Prior art surgical lighting techniques, including applications of light sources in ophthalmology surgery, have utilized tungsten halogen, metal halide, xenon arc, etc. Such surgical lighting techniques can present a number of limitations. For example, halogen bulbs suffer from relatively low efficiency, poor reliability, considerable generation of heat, and a relatively short lifetime.
Moreover, because of packaging limitations, the light for such prior art lighting has typically required use of fiber optics for delivery from the peripheral illumination source to the inside of the eye, considerable resultant light loss. Such packaging limitations have also contributed to bulky, expensive, and inconvenient lighting, that has often exhibited poor robustness, e.g., has been susceptible to system vibrations, dirt, and moisture.
What is desirable, therefore, are surgical lighting techniques that address the noted limitations of prior art surgical lighting techniques. What is further desirable are surgical lighting techniques that can be utilized for surgeries on the eye and related physical structures.
Embodiments and aspects of the present disclosure address limitations of the prior art by utilizing configurations of light sources in conjunction with a corresponding power supply, a handheld device, and fiber optics for delivery of light at desired wavelengths to a surgical site. Light Emitting Diodes (also known as “LED”s) can be used as light sources in exemplary embodiments. Embodiments of an illumination system according to the present disclosure can further include one or more lenses and/or filters for selecting one or more specific wavelengths or wavelength ranges from the optical output of the light source(s).
An aspect of the present disclosure is directed to an illumination system including a handheld, untethered, portable, and complete surgical intraocular illumination system utilizing one or more LEDs as light sources. Such systems can accordingly be disposable, low-cost, and energy efficient. By use of such systems, a surgeon can have direct control of turning the illuminator on and off and adjusting the intensity by way of a simple control ergonomically placed on the handpiece and/or voice activated control. The handheld system can be incorporated in an injection molded housing structure. An energy supply component/system, e.g., a battery, can be included to provide power to the illumination system. The system can include an electronic system that includes a microprocessor and related circuitry that generates current pulses for the LEDs. In addition, the circuitry can consists of a converter, e.g., a boost converter, to power the LEDs. A coupling can provided through a probe, e.g., an endo-probe, which can be coupled to the LED(s).
According to an embodiment of the present disclosure, an illumination system can include a host system and a portable handpiece communicating with the host system over a wired communication protocol. The host system can include a power source and a feedback controller. The portable handpiece an include an illumination system that emits light responsive to power received from the power source. The illumination system is preferably implemented via light emitting diodes (LEDs). The portable handpiece can also include a user input device for controlling intensity of light emitted by the illumination system. The user input device can transmit to the feedback controller a first signal based on a user-selected light intensity. The feedback controller can transmit in response to the first signal, a second signal to the power source for altering the power provided by the power source to the illumination system.
According to a further embodiment of the present disclosure, an illumination system can include a host system and a portable handpiece communicating with the host system over a wireless communication protocol. According to this embodiment, the host system can include a first transceiver adhering to a wireless communication protocol and a voice recognition system. The portable handpiece can include a second transceiver for wireless communication with the host system, a power source, a feedback controller, and an illumination system emitting light responsive to power received from the power source. A first user input device can control intensity of the light emitted by the illumination system. The first user input device transmits to the feedback controller a first signal based on a user-selected light intensity. The feedback controller transmits in response to the first signal, a second signal to the power source for altering the power provided by the power source to the illumination system. The handpiece can also include a second user input device for receiving voice data provided by the user. The voice data is wirelessly transmitted by the second transceiver to the first transceiver and processed by the voice recognition system for storing or generating an output in response.
According to further embodiments, the handheld illumination device may serve as potential light source for other illuminated instruments beside vitrectomy intraocular illumination, such as, for example, indirect opthalmoscope, direct opthalmoscope, slit lamp, and fundus camera, etc.
Other aspects, embodiments, and details of the of present disclosure will be apparent from the following description when read together with the accompanying drawings.
Aspects of the present disclosure may be more fully understood from the following description when read together with the accompanying drawings, which are to be regarded as illustrative in nature, and not as limiting. The drawings are not necessarily to scale, emphasis instead being placed on the principles of the disclosure. In the drawings:
It should be understood by one skilled in the art that the embodiments depicted in the drawings are illustrative and variations of those shown as well as other embodiments described herein may be envisioned and practiced within the scope of the disclosure.
Aspects and embodiments of the present disclosure are directed to and can provide illumination systems, and related techniques/methods, utilizing a handheld surgical, e.g., intraocular, illumination system with one or more light sources. Such handheld illumination systems can be portable and/or include portable components. Exemplary embodiments according to the present disclosure provide light sources including one or more light emitting diodes (also known as LED's).
Such handheld systems may be used as or included with an endo-probe, useful for surgical procedures including those performed on the eye. Such systems can include feedback functionality allowing a surgeon/operator to adjust light output, and may be disposable, low-cost, and energy efficient. By use of such systems, a surgeon can have direct control of turning an illuminator of the system on and off and adjusting the light intensity by way of a simple control ergonomically placed on the handpiece and/or voice activated control.
LED light sources used in/for embodiments of the present disclosure can provide various advantages. As they are based on electronic component design, LEDs are largely if not entirely immune from or resistant to system vibrations. LEDs can be protected from dirt and moisture, facilitating useful lifetimes that can increase to or approach thousands of hours, which is much higher than a non-LED light source. Further, LED-based light sources can operate at lower temperatures, and therefore have lower heat dissipation requirement, thereby eliminating complex heat sink systems commonly used for prior art lighting techniques. Cost of a single LED system is exponentially less expensive than a stand light source system because of the simple packaging. Additionally, LEDs are available in multiple colors/including high output efficiency.
LED-based systems according to the present disclosure can offer improved surgeon controlled surgical instruments that can provide lighting that is either automatically or manually controlled. Such lighting can also offer improved contrast ratio by wavelength selection. An input signal can be pulsed so as to allow spectral selectivity in an LED; chandelier lighting can be provided. Further, techniques/systems according to the present disclosure can allow the use of reflectance spectroscopy inside the eye. Improved light control may be provided during the air/fluid interface during surgical procedures, e.g., by utilizing a capacitance switch; one or more coatings (e.g., electrical contact) of the top of a cannula used for surgery; a pressure sensor; and/or temperature sensor based feedback.
Disposable systems according to the present disclosure can allow for (e.g., potentially unlimited) redundancy. For example, if one unit fails can open up another. Simple and smaller packaging allows the main vitrectomy control unit to be free of supporting a light source. This can allow flexibility in the design of future vitrectomy control units. Potentially allow clinic based surgery (surgery outside of the conventional operating room).
Handheld systems according to the present disclosure can include four primary components, as is described in greater detail below, including specifically selected/configured light sources. In addition to lights sources, various individual components/features useful for exemplary embodiments of the present disclosure can include a coupling system that can include one or more lens and filter configurations, and can allow a physician to select the wavelength of the light. Embodiments can also employ a fiber/coupling interface. The fiber/coupling interface can be configured so that the selected light is collimated/converged using a coupling system and then transmitted to (interfaced with) one or more optical fibers for improved coupling efficiency. A fiber output state/stage can also be used and can include one or more (possibly specialty) fibers for selective outputs. The fiber(s) can also be used as filters by using thin film deposited fibers.
Four primary components of the handheld system 100 can be incorporated in an injection molded housing structure, in exemplary embodiments. The energy supply component can be a DC source (e.g., a battery or rectified AC source) or a AC source and powers an electronic system. The electronic system, in turn, can consist of the microprocessor circuitry, which can be operational to provide a signal (e.g., current pulse) to the next component in the optical system, e.g., one or more light sources such as LEDs. In addition, the circuitry can include a converter/regulator, e.g., a boost converter. For battery-powered embodiments, a converter can be operable to step up the battery voltage to that required for light source(s), e.g., one or more LED sources.
The light source(s), e.g., one or more LEDs 102, can be run or operated on a suitable power supply, e.g., a current drive related to the discharge current of the battery. This allows a light source, e.g., and LED, to operate on an AC drive (e.g., from a wall plug) at a fixed/varied frequency. The coupling can be provided through the endo-probe component. As the system runs on pulse signal (e.g., a rectified AC signal) the power dissipated by the LED is a fraction of the steady state condition, allowing the temperature rise in the handle to be minimal. The parameters of the pulse signal (example: duty cycle etc.) can be changed in the design to achieve lower temperature dissipation. The intensity can be variable, which can allow a surgeon to control the optical output characteristics, e.g., during surgical procedures.
Continuing with the description of
When LED 200 is stimulated electrically as by a current (depicted by arrows) produced in response to an applied voltage 206, electrons and hole carriers in the p-n junction (depicted by elliptical region with opposed arrows) recombine, emitting photons as an incoherent narrow spectrum of light 208. This phenomenon is termed electroluminescence, where the color (UV, Visible, IR) of light depends on the type of the semiconductor material(s) used for the p-doped region 202 and n-doped region. Typically, the voltage applied to a LED is about 2.5V to about 4.0V, depending on the material(s) present.
As shown in
According to exemplary embodiments of the preset disclosure, a novel optical handheld ophthalmic surgical instrument design for high efficiency illumination may be implemented as a wired illumination system or a wireless illumination system.
The host system 502 can include a power supply, e.g., current/voltage source 506, that is operable to maintain and/or supply a required power to the handheld device, e.g., endoscope. Host system 502 can include a feedback control system 508. In
The handheld illumination system 503 can include one or more light sources 510, which are preferably (though not necessarily) LEDs. Handheld illumination system 593 can include a coupling system 512. Fiber coupling system 512 can include suitable or desired lens and/or filter configurations and can allow a system operator (e.g., a physician) to select the wavelength of the light produced.
Handheld system 503 can further include a fiber/coupling interface 514. The fiber/coupling interface 514 can connect the coupling system 512 to the fiber output stage 516 and can be configured and arranged such that the selected light is collimated/converged using, e.g., an optical coupling system/assembly, and then interfaced with an optical fiber for improved coupling efficiency. A fiber output stage 516 can receive the light from the coupling system 512 and/or fiber/coupling interface 514 and can include one or more desired, e.g., specialty fibers, for selective outputs. The fiber(s) can also be used as filters by using thin film deposited fibers.
As shown, handheld system 503 can include a feedback triggering mechanism 520, e.g., button, switch, voice activated control, and the like. The feedback mechanism 520, e.g., button, can facilitate an operator's (e.g., a surgeon's) control of the light intensity at the output of the illuminated surgical instrument. For example, a surgeon could press button 520, in which event a signal would correspondingly be transmitted through a wire (wired connection indicated) to the feedback controller/control system 508. The feedback system 508 would then send a signal to the voltage/current source 506 leading so as to alter the power supplied to the light source(s), e.g., LED source system 510, to alter light output characteristic(s) such as intensity.
This feedback from the operator can allow or facilitate real time analysis and control and better viewing especially during an air fluid exchange during an operation. For further example, such feedback can be controlled such that the optical light intensity decreases/increases in and out of the eye chamber during a surgical procedure. A person of skill in the art should recognize that the input device used for the feedback may take any form known in the art, and is not limited to only buttons. For example, feedback may be in the form of voice commands.
The handheld portion, e.g., endo-scope, can be incorporated into and/or implemented with a mechanical design to reduce heat. In addition, a heat sink is used at the source end of the handheld system. According to the wired embodiment 500, the communication between the host 502 and the illumination system 503 is through a wired protocol.
The handheld illumination system 603 can include a power source 614 and feedback system 624 so that a handheld device, e.g., endo-probe, with the built-in lighting functionality can be self-powered and can communicate with feedback control/button 630. The handheld device 603 may further include a microphone for allowing entry of the voice commands by the surgeon. System 603 can include a power source (voltage/current source) 614, a light source system 616, e.g., a feedback control system 624, and a transceiver 628. According to the wireless embodiment of
As shown in
For system 600, a first user input device, e.g., feedback button 630, can control intensity of the light emitted by the illumination system 616. The first user input device 630 is operable to transmit to the feedback controller 624 a first signal based on a user-selected light intensity. The feedback controller 624 can transmit, in response to the first signal, a second signal to the power source 614 for altering the power provided by the power source 614 to the illumination system 616. The handpiece can also include a second user input device, e.g., sound sensor or microphone 631, for receiving voice data provided by the user. The voice data can wirelessly transmitted by the second transceiver 628 to the first transceiver 608 and processed by the voice recognition system 610 for storing or generating an output in response.
The handheld system 603 can be incorporated in an injection molded housing structure. An energy supply component/system 614, e.g., a battery, can be included to provide power to the illumination system 616. The energy supply system 614 can include an electronic system that includes a microprocessor and related circuitry. The microprocessor/controller and related circuitry can or convert (e.g., rectify AC to pulsed DC) power to a desired condition, e.g., to regulate current pulses for the LEDs. In addition, the circuitry can consist of a converter, e.g., a boost, Buck, step down, step up, etc., to condition the power for the LEDs. A coupling can provided through a probe, e.g., an endo-probe, which can be coupled to the LED(s).
According to exemplary embodiments, the handheld illumination device may serve as potential light source for other illuminated instruments beside vitrectomy intraocular illumination, such as, for example, indirect opthalmoscope, direct opthalmoscope, slit lamp, and fundus camera.
Referring now to
LEDs 704 that are selected (e.g., based on a user control command) as light sources can provide an optical signal/output for illumination in a band of specific wavelengths. The different sources (red, green, blue, white, etc.) can be configured in a designated patterns for maximum light output efficiency. One of the advantages using this configuration is that by controlling the current to the LED, the output light can be tuned at various intensities. This can allow for better safety/visualization and illumination that is tunable to individual cases and surgeons. In addition, the variation in light of different spectrum of the outputs of the LEDs 704 can allow for improved contrast ratios for surgical illumination.
In exemplary embodiments, e.g., those shown for
Continuing with the description of
Thus, from the previous description and review of the related drawings, it will be understood that embodiments and aspects of the present disclosure can provide various advantages relative to prior art techniques/systems.
The output light distribution of light sources utilized for embodiments of the present disclosure can be selected or designed for as desired. For example, an optical output can be Lambertian, “bat winged”, Gaussian, etc. and suitable lenses and/or optical elements can be used with/for the light sources to give the desired output light distribution pattern. Further, a cooling system can be used to provide a cooling effect, allowing the illumination system to operate at low temperature(s), e.g., room temperature. Portability: light weight and small in size with no specialized cooling systems necessarily required for the handheld device (cooling may be implemented with the optical source system/components).
Feedback functionality can provide handheld control for physicians, and such ability may be provided by a convenient feedback button such as located on a handpiece/handheld device, probe, docking station for the handheld device, etc. Control of power current/voltage can be incorporated into the feedback control. Variable gain amplifiers can be incorporated in the power source, for exemplary embodiments, e.g., to provide dimming functionality. An automatic light in/out of the cannula feature may be implemented using the feedback button. A lens system utilized can be small and portable. Collimation and convergence as well as a variable spot size are also features that can be adjusted, e.g., by a surgeon operating a feedback controller/button.
Further advantages provided by embodiments of the present disclosure, can include the utilization of one or more combination of filters/attenuators. Also, optical fibers including special fibers with thin films deposited to eliminate harmful spectrum can be utilized. Different fiber configurations can be utilized, e.g., tapered, round, adiabatic, single-mode, multimode, graded index (GRIN), etc. Fiber optics used for embodiments may be selected and sized as desired, e.g., 50 μm-500 μm, and may be of multimode or single mode options/designs.
By utilizing LEDs as light sources, systems/techniques of the present disclosure can provide lighting that is largely if not entirely immune from or resistant to system vibrations. Lighting component lifetime can increase to thousands of hours, which is much higher than a normal (non-LED) light source. Further, LED-based light sources according to embodiments of the present disclosure can operate at lower temperatures, and therefore dissipate low heat, thereby eliminating complex heat sink systems. Costs related to lighting of the present disclosure techniques can be lower than that of prior art techniques, as costs for LED systems (including related driving power regulation circuitry) can be much less (e.g., exponentially less) expensive than a stand light source system because of the simple packaging. Additionally, LEDs are available in multiple colors/including high output efficiency, leading to selection of visible (and other) spectrums during surgical procedures, including those performed on the structure of the eye.
Moreover, LED-based lighting systems according to the present disclosure can offer improved surgeon controlled surgical instruments that can provide lighting that is either automatically or manually controlled. Such lighting can also offer improved contrast ratio by wavelength selection. An input signal can be pulsed so as to allow spectral selectivity in an LED; chandelier lighting can be provided. Further, techniques/systems according to the present disclosure can allow the use of reflectance spectroscopy inside the eye. Improved light control may be provided during the air/fluid interface during surgical procedures.
Further, embodiments of the present disclosure can allow handheld illumination device to allow novel application outside of the operating room and independent of an integrated vitrectomy control unit or an expensive light source box, e.g., use in a clinic; and/or potential light source for other illuminated instruments beside vitrectomy intraocular illumination, such as for an indirect opthalmoscope, a direct opthalmoscope, a slit lamp, a fundus camera, and the like.
Although the present disclosure has been described in certain specific embodiments, those skilled in the art will have no difficulty devising variations to the described embodiment which in no way depart from the scope and spirit of the present disclosure. For example, although the illumination system according to the previously described embodiments have generally been in the context of utilizing LEDs, a person of skill in the art should recognize that other types of light sources may also be used in addition or in lieu of LEDs. Furthermore, in addition or in lieu of manual adjustment of the light intensity via the feedback buttons, sensors may also be incorporated into the handpiece for sensing different types of lighting requirements for automatically adjusting the light intensity based on the sensed lighting requirements.
Furthermore, to those skilled in the various arts, the disclosure itself herein will suggest solutions to other tasks and adaptations for other applications. It is the Applicants' intention to cover all such uses of the disclosure and those changes and modifications which could be made to the embodiments of the disclosure herein chosen for the purpose of disclosure without departing from the spirit and scope of the disclosure. Thus, the present embodiments of the disclosure should be considered in all respects as illustrative and not restrictive.
This application is a continuation of U.S. application Ser. No. 12/039,298 filed 28 Feb. 2008, now abandoned; and also claims the benefit of U.S. Provisional Patent Application No. 60/892,028 filed 28 Feb. 2007, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3775606 | Bazell et al. | Nov 1973 | A |
3798435 | Schindl | Mar 1974 | A |
4196460 | Schreckendgust | Apr 1980 | A |
4651257 | Gehly | Mar 1987 | A |
5115124 | Muto et al. | May 1992 | A |
5147354 | Boutacoff et al. | Sep 1992 | A |
5219444 | Chiaramonte et al. | Jun 1993 | A |
5419323 | Kittrell et al. | May 1995 | A |
5421337 | Richards-Kortum et al. | Jun 1995 | A |
5422792 | Neumann | Jun 1995 | A |
5562100 | Kittrell et al. | Oct 1996 | A |
5570698 | Liang et al. | Nov 1996 | A |
5612540 | Richards-Kortum et al. | Mar 1997 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5697373 | Richards-Kortum et al. | Dec 1997 | A |
5699795 | Richards-Kortum et al. | Dec 1997 | A |
5733739 | Zakim et al. | Mar 1998 | A |
5818052 | Elabd | Oct 1998 | A |
5842995 | Mahadevan-Jansen et al. | Dec 1998 | A |
5918973 | Nojiri | Jul 1999 | A |
5920399 | Sandison et al. | Jul 1999 | A |
5993001 | Bursell et al. | Nov 1999 | A |
6016038 | Mueller et al. | Jan 2000 | A |
6135965 | Tumer et al. | Oct 2000 | A |
6150774 | Mueller et al. | Nov 2000 | A |
6160835 | Kwon | Dec 2000 | A |
6166496 | Lys et al. | Dec 2000 | A |
6178346 | Amundson et al. | Jan 2001 | B1 |
6183086 | Neubert | Feb 2001 | B1 |
6211626 | Lys et al. | Apr 2001 | B1 |
6230046 | Crane et al. | May 2001 | B1 |
6270491 | Toth et al. | Aug 2001 | B1 |
6280059 | Ito et al. | Aug 2001 | B1 |
6292901 | Lys et al. | Sep 2001 | B1 |
6340868 | Lys et al. | Jan 2002 | B1 |
6357877 | Takada | Mar 2002 | B2 |
D457667 | Piepgras et al. | May 2002 | S |
D457669 | Piepgras et al. | May 2002 | S |
D457974 | Piepgras et al. | May 2002 | S |
D458395 | Piepgras et al. | Jun 2002 | S |
6425677 | Chuang | Jul 2002 | B1 |
6436035 | Toth et al. | Aug 2002 | B1 |
D463610 | Piepgras et al. | Sep 2002 | S |
6459919 | Lys et al. | Oct 2002 | B1 |
D468035 | Blanc et al. | Dec 2002 | S |
6513962 | Mayshack et al. | Feb 2003 | B1 |
6528954 | Lys et al. | Mar 2003 | B1 |
6539942 | Schwartz et al. | Apr 2003 | B2 |
6540390 | Toth et al. | Apr 2003 | B2 |
6548967 | Dowling et al. | Apr 2003 | B1 |
6577080 | Lys et al. | Jun 2003 | B2 |
6593101 | Richards-Kortum et al. | Jul 2003 | B2 |
6608453 | Morgan et al. | Aug 2003 | B2 |
6624597 | Dowling et al. | Sep 2003 | B2 |
6639674 | Sokolov et al. | Oct 2003 | B2 |
6652452 | Seifert et al. | Nov 2003 | B1 |
6685730 | West et al. | Feb 2004 | B2 |
6717376 | Lys et al. | Apr 2004 | B2 |
6720745 | Lys et al. | Apr 2004 | B2 |
D491678 | Piepgras | Jun 2004 | S |
D492042 | Piepgras | Jun 2004 | S |
6766184 | Utzinger et al. | Jul 2004 | B2 |
6774584 | Lys et al. | Aug 2004 | B2 |
6777891 | Lys et al. | Aug 2004 | B2 |
6781329 | Mueller et al. | Aug 2004 | B2 |
6786628 | Steen et al. | Sep 2004 | B2 |
6788011 | Mueller et al. | Sep 2004 | B2 |
6824294 | Cao | Nov 2004 | B2 |
6886964 | Gardiner et al. | May 2005 | B2 |
6934576 | Camacho et al. | Aug 2005 | B2 |
6964490 | Scholz | Nov 2005 | B2 |
6965205 | Piepgras et al. | Nov 2005 | B2 |
6967448 | Morgan et al. | Nov 2005 | B2 |
6975079 | Lys et al. | Dec 2005 | B2 |
7014336 | Ducharme et al. | Mar 2006 | B1 |
7020370 | Harris | Mar 2006 | B2 |
7038398 | Lys et al. | May 2006 | B1 |
7048379 | Miller et al. | May 2006 | B2 |
7063436 | Steen et al. | Jun 2006 | B2 |
7064498 | Dowling et al. | Jun 2006 | B2 |
7116437 | Weinstein et al. | Oct 2006 | B2 |
7130115 | Olszak et al. | Oct 2006 | B2 |
7132785 | Ducharme | Nov 2006 | B2 |
7161311 | Mueller et al. | Jan 2007 | B2 |
7161313 | Piepgras et al. | Jan 2007 | B2 |
7174094 | Steinkamp | Feb 2007 | B2 |
7184610 | Weinstein et al. | Feb 2007 | B2 |
7186003 | Dowling et al. | Mar 2007 | B2 |
7229202 | Sander | Jun 2007 | B2 |
7236815 | Richards-Kortum et al. | Jun 2007 | B2 |
7245273 | Eberl et al. | Jul 2007 | B2 |
7255457 | Ducharme et al. | Aug 2007 | B2 |
7270439 | Horrell et al. | Sep 2007 | B2 |
7284861 | Fujieda | Oct 2007 | B2 |
7308296 | Lys et al. | Dec 2007 | B2 |
7311401 | Goldfain et al. | Dec 2007 | B2 |
7365844 | Richards-Kortum et al. | Apr 2008 | B2 |
7387405 | Ducharme et al. | Jun 2008 | B2 |
7420153 | Palmer et al. | Sep 2008 | B2 |
7422327 | Smith | Sep 2008 | B2 |
7458375 | Schwartz et al. | Dec 2008 | B2 |
7488088 | Brukilacchio | Feb 2009 | B2 |
7488101 | Brukilacchio | Feb 2009 | B2 |
7499634 | Yogesan et al. | Mar 2009 | B2 |
7572028 | Mueller et al. | Aug 2009 | B2 |
7614763 | Leibinger et al. | Nov 2009 | B2 |
7625098 | Rains, Jr. et al. | Dec 2009 | B2 |
7652772 | Backman et al. | Jan 2010 | B2 |
7654716 | Bhadri et al. | Feb 2010 | B1 |
7658708 | Schwartz et al. | Feb 2010 | B2 |
7677730 | Shimizu | Mar 2010 | B2 |
7710007 | Liang | May 2010 | B2 |
7731387 | Cortenraad et al. | Jun 2010 | B2 |
7762664 | Fink | Jul 2010 | B2 |
7772534 | Ito | Aug 2010 | B2 |
7801590 | Feldman et al. | Sep 2010 | B2 |
7845823 | Mueller et al. | Dec 2010 | B2 |
7850334 | Holder et al. | Dec 2010 | B2 |
20020025298 | Blumenkranz et al. | Feb 2002 | A1 |
20020101568 | Eberl et al. | Aug 2002 | A1 |
20030103262 | Descour et al. | Jun 2003 | A1 |
20030112639 | Stack | Jun 2003 | A1 |
20030218755 | Wei et al. | Nov 2003 | A1 |
20040023415 | Sokolov et al. | Feb 2004 | A1 |
20040032750 | Watts et al. | Feb 2004 | A1 |
20040064053 | Chang et al. | Apr 2004 | A1 |
20040090796 | Steen et al. | May 2004 | A1 |
20040181133 | Al-Ali | Sep 2004 | A1 |
20050075628 | Cazzini et al. | Apr 2005 | A1 |
20050099824 | Dowling et al. | May 2005 | A1 |
20050157263 | Sakata et al. | Jul 2005 | A1 |
20050182321 | Frangioni | Aug 2005 | A1 |
20050222499 | Banik et al. | Oct 2005 | A1 |
20060134001 | Frangioni | Jun 2006 | A1 |
20060152172 | Mueller et al. | Jul 2006 | A9 |
20060228256 | McDevitt et al. | Oct 2006 | A1 |
20060257941 | McDevitt et al. | Nov 2006 | A1 |
20060257991 | McDevitt et al. | Nov 2006 | A1 |
20060257992 | McDevitt et al. | Nov 2006 | A1 |
20060257993 | McDevitt et al. | Nov 2006 | A1 |
20060282064 | Shimizu et al. | Dec 2006 | A1 |
20070038121 | Feldman et al. | Feb 2007 | A1 |
20070115658 | Mueller et al. | May 2007 | A1 |
20070173718 | Richards-Kortum et al. | Jul 2007 | A1 |
20070244367 | Caffey et al. | Oct 2007 | A1 |
20080029708 | Olsen et al. | Feb 2008 | A1 |
20080038738 | Weigum et al. | Feb 2008 | A1 |
20080051629 | Sugiyama et al. | Feb 2008 | A1 |
20080095714 | Castella et al. | Apr 2008 | A1 |
20080200761 | Schwartz et al. | Aug 2008 | A1 |
20080208000 | Schwartz et al. | Aug 2008 | A1 |
20080308098 | Schwartz et al. | Dec 2008 | A1 |
20090009759 | Backman et al. | Jan 2009 | A1 |
20090016075 | Bhadri et al. | Jan 2009 | A1 |
20090068108 | Sokolov et al. | Mar 2009 | A1 |
20090237920 | Dallas et al. | Sep 2009 | A1 |
20100002428 | Hall et al. | Jan 2010 | A1 |
20100026957 | Tanguay, Jr. et al. | Feb 2010 | A1 |
20100093561 | Rantala et al. | Apr 2010 | A1 |
20100095969 | Schwartz et al. | Apr 2010 | A1 |
20100137687 | Schwartz et al. | Jun 2010 | A1 |
20100157620 | Bhadri et al. | Jun 2010 | A1 |
20100210951 | Rahman et al. | Aug 2010 | A1 |
20100262017 | Frangioni | Oct 2010 | A1 |
20100262020 | Backman et al. | Oct 2010 | A1 |
20100321772 | Reimer et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
1828128 | Sep 2006 | CN |
WO2005081914 | Sep 2005 | WO |
WO2008106590 | Sep 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090146583 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
60892028 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12039298 | Feb 2008 | US |
Child | 12237110 | US |