This invention is related to processing biological samples for direct virus detection in a liquid format using a multiplex assay device. For example, the sample may be assayed by simultaneously evaluating multiple portions using multiple fluorescent antibodies. The detection method may use antibodies that directly bind to a viral antigen thereby allowing identification as well as detection. The device may comprise a configuration of sub elements controlled by a motherboard such that a multiwell sample slide may be processed in a single run. The assay method may be integrated with a device comprising an algorithm capable of differentiating between a plurality of fluorescent signals.
Virus infections (i.e, for example, influenza A and B viruses) are responsible for yearly epidemics in both children and adults. Illnesses caused by influenza A and B viruses are clinically indistinguishable and may cocirculate Van Voris et al., “Influenza viruses” p. 267-297. In: R. B. Belshe (ed.), Textbook Of Human Virology. PSG Publishing Co., Littleton, Mass. (1984). Antiviral chemoprophylaxis and therapy is currently very limited (i.e., for example, influenza A virus-specific agents amantadine and rimantadine). Rapid detection of influenza virus is therefore essential to facilitate patient management and to initiate effective control measures.
Presently known procedures for preparing a specimen for Direct Fluorescence Antibody (DFA) staining are laborious and time consuming. Usually, a drop of a cell suspension from the specimen is dried on a glass slide and fixed with a precipitating or denaturing fixative such as acetone, methanol and ethanol. These compounds act to reduce the solubility of protein molecules and to disrupt protein tertiary hydrophobic interactions. After fixation, the samples are stained with fluorescent antibodies involving several steps: i) labeling, ii) washing, and iii) adhering a coverslip. Finally, the samples are examined by a well-trained technician using a fluorescence microscope.
Further, in DFA techniques, if the cells are not completely dry, they can be lost during the processing steps, leading to an inadequate number of cells to make a judgment as to the presence of the virus. Current DFA methods also require a highly skilled technician to prepare, read and interpret results because of the non-specific staining mucus or debris that can be found in the specimen. Generally, such skilled technicians are not available during the evenings or weekends to read and interpret the results and such testing must be delayed until the technician is available. Alternatively, less sensitive and poorly accurate tests are used during these off-hours. Cell morphology and staining patterns are also compromised when the cells are dried onto the glass.
What is needed in the art is an improved, objective, DFA assay with faster processing time than those currently available.
This invention is related to processing biological samples for direct virus detection in a liquid format using a multiplex assay device. For example, the sample may be assayed by simultaneously evaluating multiple portions using multiple fluorescent antibodies. The detection method may use antibodies that directly bind to a viral antigen thereby allowing identification as well as detection. The device may comprise a configuration of sub elements controlled by a motherboard such that a multiwell sample slide may be processed in a single run. The assay method may be integrated with a device comprising an algorithm capable of differentiating between a plurality of fluorescent signals.
In one embodiment, the invention provides a method for detection of a plurality of viruses in a sample, comprising a) providing i) a suspension comprising a biological sample, wherein said sample is suspected of comprising at least two viral antigens, wherein said suspension further comprises a staining reagent selected from the group consisting of Evans blue, propidium iodide, acridine orange and combinations thereof, iii) at least two fluorescently labeled antibodies, wherein each of said at least two viral antigens is capable of directly binding to one of said at least two said fluorescently labeled antibodies, wherein said antibodies are differentially labeled, b) incubating said suspension with said fluorescently labeled antibodies under conditions such that each of said fluorescently labeled antibodies directly binds one of said viral antigens, thereby forming at least one labeled antigen-antibody complex, and c) detecting said at least one labeled antigen-labeled antibody complex within said suspension by identifying at least one fluorescently labeled antibody, thereby identifying at least one of said at least two viral antigens, wherein said detecting comprises introducing said suspension into a slide transport assembly of a fluorescence reader device that comprises i) a main system printed circuit board comprising an operating system assembly, ii) a plurality of printed circuit board assemblies (PCBAs) in operable combination with said operating system assembly, iii) a camera and optics assembly in operable combination with said plurality of printed circuit board assemblies (PCBAs), and iv) a slide transport assembly in operable combination with a plurality of controller motors, wherein said motors are in operable combination with said plurality of printed circuit board assemblies (PCBAs). In one embodiment, the main system printed circuit board is mounted to a top cover chassis and inner floor assembly. In a further embodiment, the enclosure and chassis assembly comprises a touchscreen. In yet another embodiment, the operating system assembly comprises an operating system software program that is displayed on said touchscreen. In another embodiment, the camera and optics train assembly comprise a plurality of excitation light emitting diodes. In another embodiment, at least one of said excitation light emitting diodes comprises a green excitation light emitting diode. In a further embodiment, at least one of said excitation light emitting diodes comprises a blue excitation light emitting diode. In another embodiment, said green excitation light emitting diode detects fluorescence emission from fluors selected from the group consisting of R-phycoerythrin and propidium iodide. In a further embodiment, the blue excitation light emitting diode detects fluorescence emission from fluorescein. In a particular embodiment, the camera and optics train assembly comprise an objective lens system. In one embodiment, the objective lens system comprises an imaging lens in operable combination with an objective lens. In another embodiment, the objective lens system magnifies an object plane. In a particular embodiment, the magnified object plane comprises a pixel having a diameter of approximately 1.35 micron. In one embodiment, the camera and optics train assembly comprises an emissions filter wheel, as exemplified by a filter wheel that comprises a plurality of filter wheel positions. In one embodiment, the plurality of filter wheel positions differentiate between a plurality of different fluor emissions. In a particular embodiment, the plurality of different fluor emissions are derived from fluors selected from the group consisting of fluorescein, R-phycoerythrin, and propidium iodide. In a particular embodiment, the camera and optics train assembly comprises a camera. In a further embodiment, camera comprises a charged coupled camera. In another embodiment, camera is configured in operable combination with said objective lens system comprising an image resolution of at least 10 microns. In one embodiment, the printed circuit board assemblies (PCBAs) are in operable combination with said emissions filter wheel. In another embodiment, the slide transport assembly is in operable combination with a plurality of controller motors. In a particular embodiment, a first controller motor operates an X-axis movement of said slide transport assembly. In another embodiment, a second controller motor operates a Y-axis movement of said slide transport assembly. In a further embodiment, a third controller motor operates a Z-axis movement of said slide transport assembly. In another embodiment, the X-axis movement positions said slide transport assembly within a camera object plane. In an alternative embodiment, the Y-axis movement positions said slide transport assembly into, and out of, said device. In another embodiment, the Z-axis movement positions said slide transport assembly up and down within a focal plane.
The invention also provides a method for detection of a plurality of viruses in a sample, comprising a) providing i) a suspension comprising a biological sample, wherein said sample is suspected of comprising at least two viral antigens, wherein said suspension further comprises a staining reagent selected from the group consisting of Evans blue, propidium iodide, acridine orange and combinations thereof, iii) at least two fluorescently labeled antibodies, wherein each of said at least two viral antigens is capable of directly binding to one of said at least two said fluorescently labeled antibodies, wherein said antibodies are differentially labeled, b) incubating said suspension with said fluorescently labeled antibodies under conditions such that each of said fluorescently labeled antibodies directly binds one of said viral antigens, thereby forming at least one labeled antigen-antibody complex, and c) detecting said at least one labeled antigen-labeled antibody complex within said suspension by identifying at least one fluorescently labeled antibody, thereby identifying at least one of said at least two viral antigens, wherein said detecting comprises introducing said suspension into a sample well of a device that comprises i) a solid substrate comprising at least one sample well, ii) an air vent port in fluidic communication with said sample well, iii) at least one fiducial mark on said solid substrate, iv) a sample well coverslip configured to adhere to a first portion of said sample well, and v) a fill port coverslip. In one embodiment, the sample well is circular. In another embodiment, the sample well is trough-shaped. In a further embodiment, the sample well comprises a gasket material. In yet another embodiment, the gasket material comprises a double-sided adhesive. In a further embodiment, the gasket material comprises a hydrophobic ink mask. In a further embodiment, the solid substrate comprises three sample wells. In a particular embodiment, the three sample wells are centrally positioned in parallel along the longitudinal axis of said solid substrate. In yet another embodiment, the solid substrate is a glass microscope slide. In a further embodiment, the fill port coverslip comprises a plurality of fill ports. In a particular embodiment, each of said plurality of fill ports align with one of said sample wells. In a further embodiment, the sample well further comprises a sample receiving reservoir.
The invention also provides a method, comprising a) providing i) a suspension comprising a biological sample, wherein said sample is suspected of comprising at least two viral antigens, wherein said suspension further comprises a detergent, iii) at least two fluorescently labeled antibodies, wherein each of said at least two viral antigens is capable of directly binding to one of said at least two said fluorescently labeled antibodies, wherein said antibodies are differentially labeled, b) incubating said suspension with said fluorescently labeled antibodies under conditions such that each of said fluorescently labeled antibodies directly binds one of said viral antigens, thereby forming at least one labeled antigen-antibody complex, and c) detecting said at least one labeled antigen-labeled antibody complex within said suspension by identifying at least one fluorescently labeled antibody, thereby identifying at least one of said at least two viral antigens, wherein said detecting comprises introducing said suspension into a slide transport assembly of a fluorescence reader device that comprises i) a main system printed circuit board comprising an operating system assembly, ii) a plurality of printed circuit board assemblies (PCBAs) in operable combination with said operating system assembly, iii) a camera and optics assembly in operable combination with said plurality of printed circuit board assemblies (PCBAs), and iv) a slide transport assembly in operable combination with a plurality of controller motors, wherein said motors are in operable combination with said plurality of printed circuit board assemblies (PCBAs).
Also provided by the invention is a method, comprising a) providing i) a suspension comprising a biological sample, wherein said sample is suspected of comprising at least two viral antigens, wherein said suspension further comprises a detergent, iii) at least two fluorescently labeled antibodies, wherein each of said at least two viral antigens is capable of directly binding to one of said at least two said fluorescently labeled antibodies, wherein said antibodies are differentially labeled, b) incubating said suspension with said fluorescently labeled antibodies under conditions such that each of said fluorescently labeled antibodies directly binds one of said viral antigens, thereby forming at least one labeled antigen-antibody complex, and c) detecting said at least one labeled antigen-labeled antibody complex within said suspension by identifying at least one fluorescently labeled antibody, thereby identifying at least one of said at least two viral antigens, wherein said detecting comprises introducing said suspension into a sample well of a device that comprises i) a solid substrate comprising at least one sample well, ii) an air vent port in fluidic communication with said sample well, iii) at least one fiducial mark on said solid substrate, iv) a sample well coverslip configured to adhere to a first portion of said sample well, and v) a fill port coverslip.
The invention additionally provides a method, comprising a) providing i) a suspension comprising a biological sample, wherein said sample is suspected of comprising at least two viral antigens, wherein said detergent is sapogenin, and ii) at least two fluorescently labeled antibodies, wherein each of said at least two viral antigens is capable of directly binding to one of said at least two said fluorescently labeled antibodies, wherein said antibodies are differentially labeled, b) incubating said suspension with said fluorescently labeled antibodies under conditions such that each of said fluorescently labeled antibodies directly binds one of said viral antigens, thereby forming at least one labeled antigen-antibody complex, and c) detecting said at least one labeled antigen-labeled antibody complex within said suspension by identifying at least one fluorescently labeled antibody, thereby identifying at least one of said at least two viral antigens, wherein said detecting comprises introducing said suspension into a slide transport assembly of a fluorescence reader device that comprises i) a main system printed circuit board comprising an operating system assembly, ii) a plurality of printed circuit board assemblies (PCBAs) in operable combination with said operating system assembly, iii) a camera and optics assembly in operable combination with said plurality of printed circuit board assemblies (PCBAs), and iv) a slide transport assembly in operable combination with a plurality of controller motors, wherein said motors are in operable combination with said plurality of printed circuit board assemblies (PCBAs).
Also provided by the invention is a method, comprising a) providing i) a suspension comprising a biological sample, wherein said sample is suspected of comprising at least two viral antigens, wherein said detergent is sapogenin, and ii) at least two fluorescently labeled antibodies, wherein each of said at least two viral antigens is capable of directly binding to one of said at least two said fluorescently labeled antibodies, wherein said antibodies are differentially labeled, b) incubating said suspension with said fluorescently labeled antibodies under conditions such that each of said fluorescently labeled antibodies directly binds one of said viral antigens, thereby forming at least one labeled antigen-antibody complex, and c) detecting said at least one labeled antigen-labeled antibody complex within said suspension by identifying at least one fluorescently labeled antibody, thereby identifying at least one of said at least two viral antigens, wherein said detecting comprises introducing said suspension into a sample well of a device that comprises i) a solid substrate comprising at least one sample well, ii) an air vent port in fluidic communication with said sample well, iii) at least one fiducial mark on said solid substrate, iv) a sample well coverslip configured to adhere to a first portion of said sample well, and v) a fill port coverslip.
The invention further provides a fluorescence reader device comprising a) a main system printed circuit board comprising an operating system assembly, b) a plurality of printed circuit board assemblies (PCBAs) in operable combination with said operating system assembly, c) a camera and optics assembly in operable combination with said plurality of printed circuit board assemblies (PCBAs), and d) a slide transport assembly in operable combination with a plurality of controller motors, wherein said motors are in operable combination with said plurality of printed circuit board assemblies (PCBAs).
Also provided herein is a device, comprising a) a solid substrate comprising at least one sample well, b) an air vent port in fluidic communication with said sample well, c) at least one fiducial mark on said solid substrate, d) a sample well coverslip configured to adhere to a first portion of the sample well, and e) a fill port coverslip.
In one embodiment, the present invention contemplates a method to perform a liquid direct fluorescent assay (LDFA) comprising at least one fluorescent label. In one embodiment, the fluorescent label comprises R-phycoerythrin (PE). In one embodiment, the fluorescent label comprises fluorescein isothiocyanate (FITC). In one embodiment, the fluorescent label is attached to an antibody.
In one embodiment, the present invention contemplates a method, comprising: a) providing: i) a biological sample comprising at least one viral antigen; ii) first and second antibodies, wherein said first antibody reacts with a first viral antigen and does not react with a second viral antigen and is labeled with a first fluorescent tag, and wherein said second antibody reacts with said second viral antigen and does not react with said first viral antigen and is labeled with a second fluorescent tag; b) incubating at least a portion of said sample with said first and second antibodies in a suspension under conditions such that only one of said first and second antibodies bind said antigens; c) identifying a first virus based on detecting said first fluorescent tag. In one embodiment, the method further comprises, step (d) identifying a second virus based on detecting said second fluorescent tag. In one embodiment, the method further comprises identifying said first virus and said second virus based on detecting said first fluorescent tag and said second fluorescent tag. In one embodiment, the first label comprises R-phycoerythrin. In one embodiment, the second label comprises fluorescein isothiocyanate. In one embodiment, the antibody comprises a monoclonal antibody. In one embodiment, the incubating of the first and second antibodies with the suspension is simultaneous. In one embodiment, the incubating of the first and second antibodies with the suspension is serial. In one embodiment, the virus may be selected from the group including, but not limited to, rhinovirus, human papilloma virus, human immunodeficiency virus, hepatitis virus, Newcastle disease virus, cardiovirus, corticoviridae, cystoviridae, epstein-barr virus, filoviridae, hepadnviridae, hepatitis virus, herpes virus, influenza virus, inoviridae, iridoviridae, metapneumovirus, orthomyxoviridae, papovavirus, paramyxoviridae, parvoviridae, polydnaviridae, poxyviridae, reoviridae, rhabdoviridae, semliki forest virus, tetraviridae, toroviridae, varicella zoster virus, vaccinia virus, and vesicular stomatitis virus.
In one embodiment, the present invention contemplates a method, comprising: a) providing: i) a biological sample comprising cells infected with at least one viral antigen; ii) first and second antibodies, wherein said first antibody reacts with a respiratory syncytial viral antigen and does not react with a metapneumovirus viral antigen and is labeled with a first fluorescent tag, and wherein said second antibody reacts with the metapneumovirus viral antigen and does not react with the respiratory syncytial viral antigen and is labeled with a second fluorescent tag; b) incubating at least a portion of said sample with said first and second antibodies in a suspension under conditions such that only one of said first and second antibodies binds said antigens; and c) identifying the viral antigen based on detecting the first or second fluorescent tag. In one embodiment, the method identifies the respiratory viral antigen based on detecting the first fluorescent tag. In one embodiment, the method identifies the metapneumovirus viral antigen based on detecting the second fluorescent tag. In one embodiment, the method identifies the respiratory syncytial viral antigen and the metapneumovirus viral antigen based on detecting the first and second fluorescent tags. In one embodiment, the first label comprises R-phycoerythrin. In one embodiment, the second label comprises fluorescein isothiocyanate. In one embodiment, the antibody comprises a monoclonal antibody. In one embodiment, the incubating of the first and second antibodies with the suspension is simultaneous. In one embodiment, the incubating of the first and second antibodies with the suspension is serial.
In one embodiment, the present invention contemplates a method, comprising: a) providing: i) a biological sample comprising at least one viral antigen; ii) first and second antibodies, wherein said first antibody reacts with an influenza A viral antigen and does not react with an influenza B viral antigen and is labeled with a first fluorescent tag, and wherein said second antibody reacts with said influenza B viral antigen and does not react with said influenza A viral antigen and is labeled with a second fluorescent tag; b) incubating at least a portion of said sample with said first and second antibodies in a suspension under conditions such that only one of said first and second antibodies binds said virus; and c) identifying the at least one viral antigen based on detecting the first or second fluorescent tag. In one embodiment, the method identifies the influenza A viral antigen based on detecting the first fluorescent tag. In one embodiment, the method identifies the influenza B viral antigen based on detecting the second fluorescent tag. In one embodiment, the method identifies the influenza A viral antigen and the influenza B viral antigen based on detecting the first and second fluorescent tags. In one embodiment, the first label comprises R-phycoerythrin. In one embodiment, the second label comprises fluorescein isothiocyanate. In one embodiment, the antibody comprises a monoclonal antibody. In one embodiment, the incubating of the first and second antibodies with the suspension is simultaneous. In one embodiment, the incubating of the first and second antibodies with the suspension is serial.
In one embodiment, the present invention contemplates a method, comprising: a) providing: i) a biological sample comprising at least one viral antigen; ii) first and second antibodies, wherein said first antibody reacts with a parainfluenza viral antigen and does not react with an adenovirus viral antigen and is labeled with a first fluorescent tag, and wherein said second antibody reacts with said adenovirus viral antigen and does not react with said parainfluenza viral antigen and is labeled with a second fluorescent tag; b) incubating at least a portion of said sample with said first and second antibodies in a suspension under conditions such that only one of said first and second antibodies binds said virus; and c) identifying the at least one viral antigen based on detecting the first or second fluorescent tag. In one embodiment, the method identifies the parainfluenza viral antigen based on detecting the first fluorescent tag. In one embodiment, the method identifies the adenovirus viral antigen based on detecting the second fluorescent tag. In one embodiment, the method identifies the parainfluenza viral antigen and the adenovirus viral antigen based on detecting the first and second fluorescent tags. In one embodiment, the first label comprises R-phycoerythrin. In one embodiment, the second label comprises fluorescein isothiocyanate. In one embodiment, the antibody comprises a monoclonal antibody. In one embodiment, the incubating of the first and second antibodies with the suspension is simultaneous. In one embodiment, the incubating of the first and second antibodies with the suspension is serial.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a suspension comprising a biological sample, wherein the sample is suspected of comprising at least one viral antigen; ii) at least two fluorescently labeled antibodies, wherein said at least one antigen is capable of interacting with at least one of said fluorescently labeled antibodies, wherein said antibodies are differentially labeled; b) incubating said suspension with said fluorescently labeled antibodies under conditions such that at least one of said fluorescently labeled antibodies binds said at least one viral antigen, thereby forming a labeled antigen-antibody complex; and c) detecting said labeled antigen-antibody complex within said suspension by identifying one fluorescently labeled antibody, thereby identifying the at least one virus antigen. In one embodiment, the biological sample is derived from a patient, thereby diagnosing a virus infection. In one embodiment, the fluorescently labeled antibody comprises a monoclonal antibody. In one embodiment, the viral antigen comprises a respiratory syncytial virus viral antigen. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for the respiratory syncytial virus viral antigen. In one embodiment, the fluorescently labeled monoclonal respiratory virus antibody comprises a PE fluorescent label. In one embodiment, the viral antigen comprises an influenza virus viral antigen. In one embodiment, the influenza virus viral antigen comprises an influenza A virus viral antigen. In one embodiment, the influenza virus viral antigen comprises an influenza B virus viral antigen. In one embodiment, the fluorescently labeled antibody comprises a monoclonal antibody. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for the influenza A virus viral antigen. In one embodiment, the fluorescently labeled influenza A monoclonal antibody comprises a PE fluorescent label. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for the influenza B virus viral antigen. In one embodiment, the fluorescently labeled influenza B monoclonal antibody comprises a FTIC fluorescent label. In one embodiment, the viral antigen comprises an adenovirus viral antigen. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for the adenovirus viral antigen. In one embodiment, the fluorescently labeled adenovirus monoclonal antibody comprises a FITC fluorescent label. In one embodiment, the viral antigen comprises a parainfluenza virus viral antigen. In one embodiment, the parainfluenza virus viral antigen comprises a parainfluenza 1 virus viral antigen. In one embodiment, the parainfluenza virus viral antigen comprises a parainfluenza 2 virus viral antigen. In one embodiment, the parainfluenza virus viral antigen comprises a parainfluenza 3 virus viral antigen. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for the parainfluenza virus. In one embodiment, the fluorescently labeled parainfluenza monoclonal antibody comprises a PE fluorescent label. In one embodiment, the fluorescently labeled parainfluenza monoclonal antibody comprises specific affinity for the parainfluenza 1 virus viral antigen. In one embodiment, the fluorescently labeled parainfluenza monoclonal antibody comprises specific affinity for the parainfluenza 2 virus viral antigen. In one embodiment, the fluorescently labeled parainfluenza monoclonal antibody comprises specific affinity for the parainfluenza 3 virus viral antigen. In one embodiment, the viral antigen comprises a metapneumovirus viral antigen. In one embodiment, the fluorescently labeled monoclonal antibody comprises a specific affinity for the metapnuemovirus viral antigen. In one embodiment, the fluorescently labeled metapneumovirus monoclonal antibody comprises a FITC fluorescent label. In one embodiment, the viral antigen comprises a varicella zoster viral antigen. In one embodiment, the fluorescently labeled monoclonal antibody comprises a specific affinity for the varicella zoster viral antigen. In one embodiment, the fluorescently labeled varicella zoster monoclonal antibody comprises a PE fluorescent label. In one embodiment, the viral antigen comprises a herpes simplex viral antigen. In one embodiment, the fluorescently labeled monoclonal antibody comprises a specific affinity for a herpes simplex-1 viral antigen. In one embodiment, the fluorescently labeled monoclonal antibody comprises a specific affinity for a herpes simplex-2 viral antigen. In one embodiment, the fluorescently labeled herpes simplex monoclonal antibody comprises a FITC fluorescent label. In one embodiment, the suspension includes a staining reagent selected from the group of Evans blue, propidium iodide, acridine orange and combinations thereof. In one embodiment, the suspension includes a detergent. In one embodiment, the detergent is saponin. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is simultaneous. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is serial.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a suspension comprising a biological sample, wherein said sample is suspected of comprising a respiratory syncytial virus viral antigen; ii) at least two fluorescently labeled antibodies, wherein said viral antigen is capable of interacting with at least one of said fluorescently labeled antibodies, wherein antibodies are differentially labeled; b) incubating said suspension with said fluorescently labeled antibodies under conditions such that said respiratory syncytial virus viral antigen binds to at least one of said fluorescently labeled antibodies, thereby forming a labeled antigen-antibody complex; and c) detecting said labeled antigen-antibody complex within said suspension by identifying one fluorescent labeled antibody, thereby identifying said respiratory syncytial virus viral antigen. In one embodiment, the biological sample is derived from a patient, thereby diagnosing a respiratory syncytial virus infection. In one embodiment, the fluorescently labeled antibody comprises a monoclonal antibody. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for the respiratory syncytial virus viral antigen. In one embodiment, the fluorescently labeled monoclonal respiratory virus antibody comprises a PE fluorescent label. In one embodiment, the suspension includes a staining reagent selected from the group of Evans blue, propidium iodide, acridine orange and combinations thereof. In one embodiment, the suspension includes a detergent. In one embodiment, the detergent is saponin. In one embodiment, the respiratory syncytial virus monoclonal antibody is derived from a clone selected from the group comprising clone 3A4D9 or clone 4F9G3. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is simultaneous. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is serial.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a suspension comprising a biological sample, wherein said sample is suspected of comprising a influenza virus viral antigen; ii) at least two fluorescently labeled antibodies, wherein said viral antigen is capable of interacting with at least one of said fluorescently labeled antibodies, wherein antibodies are differentially labeled; b) incubating said suspension with said fluorescently labeled antibodies under conditions such that at least one of said fluorescently labeled antibodies binds to the influenza virus viral antigen, thereby forming a labeled antigen-antibody complex; and c) detecting said labeled antigen-antibody complex within said suspension by identifying one fluorescently labeled antibody, thereby identifying said influenza virus viral antigen. In one embodiment, the biological sample is derived from a patient, thereby diagnosing an influenza virus infection. In one embodiment, the influenza virus viral antigen comprise an influenza A virus viral antigen. In one embodiment, the influenza virus viral antigen comprises an influenza B virus viral antigen. In one embodiment, the fluorescently labeled antibody comprises a monoclonal antibody. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for the influenza A virus viral antigen. In one embodiment, the fluorescently labeled influenza A monoclonal antibody comprises a PE fluorescent label. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for the influenza B virus viral antigen. In one embodiment, the influenza B monoclonal antibody is derived from a clone selected from the group comprising clone 8C7E11 or clone 9B4D9. In one embodiment, the fluorescently labeled influenza B monoclonal antibody comprises a FTIC fluorescent label. In one embodiment, the suspension includes a staining reagent selected from the group of Evans blue, propidium iodide, acridine orange and combinations thereof. In one embodiment, the suspension includes a detergent. In one embodiment, the detergent is saponin. In one embodiment, the influenza A monoclonal antibody is derived from a clone selected from the group comprising clone 2H3C5 or clone A(6)B11. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is simultaneous. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is serial.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a suspension comprising a biological sample, wherein said sample is suspected of having an adenovirus viral antigen; ii) at least two fluorescently labeled antibodies, wherein said viral antigen is capable of interacting with at least one of said fluorescently labeled antibodies, wherein antibodies are differentially labeled; b) incubating said suspension with said fluorescently labeled antibodies under conditions such that said at least one of said fluorescently labeled antibodies binds to said adenovirus viral antigen, thereby forming a labeled antigen-antibody complex; and c) detecting said labeled antigen-antibody complex within said suspension by identifying one fluorescently labeled antibody, thereby identifying said adenovirus viral antigen. In one embodiment, the biological sample is derived from a patient, thereby diagnosing an adenovirus infection. In one embodiment, the fluorescently labeled antibody comprises a monoclonal antibody. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for the adenovirus viral antigen. In one embodiment, the fluorescently labeled adenovirus monoclonal antibody comprises a FITC fluorescent label. In one embodiment, the suspension includes a staining reagent selected from the group of Evans blue, propidium iodide, acridine orange and combinations thereof. In one embodiment, the suspension includes a detergent. In one embodiment, the detergent is saponin. In one embodiment, the adenovirus monoclonal antibody is derived from a clone selected from the group comprising clone 8H2C9, clone 2H10E2, or clone 4H6C9. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is simultaneous. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is serial.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a suspension comprising a biological sample, wherein the sample is suspected of comprising a parainfluenza virus viral antigen; ii) at least two fluorescently labeled antibodies, wherein said viral antigen is capable of interacting with at least one of said fluorescently labeled antibodies, wherein the antibodies are differentially labeled; b) incubating said suspension with said fluorescently labeled antibody under conditions such that said at least one of said fluorescently labeled antibodies binds to said parainfluenza virus viral antigen, thereby forming a labeled antigen-antibody complex; and c) detecting said labeled antigen-antibody complex by identifying one fluorescently labeled antibody, thereby identifying the parainfluenza virus viral antigen. In one embodiment, the biological sample is derived from a patient, thereby diagnosing a parainfluenza virus infection. In one embodiment, the influenza virus viral antigen comprise a parainfluenza 1 virus viral antigen. In one embodiment, the influenza virus viral antigen comprise a parainfluenza 2 virus viral antigen. In one embodiment, the influenza virus viral antigen comprise a parainfluenza 3 virus viral antigen. In one embodiment, the fluorescently labeled antibody comprises a monoclonal antibody. In one embodiment, the fluorescently labeled monoclonal antibody comprises a PE fluorescent label. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for a parainfluenza 1 virus viral antigen. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for a parainfluenza 2 virus viral antigen. In one embodiment, the fluorescently labeled monoclonal antibody comprises specific affinity for a parainfluenza 3 virus viral antigen. In one embodiment, the suspension includes a staining reagent selected from the group of Evans blue, propidium iodide, acridine orange and combinations thereof. In one embodiment, the suspension includes a detergent. In one embodiment, the detergent is saponin. In one embodiment, the parainfluenza 1 monoclonal antibody is derived from a clone selected from the group comprising 1D8E10 or 9F61C9. In one embodiment, the parainfluenza 2 monoclonal antibody is derived from a clone selected from the group comprising clone 2E4D7 or clone 5E4E11. In one embodiment, the parainfluenza 3 monoclonal antibody is derived from a clone selected from the group comprising clone 4G5(1)E2H9 or clone 1F6C8. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is simultaneous. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is serial.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a suspension comprising a biological sample, wherein the sample is suspected of comprising a metapnuemovirus viral antigen; ii) at least two fluorescently labeled antibodies, wherein said viral antigen is capable of interacting with said fluorescently labeled antibodies, wherein antibodies are differentially labeled; b) incubating said suspension with said fluorescently labeled antibodies under conditions such that at least one of said fluorescently labeled antibodies binds to said metapneumovirus viral antigen, thereby forming a labeled antigen-antibody complex; and c) detecting said labeled antigen-antibody complex by identifying one fluorescently labeled antibody, thereby identifying the metapnuemovirus viral antigen. In one embodiment, the biological sample is derived from a patient, thereby diagnosing an metapneumovirus infection. In one embodiment, the fluorescently labeled antibody comprises a monoclonal antibody. In one embodiment, the fluorescently labeled monoclonal antibody comprises a specific affinity for the metapneumovirus viral antigen. In one embodiment, the fluorescently labeled metapneumovirus monoclonal antibody comprises a FITC fluorescent label. In one embodiment, the suspension includes a staining reagent selected from the group of Evans blue, propidium iodide, acridine orange and combinations thereof. In one embodiment, the suspension includes a detergent. In one embodiment, the detergent is saponin. In one embodiment, the metapneumovirus monoclonal antibody is derived from a clone selected from the group comprising clone #4, clone #23, or clone #28. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is simultaneous. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is serial.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a suspension comprising a biological sample, wherein the sample comprises unfixed cells derived from said patient, said suspension further comprising sapogenin and lacking fixatives and non-aqueous solvents; and ii) a fluorescently labeled antibody reactive with a viral antigen; and b) introducing said fluorescently labeled antibody into said cell suspension under conditions such that at least a portion of said antibody reacts with said viral antigen, thereby revealing the viral antigen with said cells. In one embodiment, the sample is derived from a patient suspected of having a virus infection. In one embodiment, the viral antigen is intracellular. In one embodiment, the viral antigen is extracellular. In one embodiment, the viral antigen is attached to a virus. In one embodiment, the viral antigen is displayed on the cell surface.
In one embodiment, the present invention contemplates a cytometer, comprising: a) a sample container configured to reside within a sample tray, wherein said tray is slidably engaged with said cytometer; b) an excitation illumination source positioned to illuminate at least a portion of said container; and c) a detector positioned to collect an emission illumination from said at least a portion of said container. In one embodiment, the sample container comprises a microscope slide having a plurality of wells. In one embodiment, the sample tray slides to serially expose said plurality of containers to said illuminated portion. In one embodiment, the excitation illumination source comprises light emitting diodes. In one embodiment, the emission illumination is derived from a fluorescently labeled monoclonal antibody.
In one embodiment, the present invention contemplates a method, comprising: a) providing: i) a suspension comprising a biological sample, wherein said sample comprises fluorescently labeled biological cells; ii) a cytometer comprising a sample tray, wherein said tray is configured to translate a sample container within said device, wherein said container comprises a plurality of samples; iii) an excitation illumination source targeted to said at least one sample; and b) inserting said sample container into said sample tray under conditions such that a first sample is illuminated by said excitation illumination source; and c) translating said sample container such that a second sample is illuminated by said illumination source. In one embodiment, the fluorescently labeled cell comprises a fluorescent dye. In one embodiment, the fluorescent dye is selected from the group consisting of propidium iodide, ethidium bromide and acridine orange. In one embodiment, the fluorescently labeled cell comprises a fluorescently labeled monoclonal antibody. In one embodiment, the fluorescently labeled antibody comprises R-phycoerythrin. In one embodiment, the fluorescently labeled antibody comprises fluorescein isothiocyanate.
In one embodiment, the present invention contemplates a method, comprising: a) providing: i) a suspension comprising a biological sample, wherein said sample comprises at least two fluorescently labeled viral antigens; and ii) a cytometer capable of differentially detecting the fluorescently labeled viral antigens; b) placing said suspension into said cytometer; and c) detecting at least one of said fluorescently labeled viral antigens. In one embodiment, the detection of a first viral antigen identifies a first virus. In one embodiment, the detection of a second viral antigen identifies a second virus.
In one embodiment, the present invention contemplates a method, comprising: a) providing; i) a suspension comprising a biological sample, wherein the sample is suspected of comprising diseased cells; ii) at least two fluorescently labeled antibodies, wherein said cells are capable of interacting with at least one of said fluorescently labeled antibodies, wherein said antibodies are differentially labeled; and c) incubating said suspension with said fluorescently labeled antibodies under conditions such that at least one of said fluorescently labeled antibodies binds to said cells, thereby forming a labeled cell-antibody complex; and d) detecting said labeled cell-antibody complex within said suspension by identifying one fluorescently labeled antibody, thereby diagnosing said diseased cells. In one embodiment, the biological sample is derived from a patient. In one embodiment, the suspension includes a staining reagent selected from the group of Evans blue, propidium iodide, acridine orange and combinations thereof. In one embodiment, the suspension includes a detergent. In one embodiment, the fluorescently labeled antibody comprises R-phycoerythrin (PE). In one embodiment, the fluorescently labeled antibody comprises fluorescein isothiocyanate (FITC). In one embodiment, the detergent is saponin. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is simultaneous. In one embodiment, the incubating of the fluorescently labeled antibodies and suspension is serial.
The term “fluorescence reader device” as used herein, refers to any device configured to simultaneously detect and analyze data from a plurality (i.e., two or more) of samples comprising multiple fluorescent probes. For example, the device is configured to differentiate between at least eight different virus strains in a single assay. Further, in one embodiment, the device may be “portable,” i.e., may be transported and/or trans-located. This may be desirable to, for example, provide accessibility wherever a non-vibrating support surface is available, a power source is available (i.e., including remote locations, where battery direct current (DC) may be converted into alternating current (AC)), etc.
The term “motherboard” or “main system printed circuit board” as used herein refers to any printed circuit board (PCB) configured to support an operating system software package.
The term “motor controller printed circuits” as used herein refers to any printed circuit board assembly (PCB) configured to support algorithms that control the movement of sub-elements of the device (i.e., for example, an objective lens, a stage assembly or a slide carrier assembly etc.).
The term “camera and optics train assembly” as used herein refers to any configuration of sub-elements of the device that detects fluorescence emissions (i.e., for example, an objective lens) and processes the data for imaging analysis.
The term “slide carrier assembly” or “slide transport assembly” refers to any sub-elements of the device that are configured to properly position a sample slide within the camera and optics train assembly for detection of fluorescence emissions. The slide carrier assembly responds to commands from the motor controller printed circuits for repositioning of the slide within the camera and optics train assembly, or for exit and/or entry of a slide relative to the device.
The term “enclosure and chassis assembly” as used herein refers to any sub-elements of the device that are configured to attach other sub elements together (i.e., chassis) and/or surround the attached sub-elements for protection (i.e., enclosure).
The term “touch screen” or “monitor” as used herein refers to any liquid crystal display (LCD) that is connected to the motherboard with a keyboard-facilitated user interface. For example, a user may enter operational commands using the user interface. Alternatively, preliminary data may be viewed on the touch screen such that assay improvements may be directed during a sample analysis.
The term “excitation light emitting diodes” as used herein refers to any light emitting diode (LED) operating a light frequency that results in the fluorescence of a particular chemical and/or dye. For example, the light frequency may be a blue light frequency (exciting compounds such as fluorescein) or a green light frequency (exciting compounds such as R-phycoerythrin or propidium iodide).
The term “objective lens system” as used herein refers to any combination of sub elements of the device configured to transmit light such that the object plane is magnified. For example, the magnification may result in a pixel having a diameter of approximately 1.35 microns. Also, the lens system may result in an image resolution of at least 10 microns.
The term “filter wheel” as used herein refers to any combination of sub-elements of the device configured to differentiate between a plurality of different fluorescent emission spectra.
The term “solid substrate” as used herein refers to any composition configured to hold a liquid sample that is compatible with the slide carrier assembly. For example, the composition may be manufactured from a non-porous material including, but not limited to, plastic, Teflon, glass, silicon, or quartz. For example, the solid substrate may be rectangular in shape having a height, width and depth to fit within the slide carrier assembly. Such a rectangular-shaped solid substrate is preferably a microscope slide. Alternatively, the solid substrate may contain depressions (i.e., for example, a sample well) into which a liquid sample is placed.
The term “sample well” as used herein refers to any depression below the surface of a solid substrate. The depression may be of any shape including, but not limited to, circular, oval, or trough-shaped. Further, a sample well, may be configured with an “air vent port” to facilitate loading of exact volumes of sample.
The term “fiducial mark” as used herein refers to any location on a solid substrate that is configured to serve as a reference point. For example, the reference point may calibrate camera optics, including but not limited to focus, resolution, and/or clarity.
The term “fill port coverslip” as used herein refers to any material configured to seal to a portion of the solid substrate such that the ‘fill ports’ of the sample wells are covered. Alternatively, the fill port coverslip comprises at least one port through which a sample may be placed into the sample well without removing the fill port coverslip.
The term “gasket material” as used herein refers to any material having properties that allows a temporary sealing of a coverslip to the solid substrate. Such a gasket material can be manually sealed and unsealed. Examples of useful gasket materials including but not limited to double-sided adhesive or hydrophobic ink.
The term “suspected of” as used herein, refers to a medical condition or set of medical conditions exhibited by a patient that suggest that the patient may contract a particular disease or affliction. For example, these conditions may include, but are not limited to, unusual physical symptoms, unusual emotional symptoms, or unusual biochemical test results.
The term “a liquid cell suspension” or “suspension” as used herein refers to any fluid composition comprising a biological sample, wherein the components of the sample remain mobile relative to any natural or artificial surfaces and/or substrates. The fluid may comprise aqueous components as well as organic components. For example, a liquid cell suspension may comprise phosphate buffered saline.
The term “attached” as used herein, refers to any interaction between a medium (or carrier) and a drug. Attachment may be reversible or irreversible. Such attachment includes, but is not limited to, covalent bonding, ionic bonding, Van der Waals forces or friction, and the like. A drug is attached to a medium (or carrier) if it is impregnated, incorporated, coated, in suspension with, in solution with, mixed with, etc.
The term “derived from” as used herein, refers to the source of an item of interest (i.e., for example, a monoclonal antibody or an energy signature). In one respect, a virus infected cell may be derived from a biological organism (i.e., for example, a human, animal, plant, or patient). In one respect, a monoclonal antibody may be derived from a hybridoma clonal cell line (i.e., for example, a clone). In one respect, an emission illumination may be derived from a fluorescent compound. In one respect, an excitation illumination may be derived from a light source.
The term “based on” as used herein, refers to any process or method, including a mathematical algorithm that results in the ability to quantify the intensity of a specific excitation source. Further, the process, method, or mathematical algorithm is capable of differentiating between a plurality of excitation sources such that they can be individually quantified and compared.
The term “detecting” or “detect” or “detected” as used herein, refers to any method and/or device that is capable of identifying an energy source (i.e., for example, a fluorescent antibody).
The term “patient”, as used herein, is a human or animal and need not be hospitalized. For example, out-patients, persons in nursing homes are “patients.” A patient may comprise any age of a human or non-human animal and therefore includes both adult and juveniles (i.e., children). It is not intended that the term “patient” connote a need for medical treatment, therefore, a patient may voluntarily or involuntarily be part of experimentation whether clinical or in support of basic science studies.
The term “affinity” as used herein, refers to any attractive force between substances or particles that causes them to enter into and remain in chemical combination. For example, an inhibitor compound that has a high affinity for a receptor will provide greater efficacy in preventing the receptor from interacting with its natural ligands, than an inhibitor with a low affinity.
The term “protein” as used herein, refers to any of numerous naturally occurring extremely complex substances (as an enzyme or antibody) that consist of amino acid residues joined by peptide bonds, contain the elements carbon, hydrogen, nitrogen, oxygen, usually sulfur. In general, a protein comprises amino acids having an order of magnitude within the hundreds.
The term “peptide” as used herein, refers to any of various amides that are derived from two or more amino acids by combination of the amino group of one acid with the carboxyl group of another and are usually obtained by partial hydrolysis of proteins. In general, a peptide comprises 10 or more amino acids.
“Nucleic acid sequence” and “nucleotide sequence” as used herein refer to an oligonucleotide or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single- or double-stranded, and represent the sense or antisense strand.
The term “an isolated nucleic acid”, as used herein, refers to any nucleic acid molecule that has been removed from its natural state (e.g., removed from a cell and is, in a preferred embodiment, free of other genomic nucleic acid).
The terms “amino acid sequence” and “polypeptide sequence” as used herein, are interchangeable and to refer to a sequence of amino acids.
As used herein the term “portion” when in reference to a protein (as in “a portion of a given protein”) refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid.
The term “portion” when used in reference to a nucleotide sequence refers to fragments of that nucleotide sequence. The fragments may range in size from 5 nucleotide residues to the entire nucleotide sequence minus one nucleic acid residue.
The term “antibody” refers to immunoglobulin evoked in animals by an immunogen (antigen). It is desired that the antibody demonstrates specificity to epitopes contained in the immunogen. The term “polyclonal antibody” refers to immunoglobulin produced from more than a single clone of plasma cells; in contrast “monoclonal antibody” refers to immunoglobulin produced from a single clone of plasma cells. All monoclonal antibodies contemplated herein having specific affinity for a viral antigen are commercially available. (Diagnostics Hybrids, Inc., Athens, Ohio).
The terms “specific affinity”, “specific binding” or “specifically binding” when used in reference to the interaction of an antibody and a protein or peptide means that the interaction is dependent upon the presence of a particular structure (i.e., for example, an antigenic determinant or epitope) on a protein; in other words an antibody is recognizing and binding to a specific protein structure rather than to proteins in general. For example, if an antibody is specific for epitope “A”, the presence of a protein containing epitope A (or free, unlabelled A) in a reaction containing labeled “A” and the antibody will reduce the amount of labeled A bound to the antibody.
The term “sample” as used herein, is used in its broadest sense and includes environmental and biological samples. Environmental samples include material from the environment such as soil and water. Biological samples may be animal, including, human, fluid (e.g., nasopharyngeal discharge, blood, plasma and serum), solid (e.g., stool), tissue, liquid foods (e.g., milk), and solid foods (e.g., vegetables). For example, a pulmonary sample may be collected by bronchoalveolar lavage (BAL) which comprises fluid and cells derived from lung tissues. A biological sample may be collected that is suspected of containing a virus-infected cell, tissue extract, or body fluid.
The term “immunologically active” defines the capability of a natural, recombinant or synthetic peptide (i.e., for example, a collagen-like family protein), or any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and/or to bind with specific antibodies.
The term “antigenic determinant” as used herein, refers to that portion of a molecule that is recognized by a particular antibody (i.e., an epitope). When a protein or fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to a given region or three-dimensional structure on the protein; these regions or structures are referred to as antigenic determinants. An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody. One such antigenic determinant may be “a viral antigen” wherein an antigen may be displayed on, or within, a virus-infected host cell surface or on a virus coat surface.
The terms “immunogen,” “antigen,” “immunogenic” and “antigenic” refer to any substance capable of generating antibodies when introduced into an animal. By definition, an immunogen must contain at least one epitope (the specific biochemical unit capable of causing an immune response), and generally contains many more. Proteins are most frequently used as immunogens, but lipid and nucleic acid moieties complexed with proteins may also act as immunogens. The latter complexes are often useful when smaller molecules with few epitopes do not stimulate a satisfactory immune response by themselves.
The term “antibody” refers to immunoglobulin evoked in animals by an immunogen (antigen). It is desired that the antibody demonstrates specificity to epitopes contained in the immunogen. The term “polyclonal antibody” refers to immunoglobulin produced from more than a single clone of plasma cells; in contrast “monoclonal antibody” refers to immunoglobulin produced from a single clone of plasma cells.
The term “label” or “detectable label” are used herein, to refer to any composition detectable by fluorescence, spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. For example, such labels may include, but are not limited to, tetramethylrhodamine isothiocyanate (TRITC), Quantum Dots, CY3 and CY5. Other such labels include, but are not limited to, biotin for staining with labeled streptavidin conjugate, magnetic beads (e.g., Dynabeads®), fluorescent dyes (e.g., fluorescein, texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e.g., 3H, 125I, 35S, 14C, or 32P), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and calorimetric labels such as colloidal gold or colored glass or plastic (e.g., polystyrene, polypropylene, latex, etc.) beads. Patents teaching the use of such labels include, but are not limited to, U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241 (all herein incorporated by reference). The labels contemplated in the present invention may be detected by many methods. For example, radiolabels may be detected using photographic film or scintillation counters, fluorescent markers may be detected using a photodetector to detect emitted light. Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting, the reaction product produced by the action of the enzyme on the substrate, and calorimetric labels are detected by simply visualizing the colored label.
The term “binding” as used herein, refers to any interaction between an infection control composition and a surface. Such as surface is defined as a “binding surface”. Binding may be reversible or irreversible. Such binding may be, but is not limited to, non-covalent binding, covalent bonding, ionic bonding, Van de Waal forces or friction, and the like. An infection control composition is bound to a surface if it is impregnated, incorporated, coated, in suspension with, in solution with, mixed with, etc.
The term “fluorescent focus” refers to either one cell or a group of closely adjacent cells that fluoresce when fluorescently labeled antibodies. Some single virus infections produce multi-cell plaques and others result only with infections of one or two cells per viable virus. A viral plaque consisting of many fluorescent staining cells is counted as “one” for viruses such as HSV, VZV, and RSV. Viruses such as influenza A, B, and adenovirus produce only one or a few fluorescent staining cells per viable infectious virus.
The term “virus” refers to obligate, ultramicroscopic, intracellular parasites incapable of autonomous replication (i.e., replication requires the use of the host cell's machinery). Viruses are exemplified by, but not limited to, adenovirus, rhinovirus, human papilloma virus, human immunodeficiency virus, hepatitis virus, Newcastle disease virus, cardiovirus, corticoviridae, cystoviridae, epstein-barr virus, Filoviridae; hepadnviridae, hepatitis virus, herpes virus, influenza virus, inoviridae, iridoviridae, metapneumovirus, orthomyxoviridae, papovavirus, parainfluenza virus, paramyxoviridae, parvoviridae, polydnaviridae, poxyviridae, reoviridae, respiratory syncytial virus, rhabdoviridae, semliki forest virus, tetraviridae, toroviridae, vaccinia virus, and vesicular stomatitis virus. “Virus” also includes an animal virus that is not a plus-strand RNA virus as exemplified by, but not limited to, Arenaviridae, Baculoviridae, Birnaviridae, Bunyaviridae, Cardiovirus, Corticoviridae, Cystoviridae, Epstein-Barr virus, Filoviridae, Hepadnviridae, Hepatitis virus, Herpesviridae, Influenza virus, Inoviridae, Iridoviridae, Metapneumovirus, Orthomyxoviridae, Papovaviru, Paramyxoviridae, Parvoviridae, Polydnaviridae, Poxyviridae, Reoviridae, Rhabdoviridae, Semliki Forest virus, Tetraviridae, Toroviridae, Vaccinia virus, Vesicular stomatitis virus.
The term “pathogen” as used herein, refers to any submicroscopic or microscopic organism comprising at least one antigen. For example, a pathogen comprising an antigen can be detected and identified by a fluorescently labeled monoclonal antibody having specific affinity to the pathogen antigen. Representative examples, of pathogens include, but are not limited to, bacteria, fungi, yeast, viruses, or any microbe.
The term “respiratory virus” as used herein, refers to any virus capable of infecting pulmonary tissues (i.e., for example, lung tissue). For example, a respiratory virus includes, but is not limited to, influenza, parainfluenza, adenovirus, rhinovirus, herpes simplex virus, respiratory syncytial virus, hantavirus, or cytomegalovirus.
The file of this patent contains at least one drawing executed in color. Copies of this patent with color drawings will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.
This invention is related to processing biological samples for direct virus detection in a liquid format using a multiplex assay device. For example, the sample may be assayed by simultaneously evaluating multiple portions using multiple fluorescent antibodies. The detection method may use antibodies that directly bind to a viral antigen thereby allowing identification as well as detection. The device may comprise a configuration of sub-elements controlled by a motherboard such that a multiwell sample slide may be read in a single run. The assay method may be integrated with a device comprising an algorithm capable of differentiating between a plurality of fluorescent signals.
In one embodiment, the present invention contemplates a method for detecting and identifying a viral antigen using an image of a processed biological cell specimen and an algorithm to determine if cells are positive or negative for viral infection. In one embodiment, the method comprises a liquid sample during preparation, processing, and examination.
During epidemics, viruses may be a significant cause of morbidity and mortality, especially in the elderly and in patients with chronic pulmonary and/or cardiovascular disorders Swenson et al., “Rapid detection of influenza virus in cell culture by indirect immunoperoxidase staining with type-specific monoclonal antibodies” Diagn. Microbiol. Infect. Dis. 7:265-268 (1987). Appropriate infection control measures and proper patient management may be optimized by rapid detection and identification of virus in clinical specimens.
A virus is a small infectious organism—much smaller than a fungus or bacterium—that must invade a living cell to reproduce (e.g., replicate). The virus attaches to a cell (called the host cell), enters it, and releases its DNA or RNA inside the cell. The virus's DNA or RNA is the genetic material containing the information needed to replicate the virus. The virus's genetic material takes control of the cell and forces it to replicate the virus. The infected cell usually dies because the virus keeps it from performing its normal functions. When it dies, the cell releases new viruses, which go on to infect other cells.
Some viruses do not kill the cells they infect but instead alter the cell's functions. Sometimes the infected cell loses control over normal cell division and becomes cancerous. Some viruses leave their genetic material in the host cell, where the material remains dormant for an extended time (e.g., latent infection). When the cell is disturbed, the virus may begin replicating again and cause disease.
Viruses usually infect one particular type of cell. For example, cold viruses infect only cells of the upper respiratory tract. Additionally, most viruses infect only a few species of plants or animals. Some infect only people. Many viruses commonly infect infants and children.
Viruses are spread (e.g., transmitted) in various ways. Some are swallowed, some are inhaled, and some are spread by the bites of insects and other parasites (i.e., for example, mosquitoes and ticks). Some are spread sexually.
1. Defenses
Most biological organisms have a number of defenses against viruses. For example, physical barriers, such as the skin, discourage easy entry. Infected cells also make interferons, substances that can make uninfected cells more resistant to infection by many viruses.
When a virus enters the body, the virus may trigger the body's immune defenses. These defenses begin with white blood cells, such as lymphocytes and monocytes, which produce antibodies that attack and destroy the virus or the infected cells. Production of antiviral antibodies produces a subsequent state of immunity, wherein the white blood cells are now programmed to immediately respond to re-infection. These states of immunity can be artificially induced by vaccination with non-infectious viral particles. Vaccination initiates the production of antibodies from a variety of white blood cells, thereby producing antibodies that are polyclonal in nature.
2. Types of Viral Infections
Probably the most common viral infections are those of the upper respiratory airway (i.e., for example, nose, throat, etc.). These infections include sore throat, sinusitis, and the common cold Influenza is a viral respiratory infection. In small children, viruses also commonly cause croup and inflammation of the windpipe (i.e., for example, laryngotracheobronchitis) or other airways deeper inside the lungs. Respiratory infections are more likely to cause severe symptoms in infants, older people, and people with a lung or heart disorder.
Some viruses (i.e., for example, rabies virus, West Nile virus, and several different encephalitis viruses) infect the nervous system. Viral infections also develop in the skin, sometimes resulting in warts or other blemishes.
Other common viral infections are caused by herpes viruses. Eight different herpes viruses infect people, including but not limited to; herpes simplex virus type 1, herpes simplex virus type 2, and varicella-zoster virus cause infections that produce blisters on the skin or mucus membranes. Another herpes virus, Epstein-Barr virus, causes infectious mononucleosis. Cytomegalovirus is a cause of serious infections in newborns and in people with a weakened immune system. Cytomegalovirus can also produce symptoms similar to infectious mononucleosis in people with a healthy immune system. Human herpes viruses 6 and 7 cause a childhood infection called roseola infantum. Human herpes virus 8 has been implicated as a cause of cancer (Kaposi's sarcoma) in people with AIDS.
All of the herpes viruses cause lifelong infection because the virus remains within its host cell in a dormant (latent) state. Sometimes the virus reactivates and produces further episodes of disease. Reactivation may occur rapidly or many years after the initial infection.
3. Diagnosis
Common viral infections are usually diagnosed based on symptoms. For infections that occur in epidemics (i.e., for example, influenza), the presence of other similar cases may help doctors identify a particular infection. For other infections, blood tests and cultures (growing microorganisms in the laboratory from samples of blood, body fluid, or other material taken from an infected area) may be done. Blood may be tested for antibodies to viruses or for antigens (proteins on or in viruses that trigger the body's defenses). Polymerase chain reaction (PCR) techniques may be used to make many copies of the viral genetic material, enabling doctors to rapidly and accurately identify the virus. Tests are sometimes done quickly—for instance, when the infection is a serious threat to public health or when symptoms are severe. A sample of blood or other tissues is sometimes examined with an electron microscope, which provides high magnification with clear resolution.
4. Treatment
Drugs that combat viral infections are called antiviral drugs. Many antiviral drugs work by interfering with replication of viruses, such as drugs used to treat human immunodeficiency virus (HIV) infection. Because viruses replicate inside cells using the cells' own metabolic functions, there are only a limited number of metabolic functions that antiviral drugs can target. Therefore, antiviral drugs are difficult to develop. Further, effective antiviral drugs can be toxic to human cells. Viruses can also develop resistance to antiviral drugs.
Other antiviral drugs strengthen the biological immune response to the viral infection. These drugs include several types of interferons, immunoglobulins, and vaccines. Interferon drugs are replicas of naturally occurring substances that slow or stop viral replication. Immune globulin is a sterilized solution of antibodies (also called immunoglobulins) collected from a group of people. Vaccines are materials that help prevent infection by stimulating the body's natural defense mechanisms. Many immune globulins and vaccines are given before exposure to a virus to prevent infection. Some immune globulins and some vaccines, such as those for rabies and hepatitis B, are also used after exposure to the virus to help prevent infection from developing or reduce the severity of infection Immune globulins may also help treat some established infections and also prevent infection after future exposures to the virus.
Most antiviral drugs can be given by mouth. Some can also be given by injection into a vein (intravenously) or muscle (intramuscularly). Some are applied as ointments, creams, or eye drops or are inhaled as a powder.
Antibiotics are not effective against viral infections, but if a person has a bacterial infection in addition to a viral infection, an antibiotic is often necessary.
Infectious disease rates and immunization strategies continue to evolve in the United States and worldwide in response to societal needs, national defense, and evolutionary changes in the organisms producing disease. Immunizations are performed to prevent many infections, while prophylactic population screening is utilized for infections lacking effective vaccines and for those diseases having a low enough incidence that mass immunization is not deemed most efficacious.
The current method for diagnosis of disease, determining exposure to biological materials such as pathogens, or monitoring immunization status varies depending on the specific assay. Some methods employ an in vivo assay. Others require a biological sample, such as blood or serum, to be obtained and tested. Tests performed usually are one of the non-homogeneous type diagnostic methods such as enzyme-linked immunosorbant assay (hereinafter “ELISA”), radioimmunoassay (hereinafter “RIA”), or agglutination. All are surface-binding, heterogeneous assays and require the antigen of interest to interact with a surface to achieve success, often at the expense of high non-specific binding and loss of specificity.
The embodiments described herein improve upon previously reported immunoassays by providing a totally liquid environment encompassing all steps of the method.
A. Non-Fluorescent Antibody Assays
A general method believed capable of detecting viruses in solution was reported using composite organic-inorganic nanoclusters displaying antibodies that capture fluorescently labeled infected cells. Sun et al., “Multiplexed Detection of Analytes in Fluid Solution,” United States Patent Publication No. 2007/0279626. The nanocluster-antibody-cell complex is then subjected to FACS in conjunction with Raman analysis to determine the number of captured infected cells. A liquid-phase immunodiagnostic assay has been reported that generates a biochemical reporter when antigen/antibody complex is acted upon by a first and second enzyme. Clemmons et al., “Liquid-Phase Immunodiagnostic Assay,” U.S. Pat. No. 5,637,473. Suggested antigen/antibody complexes include various virus-related epitopes. Analyte detection from clinical samples of patients suspected of having a disease was reported by reacting a sample with a nucleic acid-labeled binding construct. The binding construct may be an antibody having affinity to an analyte. Once bound, the antibody/analyte complex is isolated and the nucleic acid label is amplified and identified to quantitate the captured analytes. Lawton, “Soluble Analyte Detection and Amplification,” U.S. Pat. No. 7,341,837; and United States Patent Publication No. 2005/0048500.
B. Indirect Immunofluorescence
Indirect immunofluorescence represents a method in which a first unlabeled IgG antibody directed against a specific antigen is then detected by use of a labeled (i.e., for example, fluorescently labeled) anti-IgG of the same species as the first antibody. For example, labeled goat anti-rabbit IgG antibody can be used against a specific first antibody that was raised in rabbits.
Flow cytometry by using FACS methodology has been used for monitoring intracellular influenza A replication by using fluorescently labeled monoclonal antibodies directed to matrix protein I and nucleoprotein. In this system, adherent MDCK cells were first inoculated with virus containing sample, then fixed and dehydrated with ethanol and paraformaldehyde/ethanol. Schulze-Horsel et al., “Flow Cytometric Monitoring of Influenza A Virus Infection in MDCK Cells During Vaccine Production,” BMC Biotechnol. 8:45 (2008); and Lonsdale et al., “A Rapid Method for Immunotitration of Influenza Viruses Using Flow Cytometry,” J. Virol. Methods, 110(1):67-71, (2003)).
In vivo antibody production was studied in mice infected with influenza virus using a FACS immunofluorescence method. The data demonstrated that B cells isolated from infected spleen cells did not undergo isotype switching from natural IgM isotypes to influenza-specific isotypes during the course of the infection. Baumgarth et al., “Innate and Acquired Humoral Immunities to Influenza Virus are Mediated by Distinct Arms of the Immune System,” PNAS 96:2250-2255 (1999).
Detection of influenza virus was compared between various processing methods using cell culture-based indirect immunofluorescence staining. Chamber slides, shell vials, standard virus isolation, and nasal wash specimens were all tested using monoclonal antibodies specific for antigens of either influenza A virus (i.e., matrix protein or nucleoprotein) or influenza B virus (i.e., nucleoprotein or hemagglutinin). Walls et al., “Characterization and evaluation of monoclonal antibodies developed for typing influenza A and influenza B viruses” J. Clin. Microbial. 23:240-245 (1986). These comparisons indicated that indirect immunofluoresence tests were difficult to interpret due to an abundance of mucus debris despite vigorous washing and, occasionally, inadequate numbers of intact cells. Stokes et al., “Rapid Diagnosis of Influenza A and B by 24-h Fluorescent Focus Assays,” J. Clin. Microbial. 26(7):1263-1266 (1988). Influenza infections may also be detected by capturing naturally produced antibodies within a clinical sample onto a surface coated with recombinantly produced influenza A M2 protein. Kendal et al., “Improved Expression of Influenza A M2 Protein in Baculovirus and Uses of M2 Protein,” WO/1993/003173. Influenza virus infection may also be detected using a sandwich immunofluorescent assay where anti-influenza antiserum recognizing NP, M1, HA and NA protein were reacted with fixed and permeabilized HeLa cells. The resultant protein-antibody complexes were visualized with FITC-labeled anti-rabbit IgG antibody. Shiratsuchi et al., “Phosphatidylserine-Mediated Phagocytosis of Influenza A Virus-Infected Cells by Mouse Peritoneal Macrophages,” J. Viral. 74(19):9240-9244 (2000).
Influenza virus was detected on tissue impression smears using unlabeled influenza A group-specific monoclonal antibody detected by an anti-mouse FITC secondary antibody. The method does not teach use of saponin, or propidium iodide. Selleck et al., “Rapid Diagnosis of Highly Pathogenic Avian Influenza Using Pancreatic Impression Smears,” Avian Diseases 47(s3):1190-1195 (2002).
C. Direct Fluorescent Assays (DFAs)
Direct immunofluorescence comprises the use of a labeled reactant (i.e., for example, an antibody) which both detects and indicates the presence of an unlabeled reactant (i.e., for example, an antigen, viral epitope, or cell epitope). In some cases, the label comprises a fluorescent molecule. In some cases, it is advantageous to use primary antibodies directly labeled with a fluorescent molecule. This direct labeling decreases the number of steps in the staining procedure and, more importantly, often avoids cross-reactivity and high background problems.
1. Non-Liquid Based DFA
Direct detection of viruses has been accomplished by using an immunofluorescence or enzyme-linked immunosorbent assay (ELISA). Direct-smear examinations by immuno-fluorescence are problematic due to low sensitivity and non-specific background staining. Alternatively, a shell vial centrifugation assay has been adapted for detection of the influenza viruses. Espy et al., “Rapid detection of influenza virus by shell vial assay with monoclonal antibodies” J. Clin. Microbiol. 24:677-679 (1986); and Stokes et al., “Rapid diagnosis of influenza A and B by 24-h fluorescent focus assay” J. Clin. Microbiol. 26:1263-1266 (1988).
Some cell culture based techniques to detect influenza A and influenza B viruses in clinical respiratory specimens use Madin-Darby canine kidney cells, which are very sensitive to infection with influenza virus. Such methods take at least a week of incubation to observe the development of cytopathic effects resulting from viral infection of the cell culture by the sample. Frank et al., “Comparison of different tissue cultures for isolation and quantitation of influenza and parainfluenza viruses” J. Clin. Microbiol. 10:32-36 (1979); and Meguro et al., “Canine kidney cell line for isolation of respiratory viruses” J. Clin. Microbiol. 9:175-179 (1979). Clinical specimen smears were also examined by using a direct immunofluorescence assay. These smears were subjected to several steps to prepare and dry the sample on a microscope slide before viewing on a microscope. Influenza was detected using FTIC-labeled antibodies along with counter staining with Evan's blue. This method is not enhanced by using sapogenin to improve the detectable signal or using a combination counterstain with propidium iodide. Mills et al., “Detection of Influenza Virus by Centrifugal Inoculation of MDCK Cells and Staining with Monoclonal Antibodies,”J. Clin. Microbiol. 27(11):2505-2508 (1989).
Currently, there are two (2) general methods (i.e., standard DFA and cytospin DFA) used for staining respiratory specimens directly using fluorescent labeled antibodies to detect the presence of respiratory viruses such as influenza A and B, respiratory syncytial virus, etc. These assay protocols are compared to one embodiment contemplated herein (i.e., for example, liquid DFA; LDFA) that is much faster. See, Table 1.
The current standard and cytospin DFAs require numerous and lengthy laboratory steps including, i) centrifugation to collect and concentrate the cells from the specimen (this step varies depending on the laboratory. It could range from 10 minutes to up to 30 minutes if multiple rinses are performed); ii) drying the deposited cells on the slide; iii) fixing the cells using a dehydration agent (i.e., for example, Acetone); iv) incubating the adhered, fixed cells with respective fluorescein isothiocyanate (FITC) labeled Ab's at 37° C.; and v) manipulating the labeled/fixed cells for microscope viewing and examination for the presence of fluorescent cells. One significant drawback of the current DFAs is that the microscope viewing and examination for fluorescently labeled cells is done manually (i.e., by visual inspection). Further, as a single fluorescent label is usually used for each antibody, a separate sample must be processed in series in order to detect the presence of each suspected virus.
Fixatives in the DFAs is usually a dehydration agent (i.e., for example, acetone) which immobilizes proteins, adheres cells to a glass slide and permeabilizes the cells for entry of MAb's to react with intracellular antigen. Staining agents in the DFAs are usually directly labeled FITC MAb's for the viral antigens in combination with a protein stain (i.e., for example, Evans Blue) for counter-staining the cells.
2. Liquid DFA (LDFA)
Currently available DFAs would require a different aliquot to detect and identify each virus (i.e., eight aliquots total) using the lengthy and laborious techniques described above. For example, non-liquid DFAs detection of eight (8) viruses requires thirty-seven (37) laboratory manipulations. In contrast, an LDFA embodiment contemplated by the present invention comprises only fourteen (14) laboratory manipulations using the serial analysis of three aliquots of a liquid sample. In one embodiment, the method further comprises a fourth aliquot of the liquid sample without any labeled monoclonal antibodies as a control.
Fluorescently labeled ligands (i.e., for example, small molecules, peptides) have been used in solution-based diagnostic assays by detecting antibodies by measuring changes in fluorescence polarization. A fluorescently labeled ligand will undergo an alteration in molecular spin rate, thereby changing its emission pattern when the ligand binds with a binding partner (i.e., for example, a labeled antigen binding with an antibody). For instance, the method may detect naturally produced antibodies in biological samples from patients that are infected with a microorganism (i.e., for example, bacteria or virus). Cullum et al., “Fluorescence Polarization Instruments and Methods For Detection of Exposure to Biological Materials By Fluorescence Polarization Immunoassay of Saliva, Oral or Bodily Fluids,” U.S. Pat. No. 7,408,640 (2008); and United States Patent Publication No. 2005/0095601 (both herein incorporated by reference).
Solutions of fluorescently labeled monoclonal antibodies have been stabilized with azo-compounds for use to identify Mycoplasma pneumoniae in an ELISA format. The infected cells were immobilized to a microwell plate before incubation with the antibodies. These methods do not depend upon improved cell permeability (i.e., for example, by addition of saponin) or counterstaining with propidium iodide, and does not contemplate detection of viruses (i.e., for example, influenza). Sawayanagi et al., “Stable Antibody Solution and Method For Preparing the Same,” U.S. Pat. No. 5,602,234 (1997) (herein incorporated by reference).
In one embodiment, the present invention contemplates a method to perform LDFA comprising incubating a liquid sample with a permeabilization agent and at least one cell stain. Although it is not necessary to understand the mechanism of an invention, it is believed that this is a distinct advantage over currently available non-liquid DFA's which perform the analogous steps of fixation and staining in two separate steps. In one embodiment, the permeabilization agent comprises acetone. In one embodiment, the cell stain comprises a specific protein stain (i.e., for example, Evans Blue) at approximately one-eighth the amount in currently available DFAs and a non-specific cell nuclei stain (i.e., for example, propidium iodide).
In one embodiment, the present invention contemplates a method to perform LDFA comprising preparing a liquid sample for examination in less than ten (10) minutes. In one embodiment, the method comprises incubating the liquid sample at room temperature with a permeabilization agent (i.e., for example, acetone) and at least one cell stain for approximately five (5) minutes. In one embodiment, the method comprises rinsing and centrifuging the permeabilized and stained liquid sample at room temperature for approximately two (2) minutes. The LDFA has significant advantages over currently known DFA assays by significantly improving the ability of a laboratory technician to quickly identify and enumerate virus-infected cells in a liquid specimen. See, Table 2.
No fixatives are necessary in LDFAs to adhere cells to a glass slide, but dehydration agents may be useful as a cell permeabilization agent. Further, a detergent (i.e., for example, saponin) may be used to optimally permeabilize the cells for entry of the MAb's to react with intracellular antigen. Staining agents in LDFAs are usually directly labeled fluorescent MAb's for a viral antigen in combination with a low concentration of Evans Blue (i.e., for example, to quench fluorescent background staining) and propidium iodide, a fluorescent nuclear stain, used to help identify what a cell is in relation to the fluorescence from FITC and/or PE with the nuclear stains in cells.
Such labeling has been observed to be proportional to the number of infected cells (i.e., for example, infected with influenza A) present in the test solution. See,
The present LDFA method was compared to conventional DFA methods demonstrating the specificity and selectivity of the LDFA versus a traditional DFA for: i) Influenza A (Flu A) MAb combination of clone 2H3C5 and clone A(6)B11; ii) influenza B (Flu B) MAb combination of clone 8C7E11 and clone 9B4D9; iii) respiratory virus (RSV) MAb combination of clone 3A4D9 and clone 4F9G; iv) metapneumovirus (MPV) MAb combination of clone #4, clone #23, and clone #28; v) adenovirus (ADV) MAb combination of clone 8H2C9, clone 2H10E2, and clone 4H6C9; vi) parainfluenza (PIV) virus 1 MAb combination of clone 1D8E10 and clone 9F61C9; vii) parainfluenza virus 2 MAb combination of clone 2E4D7 and clone 5E4E11; viii) parainfluenza virus 3 MAb combination of clone 4G5(1)E2H9 and clone 1F6C8; ix) pooled parainfluenza 1-3 MAbs as described above and x) combined mixture of i)-ix). Representative micrographs show MAb-positive signals for LDFA versus DFA results. See,
Studies have also demonstrated the specificity and selectivity of the LDFA versus a traditional DFA for: i) Influenza A (Flu A) MAb combination of clone 10B12C11 and clone A(6)B11 (
In one embodiment, the present invention contemplates a method to perform LDFA comprising a virus-specific antibody. In one embodiment, the antibody comprises a monoclonal antibody. In one embodiment, the virus-specific monoclonal antibody comprises a fluorescent label. In one embodiment, the fluorescently labeled monoclonal antibody comprises Flu A monoclonal antibody (i.e., for example, with a PE label). In one embodiment, the fluorescently labeled monoclonal antibody comprises Flu B monoclonal antibody (i.e., for example, with a FITC label). In one embodiment, the fluorescently labeled monoclonal antibody comprises a RSV monoclonal antibody (i.e., for example, with a PE label). In one embodiment, the fluorescently labeled monoclonal antibody comprises MPV monoclonal antibody (i.e., for example, with a FITC label). In one embodiment, the fluorescently labeled monoclonal antibody comprises a parainfluenza (i.e., for example, PIV-1, -2 and -3) monoclonal antibody (i.e., for example, with a PE label). In one embodiment, the fluorescently labeled monoclonal antibody comprises an adenovirus monoclonal antibody (i.e., for example, with a FITC label).
In one embodiment, the present invention contemplates a method to detect at least eight (8) and identify at least five (5) viruses comprising incubating a single liquid sample with at least one PE-labeled monoclonal antibody directed to a first virus and at least one FITC-labeled monoclonal antibody is directed to a second virus. In one embodiment, a first aliquot of the liquid sample comprises a PE-labeled Flu A monoclonal antibody and a FITC-labeled Flu B monoclonal antibody. In one embodiment, a second aliquot of the liquid sample comprises a PE-labeled RSV monoclonal antibody and a FITC-labeled MPV monoclonal antibody. In one embodiment, a third aliquot of the liquid sample comprises a PE-labeled PIV monoclonal antibody and a FITC-labeled adenovirus monoclonal antibody. The present method has considerable advantages over those DFAs currently available as this method can detect and identify at least eight (8) respiratory viruses using three (3) aliquots from a single biological sample.
a. Saponin Enhanced Methods
In one embodiment, the present invention contemplates a liquid direct fluorescence assay to detect virus that do not require incubation in either a fixative or a dehydration agent. These fixative and/or dehydration agents are required in DFAs because the virus-infected cells are adhered to a glass substrate to facilitate microscopic viewing and examination. In one embodiment, the present method comprises unfixed cells, wherein the liquid does not contain fixatives or non-aqueous solvents (i.e, for example, alcohols, acetone, aldehydes, toluene, etc.). In one embodiment, the invention contemplates a LDFA wherein cells are permeabilized with a detergent agent. In one embodiment, the detergent comprises saponin. Although it is not necessary to understand the mechanism of an invention, it is believed that a detergent agent provides improved cell permeability of fluorescently labeled antibodies in comparison to conventional fixatives and dehydration agents. It is further believed that this improved fluorescently labeled antibody permeability results in greater binding with viral antigens, thereby resulting in improved signal strength. It is further believed that the improved signal strength provides equivalent sensitivity and improved accuracy for the present LDFA versus currently available DFAs for virus detection and identification.
Saponins, including sapogenin, have been reported as a lipid-based detergent. Saponin has been suggested as being able to enhance the contrast of cells and sub-cellular morphology in histological slide preparations. Such histology preparations typically use dehydration solvents (i.e., for example, toluene) but may employ fluorescent labels. Sapogenin was not used to facilitate the detection of viruses (i.e., for example, influenza). Farrell et al., “Biological Sample Processing Composition and Method,” United States Patent Publication No. 2007/0172911 (herein incorporated by reference). Saponins have further been reported to permeabilize cell membranes. Saponin used in conjunction with Evan's blue and propidium iodide staining of influenza virus was not observed to detect the virus in a solution based assay. Johansen et al., “Compositions and Methods for Treatment of Viral Diseases,” United States Patent Publication No. 2008/0161324 (herein incorporated by reference).
Saponins have detergent-like properties and have been reported useful as foaming agents. Further, saponins may be used as immunological adjuvants for viral vaccines including influenza and, when fluorescently labeled, is capable of detecting cell surface markers. Marciani et al., “Triterpene Saponin Analogs Having Adjuvant and Immunostimulatory Activity,” U.S. Pat. No. 5,977,081 (1999); U.S. Pat. No. 6,262,029; and U.S. Pat. No. 6,080,725 (both herein incorporated by reference). Saponins may also be combined with nutraceuticals and/or pharmaceuticals. For example, saponins may suppress HIV replication. Dobbins et al., “Process For Isolating Saponins From Soybean-Derived Materials,” U.S. Pat. No. 6,355,816 (2002) (herein incorporated by reference).
In one embodiment, the present invention contemplates a method to perform a liquid direct fluorescent assay (LDFA) comprising sapogenin. Although it is not necessary to understand the mechanism of an invention, it is believed that sapogenin offers significant advantages over currently known DFA methods because the compound permeabilizes the cells instead of fixing the cells. It is further believed that permeabilization has the advantages of: i) treating the infected cells with a mild surfactant, thereby allowing the cells to maintain their three dimensional structure while being stained with a protein counterstain and labeled antibodies; ii) solubilizing the lipid portions of a cell membrane; and iii) allowing larger dye molecules and antibodies access to the cell's interior. In one embodiment, the present invention contemplates a method comprising LDFA, wherein sapogenein treatment improves virus detection and identification by decreasing background noise and improving antibody signal strength.
Fluorescence microscopy has allowed the examination of fluorescently stained specimens by visual inspection. However, automating fluorescently labeled cell counts in conjunction with total cell counts provides an opportunity for fast and reliable diagnostic information (i.e., for example, cytometers having internal algorithms). In one embodiment, the present invention contemplates a device that generates data that compare favorably with those from a conventional hema-cytometer, yet it eliminates the variability associated with subjective interpretation. In one embodiment, the device is capable of displaying test results in 5 minutes for 8 samples. In one embodiment, the device counts the total number of cells in a specimen, thus allowing calculation of cell viability.
In one embodiment, the device may be used together with a plurality of staining agents. In one embodiment, the staining agents provide for testing a wide variety of nucleated cell lines, including, but not limited to, mammalian cells, hybridomas and ficoll preparations. In one embodiment, the staining agents are detected by a fluorescent microscopy-based imaging system that streamlines cell counting procedures. For example, the staining agents may include, but are not limited to, a plurality of fluorescently labeled monoclonal antibodies and nucleic acid dyes. In one embodiment, the nucleic acid dyes include but are not limited to, propidium iodide, acridine orange, or ethidium bromide.
In one embodiment, the device comprises an epi-illumination microscope where a charged couple device collected emitted fluorescence that results from illumination by light emitting diodes. In one embodiment, the device comprises a sample drawer configured to accept a sample tray comprising a plurality of samples (i.e., for example, a multi-well sample slide). In one embodiment, the illumination is accomplished by high intensity mercury-arc or quartz-halogen light emitting diodes. Following illumination and collection of the fluorescence, the cell count is generated by image analysis using an internal algorithm. In one embodiment, the device visually displays test results on a touch screen. In one embodiment, the device is capable of exporting the test results to an independent storage device (i.e., for example, a computer).
In one embodiment, the device is compatible a method comprising: a) pipeting a sample into at least one microwell of a multiwell microscope slide; b) loading the slide onto a slide tray; and c) inserting the slide tray into the sample drawer of the device. (Bobcat I.) In one embodiment, the sample comprises a cell suspension and a plurality of staining reagents. Total cells (live and dead) may be counted by staining with, for example, by Thioflavin T, acridine orange, non-specific fluorescent dyes, or any particle attached to an antibody that is detectable by a microscope.
While the present invention contemplates that many different devices that would be compatible with the presently contemplated method, preferred specifications may include, but are not limited to: i) sample volume of approximately (40 uL) μl sample; ii) dynamic range: 5×104 to 1×107 cells/mL; iii) detectable cell diameter between approximately 8-40 microns; iv) calculation software that determines the labeled cell count, v) a microscope having, for example, a charge coupled device camera; vi) two light emitting diodes (LEDs) @ 470 & 530 nm respectively; vii) total analysis time in approximately 4 minutes per test; vi) processing of 72 images/test; viii) approximate dimensions: 37.5 H×25 D×30 W cm, ix) approximate weight: 18 kg (40 lbs); x) optimal operating temperature between approximately 10-35° C.; xi) optimal operating humidity between approximately 20-80% relative humidity; xii) optimal operating altitude of up to approximately 2,400 meters; and xiii) power requirements: 100-240 VAC, 50-60 Hz. See,
In one embodiment, the present invention contemplates a microscope slide comprising a plurality of sample wells (having a volume from about 200 μl to about 200 μl). In one embodiment, the microwell comprises an inlet port. In one embodiment, the microwell comprises an outlet port. In one embodiment, the microwell comprises an inlet port and an outlet port. In one embodiment, the microwell is covered by a coverslip. In one embodiment, the ports are compatible with a 10 μl to 200 μl pipet tip (Easy Count.). See,
In one embodiment, the first, second, third, and fourth aliquots are independently placed on a glass substrate. In one embodiment, the glass substrate comprises a plurality of sample wells (i.e., more than one sample wells, such as 2, 3, 4, 5, 6, etc.), such that each independent sample is placed within a separate microwell. In one embodiment, each microwell comprises a side inlet port and a side outlet port. In one embodiment, the microwell comprises a permanent cover.
In one embodiment, the present invention contemplates a device that is configured to capture specimen images, store the specimen images and distinguish between infected and non infected cells. In one embodiment, the device further provides an assessment of specimen adequacy (i.e., for example, a number of total cells). In one embodiment, the device further comprises at least one software image analysis algorithm that; i) captures specimen images; ii) stores the captured specimen images; and iii) distinguishes between infected and non-infected cells. In one embodiment, the device comprises dimensions of approximately 18″ (length)×18″ (height)×12″ (width) oriented as the long axis being horizontal. In one embodiment, the device comprises a weight of between 30 and 40 pounds. In one embodiment, the front of the device provides a user interface assembly (3), a power switch (8), and a slide door assembly (9) configured within a plastic front cover (6). A barcode scanner (5) may be set on top of the device and an isolation assembly (30) protects the device from vibration. See,
In one embodiment, the side of the device comprises a top cover chassis (4) attached to the plastic front cover (6). See
In one embodiment, the device comprises a plurality of components including, but not limited to, a camera and optics assembly (10), a motor controllers and connectors assembly, a user interface assembly (3), a slide door assembly (9), a slide transport assembly (13), a top cover chassis (4) and inner floor assembly (1), and/or an operating system assembly (45) (See,
1. Camera and Optics Train Assembly
In one embodiment, a camera and optics train assembly images and processes signals derived from fluorescence probes. In reference to
In one embodiment, the optics train assembly comprises an objective lens system (47), which comprises the filter wheel assembly (14), objective lens light/emitting diode assembly (15), charge coupled device camera (16), charge coupled device board (17), and optic path shroud (18), as discussed above.
In one embodiment, a camera and optics train assembly comprises an excitation light emitting diode (ELED) assembly (15). In one embodiment, the ELED assembly is configured to emit a light wavelength capable of providing fluorescence excitation for a plurality of fluors including, but not limited to, fluorescein (FITC), R-phycoerythrin (R-PE) and/or propidium iodide (PI).
In one embodiment, an ELED assembly comprises a green ELED with a wavelength of about 530 nm. Although it is not necessary to understand the mechanism of an invention, it is believed that the green ELED can excite both R-PE and PI with an appropriate band-pass filter that works with both the R-PE and PI emission filters. In one embodiment, the green ELED assembly further comprises a high brightness ELED, focusing lens, collimator, and first bandpass filter mounted to a heat sink housing.
In one embodiment, an ELED assembly comprises a blue ELED with a wavelength of about 470 nm. Although it is not necessary to understand the mechanism of an invention, it is believed that the blue ELED can excite FITC with an appropriate bandpass filter that works with the FITC emission filter. In one embodiment, the blue ELED assembly further comprises a high brightness ELED, focusing lens, collimator, and second bandpass filter mounted in a heat sink housing.
In one embodiment, a camera and optics train assembly comprises a reduced brightness auxiliary light emitting diode (RBALED.
In one embodiment, a camera and optics train assembly further comprises a plurality of software algorithms in operable connection with various hardware support modules for controlling the brightness of the ELEDs and the operation of the RBALEDs.
In one embodiment, a camera and optics train assembly comprises an objective lens assembly (15). In one embodiment, the objective lens assembly comprises an objective lens, an extension tube, a mirror, and an imaging lens (48) (such as a tube lens). Although it is not necessary to understand the mechanism of an invention, it is believed that the objective lens gathers light from a slide and focuses the light to produce an image (i.e., for example, a slide well image).
In one embodiment, an imaging lens (48) (
In one embodiment, an objective lens system comprises a magnification and a numerical aperture such that an object plane is magnified. In one embodiment, an image at the magnified object plan comprises a pixel having a diameter of at least 1.35 micron.
In one embodiment, a camera and optical train assembly comprises an extension tube. Although it is not necessary to understand the mechanism of an invention, it is believed that an extension tube keeps a camera at a set distance and maintains a dark optical path.
In one embodiment, a camera and optical train assembly comprises surface-to-surface part mating. Although it is not necessary to understand the mechanism of an invention, it is believed that surface-to-surface part mating protects the assembly components from contamination (i.e., for example, dust and debris).
In one embodiment, a camera and optical train assembly comprises at least one mirror. Although it is not necessary to understand the mechanism of an invention, it is believed that at least one of the mirrors is used to direct an image up to, and including, 90 degrees from the objective lens to the tube lens and/or camera.
In one embodiment, a camera and optical train assembly comprises at least one emission filter in operable combination with an ELED (i.e., for example, a green ELED and/or a blue ELED) and a bandpass filter including, but not limited to, a first bandpass filter or a second bandpass filter.
In one embodiment, a camera and optical train assembly comprises a filter wheel (14), wherein said wheel comprises a plurality of filters. In one embodiment, the filter wheel rotates in operable combination with the optical infinity space. In one embodiment, the filter wheel comprises at least four filter wheel positions including, but not limited to, a first filter wheel position, a second filter wheel position, a third filter wheel position, and an open hole filter wheel position. Although it is not necessary to understand the mechanism of an invention, it is believed that the at least three emission filter wheel positions will allows the camera (16) and optical train assembly to reliably differentiate between at least three fluors including, but not limited to, FITC, R-PE and PI. Other embodiments are contemplated such that additional filter wheel positions would result in the differentiation of additional fluors. In one embodiment, the filter wheel further comprises a Hall sensor. Although it is not necessary to understand the mechanism of an invention, it is believed that a Hall sensor is configured to sense the home position of the filter wheel. In one embodiment, the filter wheel further comprises a stepper motor. Although it is not necessary to understand the mechanism of an invention, it is believed that the stepper motor will spin the filter wheel to at least one pre-selected filter wheel position. In one embodiment, the pre-selected filter wheel position is automatically controlled by a user interface assembly (3).
In one embodiment, a camera and optical train assembly comprises a camera (16). In one embodiment, the camera comprises a charge coupled device (CCD) camera. In one embodiment, the CCD camera comprises a Kodak KAF-8300 CCD camera. In one embodiment, the CCD camera comprises an image sensor that is configured to capture a digital slide image. Although it is not necessary to understand the mechanism of an invention, it is believed that the KAF-8300 CCD camera comprises an image sensor having multiple advantages in comparison to other CCD cameras including, but not limited to, smaller size, improved pixel resolution, improved sensitivity, reduced signal-to-noise ratio and reduced cost. In one embodiment, the camera is configured in operable combination with a lens assembly comprising an image resolution of at least 10 micron (i.e., for example, the size of a biological cell nucleus). In one embodiment, the camera is configured in operable combination with a lens assembly providing a single image resolution comprising an entire slide well depth. In one embodiment, the camera further comprises an output signal for PWM brightness control of at least one ELED.
In one embodiment, a camera and optical train assembly comprises a high speed frame grabber software algorithm residing on a main system printed circuit board for transferring camera images to an image processor.
2. Motor Controllers and Connectors Assembly
In one embodiment, a device comprises a system motherboard. In reference to
3. User Interface Assembly
In reference to
In one embodiment, a user interface assembly (3) comprises an open frame color LCD panel (28) in operable combination with a touchscreen overlay. In one embodiment, the LCD panel is mounted on the front of the outer enclosure thereby allowing easy operator viewing and access. In one embodiment, the touchscreen comprises an analog resistive overlay. Although it is not necessary to understand the mechanism of an invention, it is believed that an analog resistive overlay is responsive to a gloved finger.
In one embodiment, a user interface assembly comprises an LCD controller printed circuit board and a touchscreen controller printed circuit board mounted behind an LCD panel.
4. Slide Carrier Assembly
In one embodiment, a slide carrier assembly (21) is configured to move a slide carrier. In reference to
Although it is not necessary to understand the mechanism of an invention, it is believed that when the slide carrier (21) is moved out of the device, the plurality of sample wells (37) can be loaded with liquid sample aliquots (i.e., for example, from about 20 μL to about 60 μl, and most preferably 40 μl). In one embodiment, a slide loading assembly comprises a Y-axis motor. Although it is not necessary to understand the mechanism of an invention, it is believed that the Y-axis motor may be used for slide positioning by pulling the slide into the device and/or by moving the slide back out of device.
In one embodiment, a slide loading assembly comprises a plurality of motor rails. In one embodiment, the plurality of motor rails are straight and parallel.
In one embodiment, a slide loading assembly comprises a slide door assembly (9). In one embodiment, the door is in a closed door configuration. In one embodiment, the door is in an open door configuration. In one embodiment, the door opens in a downward direction. In one embodiment, the door opens in an upwards direction. In one embodiment, the door is in operable combination a Y-axis motor such that the door automatically opens and/or closes in response to the Y-axis motor activation. In one embodiment, the closed door configuration minimizes light leakage into the slide imaging area.
5. Slide Stage Assembly
In reference to
In one embodiment, a slide transport assembly (13) is in operable combination with a plurality of motor controller printed circuit board assemblies (PCBAs), such as a system printed circuit board assembly (22) and an Image Processing Computer IPC printed circuit board assembly (23), such that at least one of the controller motors (46) (
In one embodiment, a slide stage assembly configures the slide up and down in a focal plane (i.e., for example, Z-axis motion). Although it is not necessary to understand the mechanism of an invention, it is believed that the Z-axis motion can provide enough slide travel sufficient for slide well focusing and/or to compensate for a slide that is less than 1 degree off normal to the optical axis.
In one embodiment, a slide stage assembly is engaged with the slide transport assembly for moving the slide tray into and/or out of a device (i.e., for example, Y-axis motion). Although it is not necessary to understand the mechanism of an invention, it is believed that Y-axis motion facilitates slide well loading/unloading and moving the slide well across the camera object plane for imaging an entire sample well (i.e., for example, both the well imagable portions and slide fiducial portions).
In one embodiment, a slide transport mechanism configures a slide tray to center one of a plurality of slide wells within a camera object plane (i.e, for example, X-axis motion). In one embodiment, an entire width of the slide well is within the object plane. Although it is not necessary to understand the mechanism of an invention, it is believed that X-axis motion facilitates imaging of an entire sample well (i.e., for example, a 20-μL sample well).
6. Enclosure & Chassis Assembly
In one embodiment, a top cover chassis (4) and inner floor assembly (1) comprises an outer enclosure (6) configured with an internal chassis. Although it is not necessary to understand the mechanism of an invention, it is believed that the enclosure and chassis assembly provides a device with structure, protection, inner environmental control and/or overall appearance.
In one embodiment, an enclosure and chassis assembly further comprises multiple sub-elements including, but not limited to, user interface sub-elements, visual indicator sub-elements, audio sub-elements, grounding sub-elements, ingress sub-elements, electromagnetic interference (EMI) shielding sub-elements, cooling sub-elements, shock sub-elements, and/or vibration management sub-elements.
In one embodiment, an enclosure and chassis assembly comprises a metal chassis mounted to a plurality of components and/or sub-elements. In one embodiment, the mounted component comprises motor controller printed circuit board assemblies (PCBAs), such as a system printed circuit board assembly (22) and an Image Processing Computer IPC printed circuit board assembly (23). In one embodiment, the mounted component comprises at least two computer module printed circuit boards. In one embodiment, the computer module printed circuit boards are mounted to the main system printed circuit boards. In one embodiment, the chassis comprises an off-the-shelf universal alternating (AC) to direct current (DC) power supply.
In one embodiment, an enclosure and chassis assembly comprises a plastic enclosure. In one embodiment, the plastic enclosure comprises at least three non-marking rubber feet to limit slipping and sliding on a work surface.
7. Operating System Assembly
In one embodiment, an operating system assembly (45) (
8. Unitized Microwell Slides
In one embodiment, the present invention contemplates a unitized microscope slide comprising a plurality of sample wells, wherein each said wells are configured to attach to a coverslip. In one embodiment, the sample well is circular. In one embodiment, the sample well is a trough. In one embodiment, the coverslip comprises at least one port. In one embodiment, the port is an air vent port. In one embodiment, the port is a sample fill port. In one embodiment, the coverslip comprises an air vent port and a sample fill port, wherein said air vent port and said sample fill port are on opposite sides of the coverslip. Although it is not necessary to understand the mechanism of an invention, it is believed that the length, width and depth of the troughs can be adjusted to accommodate specific, discrete and different volumes of liquid specimen. In one embodiment, the depth and location of the entry ports are configured, wherein sample cross-contamination between entry ports is prevented.
In one embodiment, the present invention contemplates a method for scanning a trough sample well, wherein a complete microscopic examination is completed during a single unidirectional scan. Although it is not necessary to understand the mechanism of an invention, it is believed that such single unidirectional scans are advantageous over other known methods that require scanning back and forth for multiple passes (i.e., for example, ˜nine (9) passes) over a circular well. It is further believed that because the present embodiments scanning in one direction (i.e., unidirectional) the amount of time needed to examine the complete specimen sample is decreased and adds assurance that the entire specimen sample is examined.
In one embodiment, the present invention contemplates a method for using an automated-algorithm-driven scanning microscope. In one embodiment, the microscope is configured with a multiple sample well slide. In one embodiment, the sample well slide comprises trough sample wells. In one embodiment, the method further comprises loading the entire sample well slide volume by a single pipet. In one embodiment, the pipet comprises a volume of 40 microliters (μL). In one embodiment, the scanning comprises a single pass over the trough well at a 4× magnification.
In one embodiment, the present invention contemplates a method for using a manual scanning microscope. In one embodiment, the microscope is configured with a multiple sample well slide. In one embodiment, the sample well slide comprises trough sample wells. In one embodiment, the method further comprises loading the entire sample well slide volume by a single pipet. In one embodiment, the pipet comprises a volume of 20 microliters (μL). In one embodiment, the manual scanning comprises two passes over the trough well at a 200× magnification.
In one embodiment, the present invention contemplates a method for making a unitized microscope slide, wherein a coverslip adheres to the slide. In one embodiment, the unitized microscope slide comprises a conventional glass microscope slide. In one embodiment, the coverslip comprises a conventional glass coverslip. In one embodiment, the sample wells and/or ports are formed by using a gasket material. In one embodiment, the gasket material comprises a double-sided-adhesive gasket (i.e., for example, 3M, Inc., Saint Paul, Minn.). In one embodiment, the gasket material comprises a hydrophobic ink mask.
In one embodiment, the unitized microscope slide comprises a plurality of sample wells. In one embodiment, the sample wells are circular, In one embodiment, the sample wells are trough-shaped.
As depicted in
As depicted in
As depicted in
As depicted in
In one embodiment, the present invention contemplates a method comprising: a) providing; i) a fluorescent cytometer compatible with a sample container comprising a plurality of samples; ii) a biological specimen comprising a plurality of cells; b) labeling the cells with a plurality of fluorescent dyes; c) placing the labeled cells within the sample container; and d) examining the sample container for fluorescence using the cytometer.
In one embodiment, the present invention contemplates a device comprising a microprocessor comprising an algorithm capable of differentiating between a plurality of fluorescent signals. In one embodiment, a first fluorescent signal comprises a PE signal. In one embodiment, the PE signal appears as a golden-yellow fluorescent stain. In one embodiment, a second fluorescent signal comprises an FITC signal. In one embodiment, the FITC signal appears as an apple-green fluorescent stain. In one embodiment, a third fluorescent signal comprises a propidium iodide signal. In one embodiment, the propidium iodide signal appears as a red fluorescent stain.
In one embodiment, the rinsed and centrifuged liquid sample is loaded onto a sample container comprising a glass substrate. In one embodiment, the glass substrate comprises a plurality of independent samples. In one embodiment, the glass substrate is compatible with a device comprising an algorithm capable of detecting and evaluating a plurality of fluorescent signals. In one embodiment, the device detects the signals from each independent sample.
Although there are many different methods of preparing and examining cells, the following protocol is described in detail as but one example that is compatible with the presently disclosed invention, and includes, for example, vortexing a swab of a test virus in saline and/or PBS. Briefly, the processing of the specimen for reading in the instrument is as follows. A nasopharangeal (NP) swab or aspirated NP specimen is placed in a transport medium (i.e., for example, phosphate buffered saline; PBS) and vortexed. An aliquot 100 μl) is transferred to 3 separate centrifuges tube to which are added, respectively, 3 drops of R-phycoerythrin and fluorescein-labeled, Flu A MAb and Flu B MAb, respectively and RSV MAb and MPV MAb respectively and a Parainfluenza MAb and Adenovirus MAb respectively and allowed to incubate at 35° to 37° C. for 5 minutes. Optionally, each of these MAb solutions also contains sapogenin as a cell permeabilization reagent, and propidium iodide to counterstain the nuclei of all the virus infected and uninfected NP cells. 1.5 ml of PBS is then added to each tube which is centrifuged and the supernatant of each (which contains the excess MAb, counterstain and permeabilization reagent) is decanted. Each cell pellet is resuspended in a minimal volume of PBS. 40 uL of each of the 3 suspensions are pipetted into each of 3 wells of a special slide in the order listed above; the 3 separate wells are covered by a coverslip and each well has a fill port on one end and an air vent on the opposite end. Each well has a capacity of about 45 uL. The slide containing the cell suspensions is inserted into a slide tray of the device which automatically moves the slide inside the instrument where its alignment and focus is first checked and then moved to successively position each well beneath a 4× objective. For example, the alignment may take approximately 45 sec. and each microwell may take approximately 75 seconds (i.e., a total of 4 minutes for three successive microwell reads). The instrument may contain at least 2 LED's. A first LED emits light at a wavelength to excite fluorescein. A second LED that emits light to excite the propidium iodide and R-phycoerythrin counterstain. There are narrow band wavelength filters interposed between the emitted light and the CCD. At each well, 8 frames are excited and imaged separately (first the fluorescein immediately followed by the R-phycoerythrin and then the propidium iodide) at both LED wavelengths which are captured by the CCD. The algorithm is then used to analyze the images, identifying specific virus-infected cells by virtue of size and the co-location of the fluorescein-labeled MAb or R-phycoerythrin MAb with propidium iodide and non-infected cells by virtue of size and propidium iodide stain. The algorithm provides the number of infected cells and total number of cells in the frames and wells examined. Upon completion of reading the 3 wells, the slide is ejected from the instrument, ready for the next specimen-containing slide.
In one embodiment, the present invention contemplates detecting and identifying a virus using mixtures of publicly available MAbs. In one embodiment, each virus may be detected using at least one labeled MAb. See Table 9.
In one embodiment, an influenza A reagent comprises at least one PE-labeled MAb selected from the group comprising clone 2H3C5 or clone A(6)B11. In one embodiment, an influenza B reagent comprises at least one FITC-labeled MAb selected from the group comprising clone 8C7E11 or clone 9B4D9. In one embodiment, a respiratory syncytial virus reagent comprises at least one PE-labeled MAb selected from the group comprising clone 3A4D9 or clone 4F9G3. In one embodiment, a metapneumovirus reagent comprises at least one FITC-labeled MAb selected from the group comprising clone #4, clone #23, or clone #28. In one embodiment, a parainfluenza 1 reagent comprises at least one PE-labeled MAb selected from the group comprising clone 1D8E10 or clone 9F61C9. In one embodiment, a parainfluenza 2 reagent comprises at least one PE-labeled MAb selected from the group comprising clone 4G5(1)E2H9 or clone 1F6C8. In one embodiment, a parainfluenza 3 reagent comprises at least one PE-labeled MAb selected from the group comprising clone 4G5(1)E2H9 or clone 1F6C8. In one embodiment, an adenovirus reagent comprises at least one FITC-labeled MAb selected from the group comprising clone 8H2C9, clone 2H10E2, or clone 4H6C9.
Although there are many different methods of detecting and identifying viral infected cells, the following protocol is described in detail as but one example that is compatible with the presently disclosed invention. In one embodiment, a specimen prepared as described above is aliquoted into three (3) independent wells on a glass substrate (i.e., for example, a microscope slice). In one embodiment, the method further comprises contacting an influenza A reagent and an influenza B reagent with the sample in a first well. In one embodiment, the method further comprises contacting a respiratory syncytial virus reagent and a metapnuemovirus reagent with the sample in a second well. In one embodiment, a third well comprises a parainfluenza 1 reagent, a parainfluenza 2 reagent, a parainfluenza 3 reagent and an adenovirus reagent. In one embodiment, the method further comprises detecting influenza A in the first well upon appearance of a golden-yellow fluorescent stain. In one embodiment, the method further comprises detecting the absence of influenza A in the first well upon appearance of only a red stain. In one embodiment, the method further comprises detecting influenza B in the first well upon appearance of an apple-green fluorescent stain. In one embodiment, the method further comprises detecting the absence of influenza B in the first well upon appearance of only a red stain. In one embodiment, the method further comprises detecting respiratory syncytial virus in the second well upon appearance of a golden-yellow fluorescent stain. In one embodiment, the method further comprises detecting the absence of respiratory syncytial virus in the second well upon appearance of only a red stain. In one embodiment, the method further comprises detecting metapneumovirus in the second well upon appearance of an apple-green fluorescent stain. In one embodiment, the method further comprises detecting the absence of metapneumovirus in the second well upon appearance of only a red stain. In one embodiment, the method further comprises detecting at least one parainfluenza virus in the third well upon appearance of a golden-yellow fluorescent stain. In one embodiment, the at least one parainfluenza virus is selected from the group comprising parainfluenza 1, parainfluenza 2, or parainfluenza 3. In one embodiment, the method further comprises detecting the absence of any parainfluenza virus in the third well upon appearance of only a red stain. In one embodiment, the method further comprises detecting an adenovirus in the third well upon appearance of an apple-green fluorescent stain. In one embodiment, the method further comprises detecting the absence of an adenovirus in the third well upon appearance of only a red stain.
The present invention provides isolated antibodies (i.e., for example, polyclonal or monoclonal). In one embodiment, the present invention provides monoclonal antibodies that specifically bind to viral epitopes comprised of at least five amino acid residues or lipid residue. These antibodies find use in the detection methods described above.
An antibody against a viral epitope of the present invention may be any monoclonal or polyclonal antibody, as long as it can recognize the epitope. Antibodies can be produced by using a protein of the present invention as the antigen according to a conventional antibody or antiserum preparation process.
The present invention contemplates the use of both monoclonal and polyclonal antibodies. Any suitable method may be used to generate the antibodies used in the methods and compositions of the present invention, including but not limited to, those disclosed herein. For example, for preparation of a monoclonal antibody, protein, as such, or together with a suitable carrier or diluent is administered to an animal (e.g., a mammal) under conditions that permit the production of antibodies. For enhancing the antibody production capability, complete or incomplete Freund's adjuvant may be administered. Normally, the protein is administered once every 2 weeks to 6 weeks, in total, about 2 times to about 10 times. Animals suitable for use in such methods include, but are not limited to, primates, rabbits, dogs, guinea pigs, mice, rats, sheep, goats, etc.
For preparing monoclonal antibody-producing cells, an individual animal whose antibody titer has been confirmed (e.g., a mouse) is selected, and 2 days to 5 days after the final immunization, its spleen or lymph node is harvested and antibody-producing cells contained therein are fused with myeloma cells to prepare the desired monoclonal antibody producer hybridoma. Measurement of the antibody titer in antiserum can be carried out, for example, by reacting the labeled protein, as described hereinafter and antiserum and then measuring the activity of the labeling agent bound to the antibody. The cell fusion can be carried out according to known methods, for example, the method described by Koehler and Milstein (Nature 256:495 [1975]). As a fusion promoter, for example, polyethylene glycol (PEG) or Sendai virus (HVJ), preferably PEG is used.
Various methods may be used for screening for a hybridoma producing the antibody (e.g., against a viral epitope of the present invention). For example, where a supernatant of the hybridoma is added to a solid phase (e.g., microplate) to which antibody is adsorbed directly or together with a carrier and then an anti-immunoglobulin antibody (if mouse cells are used in cell fusion, anti-mouse immunoglobulin antibody is used) or Protein A labeled with a radioactive substance or an enzyme is added to detect the monoclonal antibody against the protein bound to the solid phase. Alternately, a supernatant of the hybridoma is added to a solid phase to which an anti-immunoglobulin antibody or Protein A is adsorbed and then the protein labeled with a radioactive substance or an enzyme is added to detect the monoclonal antibody against the protein bound to the solid phase.
Selection of the monoclonal antibody can be carried out according to any known method or its modification. Normally, a medium for animal cells to which HAT (hypoxanthine, aminopterin, thymidine) are added is employed. Any selection and growth medium can be employed as long as the hybridoma can grow. For example, RPMI 1640 medium containing 1% to 20%, preferably 10% to 20% fetal bovine serum, GIT medium containing 1% to 10% fetal bovine serum, a serum free medium for cultivation of a hybridoma (SFM-101, Nissui Seiyaku) and the like can be used. Normally, the cultivation is carried out at 20° C. to 40° C., preferably 37° C. for about 5 days to 3 weeks, preferably 1 week to 2 weeks under about 5% CO2 gas. The antibody titer of the supernatant of a hybridoma culture can be measured according to the same manner as described above with respect to the antibody titer of the anti-protein in the antiserum.
Separation and purification of a monoclonal antibody (e.g., against a viral epitope of the present invention) can be carried out according to the same manner as those of conventional polyclonal antibodies such as separation and purification of immunoglobulins, for example, salting-out, alcoholic precipitation, isoelectric point precipitation, electrophoresis, adsorption and adsorption with ion exchangers (e.g., DEAE), ultracentrifugation, gel filtration, or a specific purification method wherein only an antibody is collected with an active adsorbent such as an antigen-binding solid phase, Protein A or Protein G and dissociating the binding to obtain the antibody.
Polyclonal antibodies may be prepared by any known method or modifications of these methods including obtaining antibodies from patients. For example, a complex of an immunogen (an antigen against the protein) and a carrier protein is prepared and an animal is immunized by the complex according to the same manner as that described with respect to the above monoclonal antibody preparation. A material containing the antibody against is recovered from the immunized animal and the antibody is separated and purified.
As to the complex of the immunogen and the carrier protein to be used for immunization of an animal, any carrier protein and any mixing proportion of the carrier and a hapten can be employed as long as an antibody against the hapten, which is crosslinked on the carrier and used for immunization, is produced efficiently. For example, bovine serum albumin, bovine cycloglobulin, keyhole limpet hemocyanin, etc. may be coupled to a hapten in a weight ratio of about 0.1 parts to about 20 parts, preferably, about 1 part to about 5 parts per 1 part of the hapten.
In addition, various condensing agents can be used for coupling of a hapten and a carrier. For example, glutaraldehyde, carbodiimide, maleimide activated ester, activated ester reagents containing thiol group or dithiopyridyl group, and the like find use with the present invention. The condensation product as such or together with a suitable carrier or diluent is administered to a site of an animal that permits the antibody production. For enhancing the antibody production capability, complete or incomplete Freund's adjuvant may be administered. Normally, the protein is administered once every 2 weeks to 6 weeks, in total, about 3 times to about 10 times.
The polyclonal antibody is recovered from blood, ascites and the like, of an animal immunized by the above method. The antibody titer in the antiserum can be measured according to the same manner as that described above with respect to the supernatant of the hybridoma culture. Separation and purification of the antibody can be carried out according to the same separation and purification method of immunoglobulin as that described with respect to the above monoclonal antibody.
The protein used herein as the immunogen is not limited to any particular type of immunogen. For example, a protein expressed resulting from a virus infection (further including a gene having a nucleotide sequence partly altered) can be used as the immunogen. Further, fragments of the protein may be used. Fragments may be obtained by any methods including, but not limited to expressing a fragment of the gene, enzymatic processing of the protein, chemical synthesis, and the like.
The present invention may be practiced using any antibody. As described above, preferred antibodies comprise monoclonal antibodies that are produce from hybridoma cell cultures. In one embodiment, the present invention contemplates a hybridoma cell culture that produces a monoclonal antibody, wherein said monoclonal antibody has specific affinity for a viral antigen derived from a virus selected from the group including, but not limited to, influenza A, influenza B, adenovirus, parainfluenza 1, parainfluenza 2, parainfluenza 3, parainfluenza 4, respiratory syncytial virus, human metapneumovirus, varicella zoster virus, herpes simplex virus-1, herpes simplex virus-2, cytomegalovirus IE, coronavirus 229E, coronavirus 0C43, severe acute respiratory syndrome virus, coxsackie virus B3 VP1 Pan-EV, Poliovirus 1 VP1 Pan-EV, enterovirus 70 specific, enterovirus 71 specific, enterovirus 71/Coxsackie A16 bispecific, bocavirus, and human papilloma virus. In one embodiment, the present invention contemplates a hybridoma cell culture that produces a monoclonal antibody, wherein the monoclonal antibody has specific affinity for a bacterial antigen derived from a bacteria selected from the group including, but not limited to, chlamydia, methicillin resistant Staphylococcus aureus, Group A Streptococcus, and Group B Streptococcus. In one embodiment, the present invention contemplates a hybridoma cell culture that produces a monoclonal antibody, wherein the monoclonal antibody has specific affinity for a small organic molecule selected from the group including, but not limited to, nicotine or cotinine.
A. Influenza A/Respiratory Virus Monoclonal Antibodies
In one embodiment, the present invention contemplates a specific monoclonal antibody capable of qualitatively detecting and identifying influenza A viral antigens. In one embodiment, the present invention contemplates a specific monoclonal antibody capable of screening for viral antigens selected from the group comprising influenza B virus antigens, respiratory syncytial virus antigens, adenovirus antigens, and parainfluenza virus types 1, 2, and 3 antigens. In one embodiment, the detecting and/or screening comprises directly testing cells derived from respiratory biological specimens. In one embodiment, the detecting and/or screening comprises a method performed in a cell culture by immunofluorescence using the monoclonal antibodies (MAbs).
In one embodiment, the MAbs are provided in a kit comprising a plurality of viral antigen-specific murine MAbs. In one embodiment, MAbs for influenza A virus are directly labeled with R-phycoerythrin (i.e., for example, emitting a golden-yellow fluorescence). In one embodiment, MAbs for influenza B virus, respiratory syncytial virus, adenovirus, and parainfluenza virus types 1, 2, and 3, are directly labeled with fluorescein isothiocyanate (i.e., for example, emitting an apple-green fluorescence). Although it is not necessary to understand the mechanism of an invention, it is believed that these MAbs result in the qualitative and quantitative detection of these viruses.
In one embodiment, the present invention contemplates a method comprising isolating cells derived from a clinical and/or biological specimen, or from a cell culture. In one embodiment, the cells are processed, stained and labeled. In one embodiment, the labeling results in a golden-yellow fluorescence from an Influenza A virus infected cell. In one embodiment, the labeling results in an apple-green fluorescence from an influenza B virus, respiratory syncytial virus, adenovirus, or parainfluenza virus types (1-3) infected cell.
1. Hybridoma Development
In one embodiment, the present invention contemplates a composition comprising an MAb 2H3C5. In one embodiment, the composition may further comprise an MAb 10B12C11. In one embodiment, the composition may further comprise an MAb A(6)B11. In one embodiment, the MAbs may be produced in mammalian hybridomas including, but not limited to, murine hybridomas. See, Table 10.
1Target protein denaturation by the sample process for Western blotting precludes the target protein identification.
2Oklahoma City, OK.
aAs disclosed herein.
Although it is not necessary to understand the mechanism of an invention, it is believed that an MAbs having the highest antigen affinity would give the brightest fluorescent staining. In one embodiment, the present invention contemplates a method comprising screening MAb producing hybridomas with high affinity MAbs using indirect fluorescent assay (IFA) on infected cell cultures. For example, influenza A viruses were inoculated onto R-Mix®(Diagnostic Hybrids, Inc., Athens, Ohio) cell monolayers in 96-well plates and grown for 24 hours at 35° to 37° C. The cells were then fixed with acetone, washed and incubated at 35° to 37° C. with hybridoma cell supernatant for 30 minutes in a humidified incubator. The cells were again washed and then incubated at 35° to 37° C. in a humidified incubator with FITC-labeled goat anti-mouse antibody for 30 minutes. The resulting stains were used to choose the best clones to take forward to the next step in the development process (i.e., for example, small scale purification and direct labeling).
Hybridomas that were screened and selected in this manner resulted in the identification of specific isotypes. For example, one immunogen that was used for mouse immunization was influenza A antigen (Texas 1/77, H3N2), purified from a commercially available amniotic fluid (R02302; Biodesign). See, Table 11.
2. Monoclonal Antibody Purification
Hybridoma monoclonal antibodies as produced above were subsequently purified from cell culture supernatant by Protein G affinity using Fast Protein Liquid Chromatography (FPLC). MAb purity was checked by SDS-PAGE wherein an internal quality control standard ensured a minimum purity of at least 90%.
The resultant purified MAbs were further isolated on a 4%→20% gradient SDS-PAGE electropherogram gel under denaturing conditions.
The data show that the purity of each representative MAb exceeded the minimal quality control 90% purity requirement, wherein the purity for all the MAbs ranges between approximately 99.7 to 100%.
3. Monoclonal Antibody Binding Affinities
The relative affinities of MAbs for various viral antigens were determined by ELISA assay as follows:
4. Monoclonal Antibody Characterization
A variety of methods were used to characterize influenza A virus MAbs in the present invention. See, Table 13.
3Negative result due to the epitope specimen treatment denaturing effects
The data show that 2H3C5 and A(6)B11 were both capable of detecting influenza A.
a. Analytical Sensitivity
Analytical sensitivity of representative MAbs were evaluated using influenza A virus. For example, strain Victoria (H3N2; ATCC VR-822) was used. In this determination, two 96-well cell culture plates were inoculated with the influenza A virus diluted to a level of 1.0 50% Tissue Culture Infectious Dose (1.0 TCID50) per 0.2-mL inoculum. The plates were incubated at 35° to 37° C. for 24-hours and then stained. The assay was performed four times. An average of 35 positive wells (out of 96) detected with a combination of a MAb 2H3C5 and MAb A(6)B11. Likewise, an average of 35 positive wells (out of 96) was detected with a combination of MAb 10B12C11 and Mab A(6)B11. See, Table 14.
The data show that at 1.0 TCID50, both MAb combinations positively identified influenza A virus infected cells.
b. Detection Limits
The analytical detection limits were determined for each MAb combination. Using the 2H3C5/A(6)B11 MAb combination as an example, the assay conditions were similar to those described above, with results reported in a different manner (numbers of fluorescent cells per cell monolayer). For example, influenza A virus (Victoria) stock virus preparation was diluted to a value of 359 TCID50 per inoculum, and serial 2-fold dilutions were then made to a final calculated value of 0.7 TCID50. Each dilution of virus was inoculated into six confluent monolayers of R-Mix® cells in shell vials, centrifuged at 700×g for 60 minutes and incubated at 35° to 37° C. for 48 hours.
The 2H3C5/A(6)B11 MAb combination or the 10B12C11/A(6)B11 MAb combination was used to stain 3 shell vials of each viral dilution of a 96-well plate. The determinations were performed in triplicate and the number of positive cells per well was counted. Fluorescent cells were counted on each coverslip at the indicated virus dilutions.
The data show that both fluorescent antibody stain combinations performed to comparable limits, with a minimum viral dilution detected between 1.4 and 0.7 TCID50.
5. Performance of Viral Monoclonal Antibodies
In one embodiment, the present invention contemplates a viral monoclonal antibody labeled with a fluorescent moiety including, but not limited to, FITC or R-PE. In one embodiment, a fluorescein-labeled MAb exhibits a fluorescent apple-green color. In one embodiment, a phycoerythrin-labeled MAb exhibits a fluorescent golden-yellow color. Although it is not necessary to understand the mechanism of an invention, it is believed that when viewed through a microscope fitted with standard FITC filters; both fluorescent colors may be visualized using the same FITC-filter set on a fluorescence microscope.
In one embodiment, a first MAb having specificity for influenza A virus is labeled with R-PE (golden-yellow) and a second MAb having specificity for influenza B virus, respiratory syncytial virus, adenovirus, parainfluenza viruses types 1, 2, and 3 is labeled with FITC (apple-green). In one embodiment, the present invention contemplates a first DFA kit capable of differentiating between influenza A virus and respiratory virus, wherein cells infected by the influenza A virus stain golden-yellow.
6. Cross Reactivity Testing
The 2H3C5/A(6)B11MAb combination was evaluated for cross reactivity against a number of microorganisms (i.e., for example, viruses and/or bacteria) that could be encountered during testing for respiratory viruses either as an infectious organism or a contaminant.
Stringent conditions for cross-reactivity testing were achieved by using a high concentration of MAbs and high titers of microorganisms. Depending on the particular virus, 71-1,400 TCID50 per inoculum were used for testing. Bacteria at Colony Forming Units (CFUs) ranging from 6.4×104 to 2.93×107/10 μL were tested.
Conjugated MAbs were used at a higher concentration (i.e., for example, 1.5×) than used in clinical testing regimens, but were low enough to be able to distinguish “signal” from the general background. With the 1.5× concentration, the specific infected targets exhibited equally “bright” targets as the 1× concentration (i.e., for example, there was no quenching observed at higher concentrations) although there was some background nonspecific “glow”.
Some microorganisms were commercially purchased, e.g., American Type Culture Collection. Sixty-six (66) virus strains, 17 host culture cell types, 25 bacteria, three bacterial Chlamydia sp., one yeast and one protozoa cultures were examined for specificity and cross-reactivity, including Staphylococcus aureus (Cowan strain), a known protein A producing bacterium. These microorganisms were cultured in accordance with the recommended protocols, and frozen stocks were prepared.
Amounts of microorganisms were selected in order to ensure that a fluorescence signal would be easily detected by examination using a fluorescence microscope. Depending on the particular virus, 71-1,400 TCID50 viral inoculum was inoculated into shell vial or multi-well plate cell cultures and incubated for 24 to 48 hours, to yield a 1+ to 3+ cytopathic effect (CPE), processed and stained with the 1.5× test reagent. Stained cells were examined at 200× magnification. Bacteria were cultured, processed as suspensions, then spotted on microscope slides at CFUs ranging from 6.4×104 to 2.93×107/well in a 10 μL dot and then stained with the 1.5× MAbs preparation. Stained slides were examined at 400× magnification. Some microorganisms were procured from an external source as prepared microscope slides, intended to be used as positive controls for assays. Cell cultures were tested as intact monolayers or acetone-fixed cell spots. Cell lines tested were those normally used to recover respiratory viruses.
For each of the virus strains tested, there was no cross reactivity observed with the subject reagent. Each of the DFA reagent positive controls, showed bright fluorescence indicating a positive result while the test reagents showed only the red Evans Blue counterstain with no visible fluorescence. None of the uninfected cell culture lines show any fluorescence or significant background staining. Results of the 2H3C5/A(6)B11MAb combination for viral cross-reactivity testing are summarized. Table 16.
Acholeplasma laidlawi
Acinetobacter calcoaceticus
Bordetella bronchiseptica
Bordetella pertussis
Corynebacterium diphtheriae
Escherichia coli
Gardnerella vaginalis
Haemophilis influenzae type A
Klebsiella pneumoniae
Legionella pneumophila
Moraxella cartarrhalis
Mycoplasma hominis
Mycoplasma orale
Mycoplasma pneumoniae
Mycoplasma salivarium
Neisseria gonorrhoeae
Proteus mirabilis
Pseudomonas aeruginosa
Salmonella enteriditis
Salmonella typhimurium
Staphylococcus aureus
Streptococcus agalactiae
Streptococcus pneumoniae
Streptococcus pyogenes
Ureaplasma urealyticum
Chlamydia sp.
Chlamydophila pneumoniae
Chlamydia sp.
Chlamydophila psittaci
Chlamydia sp.
Chlamydia trachomatis
Candida glabrata
Trichomonas vaginalis
The 2H3C5/A(6)B11 MAb combination was found to be reactive with viral target-specific infected cells. Reactivity with Staphylococcus aureus is most probably due to specific binding of the MAbs by the Protein A produced by Staphylococcus aureus. No reactivity was noted for all other microorganisms tested or for uninfected cells, as evidenced by no positive fluorescent cells or elevated background fluorescence.
Staining of Staphylococcus aureus appear as small points of fluorescence while all other cultures were negative. Although it is not necessary to understand the mechanism of an invention, it is believed that Protein A produced by S. aureus may bind the Fc portion of some fluorescein-labeled monoclonal antibodies. It is further believed that such binding can be distinguished from viral antigen binding on the basis of morphology (i.e. for example, S. aureus-bound fluorescence appears as small (˜1 micron diameter), bright dots). Consequently, false positives may be present in cell cultures with bacterial contamination.
The plates inoculated for the bacteria CFU confirmation yielded the following results. The information is presented as CFU per mL and 0.01-mL is used to dot each slide well that the reagent is tested. The results for the commercially tested slides as well as the mycoplasma testing is listed and summarized. Table 17.
Bordetella bronchiseptica
Bordetella pertussis
Legionella pneumophila
Corynebacterium diphtheriae
Klebsiella pneumoniae
Streptococcus agalactiae
Haemophilis influenzae type A
Pseudomonas aeruginosa
Streptococcus pneumoniae
Streptococcus pyogenes
Moraxella cartarrhalis
Staphylococcus aureus
Neisseria gonorrhoeae
Proteus mirabilis
Acinetobacter calcoaceticus
Escherichia coli
Gardnerella vaginalis
Salmonella enteriditis
Salmonella typhimurium
Candida glabrata
Mycoplasma hominis
Mycoplasma orale
Mycoplasma pneumoniae
Mycoplasma salivarium
Ureaplasma urealyticum
Acholeplasma laidlawii
Chlamydia trachomatis
Chlamydia psittaci
Trichomonas vaginalis
Chlamydia pneumoniae
For each of the bacteria tested, there was no fluorescence observed at 200 or 400× magnification with the subject reagent. The Staphylococcus aureus exhibits some slight fluorescence but that is expected due to Protein A binding of the MAb.
7. Stability Studies
The shelf life of the 2H3C5/A(6)B11MAb combination has been established as at least 12 months. Stability studies are conducted by storing the MAb combination at a temperature ranging between approximately 2° to 8° C. Various virus-infected R-Mix® cells cultured with human respiratory viruses: Table 18.
Performance testing occurred at various time intervals during storage wherein characteristics were monitored including, but not limited to, performance, pH, color, and clarity. Each assay was run with dilution series of each of the MAb Conjugates at “neat” and a 1/16 dilution, then 1/2 dilutions to as far as 1/256. Acceptance criterion is “bright fluorescence” observed in fixed, stained, infected cells using at least a 1/16 dilution. See, Table 19.
Duplicate R-Mix® sv/cs cell culture monolayers were inoculated with as series of four (4) 10-fold serial dilutions (i.e., designated as samples: 4+, 3+, 2+, and 1+) of either influenza A virus (A/H3N2) or Herpes simplex virus (HSV-1) and compared to a negative control (NC). The infected cultures were cultivated on coverslips within shell vials to allow virus replication for approximately twenty-two (22) hours.
The culture medium was aspirated from the 4+, 1+, and NC shell vials for each virus set. Phosphate buffered saline (PBS; 200 μl) were then added to each shell vial; and the monolayer was scraped off of the coverslip and transferred to a labeled 1.5 ml Eppendorf centrifuge tube Acetone (100%; 800 μl) was added to each centrifuge tube to bring the final volume to 1 ml to create an 80% acetone/cell suspension solution This solution was incubated at room temperature for approximately 10 minutes to permeabilize the cells.
The permeabilized cells were then harvested and centrifuged in a Carl's microtube centrifuge for 6 min @ 4000 rpm. Each tube was then aspirated to remove all liquid. Fluorescently labeled Flu A MAb or fluorescently labeled HSV-1 MAb (200ul) was added to the appropriate tubes. Each cell pellet was then re-suspended in the MAb solution and incubated at 35-37° C. for 1 hour.
Subsequent to the MAb incubation, the tubes were placed back in the micro-centrifuge for 6 min @ 4000 rpm. Each tube was then aspirated to remove the MAb solution and the cells were resuspended in PBS (20 μl). An aliquot (10 μl) of each cell suspension was placed onto respective slides and then viewed on a widepass band FITC filter (100× magnification).
Nasal discharge specimens were collected from patients. An aliquot of each specimen was placed in an A/B tube; R/M tube; or a P/Ad tube (A—influenza A; B—influenza B; R—respiratory virus; M—metapneumovirus; P—parainfluenza virus; Ad—adenovirus).
The following is a listing of the materials, with lot numbers, used in the described the cross-reactivity studies presented herein in accordance with Examples IV and V.
Trichomonas vaginalis slide
Chlamydia psittaci slide
Chlamydia pneumoniae slide
Chlamydia trachomatis slide
Gardnerella vaginalis
Salmonella minnesota (enteriditis)
Neisseria gonorrhoeae
Salmonella typhimurium
Acinetobacter calcoaceticus
Candida glabrata
Escherichia coli
Proteus mirabilis
Streptococcus agalactiae
Staphylococcus aureus
A. Respiratory Viruses
1. Preparation of Frozen Stocks:
a. Influenza A and B
Amplify Influenza in MDCK T-75 cm2 flasks from the original ATCC cultures as follows:
b. Respiratory Syncytial Virus (RSV), and Parainfluenza 1, 2, and 4
Amplify RSV in HEp-2 T-75 cm2 flasks from the original ATCC cultures as follows:
c. Adenovirus
Amplify Adenovirus in A549 T-75 cm2 flasks from the original ATCC cultures as follows:
2. Determination of Respiratory Virus Concentrations
After the respiratory virus stocks are frozen, they are quantified (titered) on R-Mix cell cultures. Each virus is titered using the following method:
These stocks may be cultured and sub-cultured on a routine basis.
Example: 250 fluorescent foci counted at a 1:10,000 dilution in a 1 mL inoculum would yield (250 foci with a 1 mL inoculum×10,000=2.5e6 virus/mL). This is converted to TCID50 by dividing the foci per mL by 0.7 as stated by the ATCC. atcc.org/common/technicalInfo/faqAnimalVirology.cfm
3. Cross-Reactivity Testing
The R-Mix cell line containing both Mv1 Lu and A549 cells is used for virus isolation staining of Influenza A, Influenza B, RSV, Parainfluenza Virus Types 1, 2, 3, 4a, 4b, and Adenovirus. Monolayers in 96-well micro-titer plates are used and processed according to the following procedure:
B. Herpes Simplex Virus (HSV) 1 and 2 and Cytomegalovirus (CMV)
1. Preparation of Frozen Stocks:
Amplify HSV and CMV in MRC-5 T-75 cm2 flasks from the original ATCC cultures as follows:
For HSV Only:
For CMV Only:
2. Determination of HSV/CMV Concentrations
The stocks are titered by the following procedure:
These stocks may be cultured and sub-cultured on a routine basis.
Example: 250 fluorescent foci counted at a 1:10,000 dilution in a 1 mL inoculum would yield (250 foci with a 1 mL inoculum×10,000=2.5e6 virus/mL). This is converted to TCID50 by dividing the foci per mL by 0.7 as stated by the ATCC. atce.org/common/technicalInfo/faqAnimalVirology.cfm
3. Cross-Reactivity Testing
For the cross-reactivity studies, HSV and CMV strains are inoculated into H&V Mix (MRC-5+CV1 mix) shell vial cultures:
C. Varicella-Zoster Virus (VZV)
1. Preparation of Frozen Stocks:
Amplify VZV in a CV-1′-75 cm2 flask from the original ATCC culture as follows:
2. Determination of VZV Concentrations
The stocks are titered in the following manner on MRC-5 monolayers:
These stocks may be used and sub-cultured on a routine basis.
Example: 250 fluorescent foci counted at a 1:10,000 dilution in a 1-mL inoculum would yield (250 foci with a 1-mL inoculum×10,000=2.5e6 virus/mL). This is converted to TCID50 by dividing the foci per mL by 0.7 as stated by the ATCC. atcc.org/common/technicalInfo/faqAnimalVirology.cfm
3. Cross-Reactivity Testing:
For cross-reactivity studies, the VZV strains are inoculated into H&V Mix (MRC-5+CV-1 mix) shell vial cultures:
D. Rhinovirus 39
1. Preparation of Frozen Stocks:
Amplify Rhinovirus in a MRC-5 T-75 cm2 flask from the original ATCC culture as follows:
2. Determination of Rhinovirus Concentrations:
The stocks are titered in the following manner on MRC-5 monolayers:
These stocks may be cultured and sub-cultured on a routine basis.
3. Cross Reactivity Testing:
For cross reactivity studies, the Rhinovirus is inoculated in to MRC-5 cell cultures:
E. Coronaviruses
1. Preparation of Frozen Stocks:
Amplify Coronaviruses in MRC-5 T-75 cm2 flasks from the original ATCC cultures as follows:
Rock the flask every 10 to 15 minutes.
2. Determination of Coronavirus Concentrations:
The Coronavirus stocks are titered in the following manner on MRC-5 monolayers:
These stocks may be cultured and subcultured on a routine basis.
Example: 250 fluorescent foci counted at a 1:10,000 dilution in a 1-mL inoculum would yield (250 foci with a 1-mL inoculum×10,000=2.5e6 virus/mL). This is converted to TCID50 by dividing the foci per mL by 0.7 as stated by the ATCC. atcc.org/common/technicalInfo/faqAnimalVirology.cfm
3. Cross Reactivity Testing
For cross reactivity studies, the Coronaviruses are inoculated in to MRC-5 cell cultures:
F. Metapneumovirus
1. Preparation of Frozen Stocks
Amplify Metapneumovirus (MPV) subgroups in LLC-MK2 T-75 cm2 flasks from stocks obtained from the University of Pavia, Italy:
2. Determination of Metapneumovirus Concentrations
These stocks may be cultured and subcultured on a routine basis.
Example: 250 fluorescent foci counted at a 1:10,000 dilution in a 1-mL inoculum would yield (250 foci with a 1-mL inoculum×10,000=2.5e6 virus/mL). This is converted to TCID50 by dividing the foci per mL by 0.7 as stated by the ATCC. atcc.org/common/technicalInfo/faqAnimalVirology.cfm
3. Cross Reactivity Testing:
For cross reactivity studies, the MPV subgroups are inoculated in to R-Mix cell cultures:
G. Echovirus, Coxsackie Virus, Measles, and Mumps
The following control slides were purchased from Bion Enterprises for the purpose of MAb screening and cross-reactivity studies. Each slide is individually foil-wrapped with wells containing microorganisms of tissue culture cells infected with a specific viral agent in addition to wells containing only the uninfected tissue culture cells. The infected tissue culture cells serve as a positive control and the uninfected tissue culture cells serve as a negative control. The specific microbial antigen is identified on the product label.
The Echovirus Panel (catalog number QEC-6506) contains six wells, each containing a mix of infected and uninfected cells. Each slide is comprised separately of Echovirus types 4, 6, 9, 11, 30, and 34.
The Coxsackie Virus Panel (catalog number QCB-2506) contains six wells, each containing a mix of infected and uninfected cells. Each slide is comprised separately of Coxsackie Virus types B1, B2, B3, B4, B5, and B6.
The Mumps Antigen Control Slides (catalog number QMU-8002) contain one well of Mumps infected cells and one well of uninfected cells.
The Measles Antigen Control Slides (catalog number QME-0424) contain one well of Measles infected cells and one well of uninfected cells.
The procedure for testing and staining of the antigen control slides is:
H. Uninfected Cell Cultures
Uninfected cell cultures in shell vial format and glass, round-bottom tubes are tested for cross reactivity by the following procedures. Table 20.
1. Shell Vial Procedure
2. Glass Round-Bottom Tube Procedure:
A. Mycoplasma sp., Ureaplasma sp., and Acholeplasma laidlawii
1. Preparation of Frozen Stocks:
2. Cross-Reactivity Testing:
Each bacterium is grown for cross-reactivity studies, prepared on slides, and concentrations concurrently verified using the following procedure:
Each 8-well slide is stained with the subject reagent by the following procedure:
1. Preparation of Frozen Stocks:
Stocks of each were obtained from the ATCC and grown on the appropriate agar listed below:
These microorganisms are grown using the following procedure:
2. Cross-Reactivity Testing
Each bacterium is grown for cross-reactivity studies, prepared on slides, and concentrations concurrently verified using the following procedure:
Each 8-well slide is stained with the CMV MAb test reagent by the following procedure:
1. Preparation of Frozen Stocks:
Lyophilized discs of each were obtained from Hardy Diagnostics and grown on the appropriate agar:
These microorganisms were reconstituted and grown in the following manner:
2. Cross-Reactivity Testing
Each bacterium is grown for cross-reactivity studies, prepared on slides, and concentrations concurrently verified using the following procedure:
Each 8-well slide is stained with the CMV MAb test reagent by the following:
D. Trichomonas vaginalis, Chlamydia psittaci, Chlamydia trachomatis:
These microorganisms are fixed antigen control slides. The Trichomonas. vaginalis (catalog number 5073-5) and Chlamydia pneumoniae Control Slides (catalog number CP-4212) were obtained from Chemicon/Light Diagnostics.
Each slide is stained with the CMV MAb test reagent by the following procedure:
Each and every publication and patent mentioned in the above specification is herein incorporated by reference in its entirety for all purposes. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art and in fields related thereto are intended to be within the scope of the following claims.
This application claims priority to co-pending U.S. patent application Ser. No. 12/425,256, filed Apr. 16, 2009, which is a continuation-in-part of, and claims priority to, PCT application No. PCT/US08/60489, filed Apr. 16, 2008, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 60/923,698, filed Apr. 16, 2007, now abandoned, each of which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60923698 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12425256 | Apr 2009 | US |
Child | 13167223 | US | |
Parent | PCT/US08/60489 | Apr 2008 | US |
Child | 12425256 | US |