths. Seconds can be saved, and actions performed with increased efficiency and reliability—results in an increase of victim rescue success and a reduction of firefighter death.
It is common practice to use fans to initiate PPV operations in order to provide more suitable and favorable conditions in a fire affected structure after the fan has been extinguished. These fans are typically electrically, or fuel powered.
A common shortfall with electrically powered fans surrounds the availability of power. This is limited by availability of power as well as the length of power cord available which limits the distance from the power source that the fan can be set up for use. Establishing power through the use of a generator or on-board power aboard a fire truck requires personnel and steps which delay the establishment of the fan for PPV use. The more quickly a PPV fan can be established, the more quickly a fire affected structure can be cleared of combustion products—, thereby reducing the risk of death from smoke inhalation.
A common shortfall with fuel powered fans surrounds the maintenance and reliability. A fuel powered fan employs a fuel powered motor to operate the fan, and the fuel powered motor requires regular maintenance and upkeep to ensure the reliability of the fan to operate when needed. Without regular maintenance, fuel powered motors may be difficult to start or stall. In both these scenarios, an increased likelihood of injury or death exists to both fire victims and firefighting personnel as this delays the clearing of smoke from the structure. Furthermore, combustion hazards exist with the use of a fuel powered fan near a fire affected building. Because the fuel powered fan includes a reservoir, great care must be taken to prevent the fuel source of the fan from becoming a secondary source of combustion resulting in the reignition of a structure fire which has already been extinguished. Full powered fans can also be undesirable because by-products of combustion from the fuel powered motor can add carbon monoxide and other undesirable fumes into the structure.
It is an aspect of certain embodiments of the present invention to provide a reliable and rapidly deployed portable fan which does not require the limiting tether of an electrical cord or a combustion risk associated with a fuel reservoir. Certain embodiments of the present invention operate on commonly available batteries, such as those used with cordless power tools. As fire crews commonly rely upon battery operated power tools for managing a fire affected building, it is an aspect of certain embodiments to leverage the batteries which a fire crew already uses with existing tools. This limits the need for the purchase and charging of alternate batteries and increases the ease of readiness for establishing a portable fan.
Certain embodiments are configured to receive an existing rechargeable battery allowing as user to change the battery in the event that the battery charge has been exhausted. Certain embodiments are configured to receive multiple rechargeable batteries allowing a user to replace a first battery while a second battery remains attached to the portable fan to continue powering the fan in the event of a battery change.
Certain embodiments of the present invention includes a battery dock and battery holster. The battery holster being interconnected to the frame, has electrical connection to the portable fan. The battery dock is configured to mate with the battery holster and with a battery simultaneously such that the interconnection of the battery, battery dock, and battery holster provides electrical power from the battery to the portable fan. The battery dock being interchangeable and configurable to mate with any existing battery mounting design allows a user to leverage any existing rechargeable battery. It will be appreciated that a user may use rechargeable tool batteries manufactured by Dewalt®, Milwaukee®, Ridgid®, Ryobi®, or Makita®. It will be further appreciated that the use of batteries manufactured by entities not disclosed are within the scope and spirit of the present invention.
Some PPV fan motors require a higher voltage than existing tool batteries are able to supply. It is an aspect of the present invention to allow the alternative use of multiple batteries in series or parallel, and allow the draw of power from a single battery at a time or multiple batteries at once to provide the power needed to operate the portable fan as disclosed herein.
Certain embodiments comprise a portable fan having a power assembly adapted to monitor the power available in multiple rechargeable batteries and to draw power alternatively from the individual batteries for periods time based upon time, voltage, and/or current so that the power in each of the multiple batteries drains at a relatively constant rate with no noticeable change to the end user. The electronic circuitry of the power assembly may also be adapted to manage the use of power from multiple rechargeable batteries for powering the fan motor and other electronic functions of the portable fan.
In certain embodiments, a power assembly the power assembly is adapted to monitor the power available in multiple rechargeable batteries and to draw power from the individual batteries in order to equalize the power available in each battery. In one example of this embodiment, when the end user inserts multiple rechargeable batteries having different power levels into the battery dock, the power assembly will determine the power available in each battery and draw power first from the battery (or batteries) having more available power until the power available in all of the multiple batteries is relatively the same. Once the available power in all of the multiple batteries is relatively the same, the power assembly will draw power alternatively from the individual batteries for periods of time based on time, voltage, and/or current so that the power in each of the multiple batteries drains at a relatively constant rate.
In certain embodiments, a power assembly is configured to balance the power available between multiple rechargeable batteries while the portable fan is not in use.
In certain embodiments, a power assembly comprises circuitry for controlling the supply of electricity to the fan motor, for monitoring and displaying power available in the rechargeable batteries, for controlling recharging of the batteries from an A/C power source, for controlling the fan speed, and for sensing an external A/C power source and switching off the power supply from the batteries when A/C power is detected. Furthermore, the electronic circuitry of the power assembly may be adapted to regulate charging current or voltage using semiconductor devices or other electrical circuits only, or regulated in response to non-electric parameters such as battery temperature only or in combination with semiconductor devices or other electrical circuits.
Firefighters often wear protective gear and equipment that typically weighs in excess of 31.7 kg (70 lb) For this reason, extra equipment that must be carried by a firefighter is particularly burdensome and may require more than one firefighter to carry. An existing shortfall with some existing fans surrounds weight and portability. Some existing PPV fans, for instance, weigh 31.7 kg (70 lb) or more. These fans often require multiple individuals to carry thus reducing the availability of personnel to carry out other necessary tasks. Further still, some existing PPV fans—such as U.S. Pat. No. 5,941,314 to Weinmeister, et al. issued Aug. 24, 1999, herein incorporated in its entirety for all purposes—attempt to provide a foldable handle to engage wheels thereby allowing an individual to roll the fan to a location. Where such solutions fall short surround the operability of the fan in a closed configuration. Furthermore, storage space on a firefighting vehicle is limited, such solutions require a large volume for storage and transportation even in a closed configuration.
It is an aspect of the present invention to provide a portable fan which is lighter, more portable, and requires a smaller volume for storage and transportation when in a closed configuration than existing PPV fans.
These and other advantages will be apparent from the disclosure of the inventions contained herein. The above-described embodiments, objectives, and configurations are neither complete nor exhaustive. As will be appreciated, other embodiments of the invention are possible using, alone or in combination, one or more of the features set forth above or described in detail below. Further, this Summary is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. The present invention is set forth in various levels of detail in this Summary, as well as in the attached drawings and the detailed description below, and no limitation as to the scope of the present invention is intended to either the inclusion or non-inclusion of elements, components, etc. in this Summary. Additional aspects of the present invention will become more readily apparent from the detailed description, particularly when taken together with the drawings, and the claims provided herein.
Certain embodiments of the present invention, shown in
A fan assembly 1200, shown in
In certain embodiments, shown in
In certain embodiments, referencing
In certain embodiments of a portable fan 1000, shown in
In certain embodiments, shown in
In certain embodiments, shown in
In certain embodiments, the frame 1100 surrounds the fan assembly 1200. The frame 1100 comprises radial offsets 1170 from a fourth axis 1160 which is parallel to the first axis 1140 and the second axis 1630 as shown in
Certain embodiments, shown in
Certain embodiments comprise a battery holster 1830 configured to slidably receive a first battery dock 1840 and a second battery dock 1840, thus enabling the electrical connection of a first battery 1850 and a second battery 1850 to the power assembly 1800. In certain embodiments a control circuit 1820 is configured to receive power from the first battery 1850 and the second battery 1850 simultaneously. In certain embodiments, a first battery 1850 and a second battery 1850 have differing power capacities, and the control circuit 1820 is configured to selectively draw power from the first battery 1850 or the second battery 1850 individually, equally simultaneously, or draw differing electrical loads from the first battery 1850 and second battery 1850 simultaneously. Furthermore, the control circuit 1820 of certain embodiments is configured to receive AC power from the AC interface 1810 to alternatively power the portable fan 1000, recharge the batteries 1850, or simultaneously recharge the batteries 1850 and power the portable fan 1000.
While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention. Further, the inventions described herein are capable of other embodiments and of being practiced or of being carried out in various ways. In addition, it is to be understood that the phraseology and terminology used herein is for the purposes of description and should not be regarded as limiting. The use of “including,” “comprising,” or “adding” and variations thereof herein are meant to encompass the items listed thereafter and equivalents thereof, as well as, additional items.
This application claims the benefit of U.S. patent application Ser. No. 16/728,678 entitled “PORTABLE FAN” filed on Dec. 27, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/785,384 entitled “PORTABLE FAN” filed on Dec. 27, 2018 and U.S. Provisional Patent Application 62/842,107 entitled “PORTABLE FAN” filed on May 2, 2019, the entire contents of all of which are incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2633293 | Jones | Mar 1953 | A |
2868558 | Krauss | Jan 1959 | A |
2954198 | Lindberg | Sep 1960 | A |
4239459 | Felter | Dec 1980 | A |
5941314 | Weinmeister | Aug 1999 | A |
10029131 | Mueller | Jul 2018 | B2 |
20050118022 | Fu | Jun 2005 | A1 |
20050196290 | Hu | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
204312948 | May 2015 | CN |
WO-2014119181 | Aug 2014 | WO |
Entry |
---|
Machine translation of CN-204312958U—Generated Jan. 14, 2022. |
Machine translation of WO-2014/119181A1—Generated Jan. 14, 2022. |
Extended search report for EU Patent App. No. 19902736.8—dated Jan. 20, 2022. |
Number | Date | Country | |
---|---|---|---|
20210381526 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62842107 | May 2019 | US | |
62785384 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16728678 | Dec 2019 | US |
Child | 17445841 | US |