The present invention relates generally to an air pulse delivery device used to administer a stimulus to a human or animal to elicit and/or facilitate a desired physiological response and in particular, to a portable air pulse delivery device connected to a mouthpiece for delivering a substance to a human or animal to initiate, evoke and/or facilitate swallowing or other sensorimotor behaviors, and a method for the use thereof.
Dysphagia is a condition in which a person has difficulty swallowing, characterized by impaired transport of saliva, drink, and food from mouth to stomach. Dysphagia results from disease, or damage, to the neural and/or aerodigestive tract structures that produce swallowing. Often, dysphagia presents in stroke patients, patients with other acute neurological conditions, patients having Parkinson's disease or other neurodegenerative diseases, cerebral palsy or chronic obstructive pulmonary disease (COPD) and/or in response to various cancer treatments, wherein the patient has difficulty in, and/or experiences pain with, swallowing. Likewise, other patients may exhibit various swallowing, speech, salivary and/or oral sensory impairments. Dysphagia compounds these health problems via resultant complications, most commonly aspiration pneumonia secondary to entry of saliva or food into the lungs, dehydration and malnutrition. As such, some deaths attributed to stroke, may actually be caused by dysphagia and the resulting complication of pneumonia. These complications may also lead to extended hospital stays, emergency room visits, re-admissions, long-term institutional care and need for expensive respiratory and nutritional support.
In response, various techniques and treatments have been developed to induce or stimulate swallowing, which can provide various therapeutic benefits to the patient or user. For example, various devices and methods for inducing swallowing in a patient include delivering one or more gas pulses to a predetermined area of the mouth and/or throat. Often, however, such devices are incapable of producing a train of pulses at desired frequencies, operate at relatively high pressures, require various inputs related to pressure, duration and frequency and/or are not portable. Other devices apply electrical stimulation to the neck overlying the laryngeal muscles.
The present invention is defined by the following claims, and nothing in this section should be considered to be a limitation on those claims.
In a first aspect, one embodiment of a portable air pulse delivery device includes a housing and an air compressor having a motor disposed in the housing. The motor is operable at speeds between 1200 and 4800 rpm. The air compressor includes an air inlet and an air outlet. An untethered power source is disposed in the housing and is operably connected to the motor. An intake filter is disposed in the housing and is in fluid communication with the air inlet of the air compressor. An outlet port is coupled to the air outlet of the air compressor and is in communication with an exterior of the housing. A mouthpiece includes an inlet coupled to the outlet port and an outlet having a gas exit port. The air compressor is operative to produce an average gas flow rate of between about 2-3 L/min at the gas exit port at a pulsation frequency of between about 20 Hz to 80 Hz.
In another aspect, a method for delivering air pulses to a mouth of a user includes providing an untethered portable air pulse delivery device having a housing and a mouthpiece connected to the housing and inserting the mouthpiece into the mouth of the user. The method further includes actuating a power switch on the housing and thereby automatically switching a compressor motor located in the housing on and off for a predetermined sequence of predetermined time periods. The motor is operated at a speed of between 1200 and 4800 rpm when switched on and produces an average gas flow rate of air of between about 2-3 L/min at a gas exit port at a pulsation frequency of between about 20 Hz to 80 Hz.
The various aspects and embodiments provide significant advantages relative to the prior known devices. In particular, the delivery device is capable of producing a train of pulses at frequencies of 20-80 Hz, which is in the range of optimal muscle stimulation for inducing swallowing. At the same time, the device provides air pulses at low pressure, which avoids various risks associated with electrical stimulation, for example with patients with implanted pacemakers and/or potential risks and damage associated with high-pressure systems. The system has also been optimized in one embodiment, such that it does not require any input from the user. Rather, the user simply switches the device on, with a predetermined sequence of air train pulses being administered at a predetermined frequency, duration and pressure. The system then automatically powers down without any input from the user. In this way, the device is not susceptible to tampering or misuse, and does not require excessive training or knowledge about alternative inputs for duration, pressure or frequency. As such, it is particularly well suited for use outside of the patient care system, including for example use in the home, office or everyday environments.
The system also has been designed to be truly portable, such that various embodiments can fit in the pocket, e.g., shirt, of the user and/or be secured around the neck of the user with a lanyard, or secured to clothing articles with a clip or hook and loop (e.g., Velcro) fastener, e.g., on a strap, or be secured to other structures such as a rail or hook. Due to the small size and untethered power source, the user can undergo treatment while going about their day-to-day activities, untethered and hands free.
The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The various preferred embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
The terms “top,” “bottom,” “upwardly” and “downwardly” are intended to indicate directions when viewing the device from the perspective of the user. The term “lateral,” as used herein, means situated on, directed toward or running from side-to-side, for example and without limitation from one side of the user's mouth to the other. It should be understood that the term “plurality,” as used herein, means two or more. The term “longitudinal,” as used herein means of or relating to length or the lengthwise direction. The term “coupled” means connected to or engaged with whether directly or indirectly, for example with an intervening member, and does not require the engagement to be fixed or permanent, although it may be fixed or permanent, and includes both mechanical and electrical connection. It should be understood that the term “substance” as used in this specification includes without limitation a fluid, such as a gas, liquid or combination thereof (including, without limitation, an aerosolized liquid), and/or a powder, including, without limitation, particles entrained in any fluid, or combinations thereof.
As disclosed herein, a method and apparatus are provided for delivering or applying a train of air pulses to the mouth or neck of the user, whether human or animal, for the purpose of (1) initiating, evoking or facilitating swallowing, speech production, salivation, or an oral or oropharyngeal sensorimotor behaviour in a subject, (2) increasing lubrication of the oral cavity, oropharynx, and pharynx in a subject, (3) decreasing oral or oropharyngeal or pharyngeal discomfort in a subject, (4) contracting muscles of the lips, mouth, buccal area, tongue, jaw, soft palate, pharynx, larynx, any of which could result in muscle strengthening with repeated use of the oral appliance; (5) moving the lips, mouth, buccal area, tongue, jaw, soft palate, pharynx, larynx, including elevation of the larynx, including pre-swallow oral transport movements and pre-swallow chewing-like movements; and/or (6) creating sensations from the oral cavity or oropharynx that include somatic, thermal or gustatory sensations.
One embodiment of the portable air pulse delivery device provides a means of delivering a sequence of distinct air-pulse trains, or aerosol-pulse trains to the oral cavity, oropharynx, or pharynx of a person, where a train is defined as a series of at least one pulse. The individual air-pulse trains may vary in terms of the following pulse parameters: pulse duration, pulse amplitude, pulse frequency, and train duration. In one embodiment, the air-pulse trains, individually and in the aggregate, are presented within a predetermined sequence.
Referring to
Referring to
In one embodiment as shown in
As shown in
Referring to
Referring to
Referring to the embodiment of
Referring to FIGS. 4 and 14-15, the compressor 160 includes a motor 162 and pump 164, which are disposed in the housing. The compressor has an air inlet 166 to the pump. The air inlet 166 is connected to and in fluid communication with the air intake filter, for example with a conduit 168 (not shown in
The pump 164 is coupled to the motor 162. One suitable pump is a diaphragm pump, which is configured with a diaphragm piston, and which may have a suitable displacement of about 1 mL. One exemplary pump is the Hargraves BTC diaphragm pump, available from Hargraves Technology Corp., Mooresville, N.C. In such a pump, air may be delivered without contacting any moving parts of the pump. The parts of the pump in contact with the air may be made of Vetra (liquid crystal polymer), while the diaphragm may be made of EPDM (ethylene-propylene-diene-monomer). The pump may also be configured as an electro-magnetically driven pump. The portions of the pump in contact with the respired air are biocompatible and do not introduce adverse scents into the air circulated therethrough.
The mouthpiece 2 is sized and configured such that an air flow rate of about 2-3 L/min (measured at standard temperature and pressure (STP)) is achieved. For example, when operating at 2,400 rpm (40 Hz pulsations), a pump 164 with a displacement of about 1 mL can provide an average 2.5 L/min flow rate in a 1 m long mouthpiece tube having a 1.5 mm internal diameter. In such a system, air exiting the mouthpiece has kinetic energy at ambient pressure. Testing has shown that with an average flow rate of 2.5 L/min, the resultant kinetically produced pressure on a surface at 1-8 mm from the exit port of the mouthpiece is in the range of 1.5-2 mmHg. In various preferred embodiments, the pressure is less than about 2.25 mmHg.
Referring to
Preferably, the burst of pulsating air-pulses should not substantially interfere with the normal cycle of breathing. For example, a normal adult may breathe 15 times per minute with 3 seconds of inspiration. Therefore, in one embodiment, the controller 170, 270 energizes the motor 162 for X seconds ON and Y seconds OFF (X:Y). In one embodiment for rehabilitation of dysphagic patients, the predetermined X:Y sequence is repeated for a predetermined time period, e.g., 20 minutes, with the treatment being repeated every day, for example three times.
The air pulse trains are delivered to the oropharynx via the mouthpiece 2, which has an input end releasably connected to the outlet port with a quick lock connector 18 (see e.g.,
In one embodiment, shown in
In one embodiment, a wire may run along a length of at least a portion of the flexible tubing 4, 6. The wire provides further shape memory to the flexible tubing. The wire may be co-extruded with the tube, or may be connected to the tubing by molding, welding, adhesives and the like, or combinations thereof. The tubing may also be shaped by over-molding with another polymer, or by molded, curved sections that are subsequently attached to the straight portions of tubing.
Referring to
Each flexible tube 4, 6 includes an inlet portion 10, which is preferably elongated and may extend from the neck region to the ear of the user. The inlet portion has an inlet end portion 12 connected to an adapter (e.g., Y adapter) 14, with the adapter having a feed tube 16 connected to an opposite end thereof. A slideable connector 20, configured in one embodiment as a sleeve, is disposed over and slidably receives the inlet portions 10 of the tubes. The connector 20 may be moved back and forth along a portion of the lengths of the inlet portions 10 of the tubes so as to lengthen the end portion 12, and thereby secure the tubes under the chin of the user, or to shorten the end portion 12, and thereby loosen the tubes for comfort or removal.
As explained above, the feed tube 16 is configured to connect to the outlet port, which supplies air, for example and without limitation by way of the quick connect 18 having a releasable component, such as a detent. Various exemplary mouthpieces and control systems are shown and disclosed in US Pub. No. 2006/0282010A1, entitled Oral Device, and U.S. patent application Ser. No. 12/424,191, filed Apr. 15, 2009 and entitled Swallowing Air Pulse Therapy Mouthpiece and Methods for the Use Thereof, the entire disclosures of which are hereby incorporated herein by reference.
Referring to
The tubes 4, 6 each have a curved portion 32 forming an ear loop connected to the inlet portion 10. In one embodiment, the ear loop 32 may be encapsulated, or covered with a padding material 40, such as foam, which provides greater comfort to the user. Of course, it should be understood that other portions of the tube, such as the portion 42 running along the face of the user, may also be covered or secured to an interfacing material, such as a padding, to improve comfort.
Another curved portion 34 forms a lip bend. The curved portion 34 is connected to the curved portion 32 with an elongated portion 42 that runs along the face or cheek of the user. The curved portion 34 has a curvature that is less than the curvature of the curved portion 32, meaning in this embodiment, the radius of the curved portion 32 is greater than the radius of the second curved portion 34. In one suitable embodiment, the curvature of the curved portion 34 has an inner radius of about 0.25 inches. It should be understood that the curvatures may be other than semi-circular, such as quarter circular, and may for example be curvilinear, or polygonal (i.e., formed from a plurality of discrete linear segments). The term “curvature” refers to the tube having a first portion defining a first vector and a second portion defining a second vector, wherein the vectors are co-planar but not the same (meaning they may have different angles or orientations (e.g., parallel but directed in opposite directions)). It should be understood that a curved portion may have multiple curvatures, for example having a curvature in one plane and another curvature in another plane. For example, the curved portion 34, or lip bend, has a plurality of curvatures, including a first curvature in a plane, and a second curvature of a portion thereof as the curved portion 34 transitions to an outlet portion 36 having a curvature in a plane substantially perpendicular to the plane. It should be understood that the curvatures may be formed in multiple planes not perpendicular or parallel to each other. The curved portions 32, 34 open in opposite first and second directions 50, 52.
The outlet portion 42 extends from the curved portion 32 and terminates in an end portion 38 having a gas exit port 54. The outlet portion 42 has a curvature defined by first and second vectors 44, 46 forming angles β of 30° relative to the plane 26. In one embodiment, the length (L1) of the outlet portion is about 1.6 inches (±0.2 inches), or 1.760 inches (±0.2 inches) from the inner surface of the curved portion 32 to the terminal end of the end portion 38, with the end portion extending below the first plane. The end portion 38 may also be formed as a curved portion.
The outlet portion 36, as shown in
In operation, the user or care giver disposes a portion of the mouthpiece, e.g., the flexible tube, and in particular the outlet portions 38, 408, 410, between an outer side surface of a row of teeth 114, 116 (upper or lower) and an inner surface of a cheek. In one embodiment, tubes are disposed on opposite sides of the mouth. The tubes are positioned such that the exit ports 54 are positioned in a rear region of the mouth and wherein no portion of the flexible tube is disposed between the upper and lower teeth of the user such that the upper and lower teeth can be closed against each other, or between the tongue and palate of the user, such that the tongue is free to touch the palate. The ear loops 32 are disposed around the ears 100 of the user, with the mouth/lip bend being positioned around/over the lip 102 and the outlet portion of the tube being positioned along the side of the teeth as just described. The position of the connector 20 can then be adjusted to further secure the cannula to the user. It should be understood that the disclosed mouthpiece is exemplary, and that other mouthpieces may also work with the air pulse delivery device.
In any of the embodiments, the mouthpiece feed tube 16 is connected to the outlet port of the housing 122. To ensure that the correctly sized tubing is utilized with the miniature compressor, the connection between the mouthpiece and housing may be customized so as to allow for mating of a particular configuration. Alternatively, a radio frequency identification, or RFID tag, can be employed to ensure a proper combination of mouthpiece and portable pulsed air supply device, with the system only being actuatable with the proper RFID. The system may alternatively incorporate a memory chip and direct electrical connection.
Once the device is properly configured, and the mouthpiece 2 installed, the power button 148 is pushed, which moves the power switch 182 to an ON position, with a green LED light being illuminated and the controller 170 receiving an input. The LED light may be disposed in the button 148, or at another location on the housing. After about 1 second, the automated sequence of air-pulsing is commenced, with pulsating air delivered to the rear of the subject's mouth through the mouthpiece port 54. No adjustments are required by the person being treated or the caregiver to control the frequency, duration or pressure of the pulsations. The air pulses will continue for 2-3 seconds (or some other desired time period) before the compressor 160 stops. After a second predetermined time period, e.g., 17 or 20 seconds or some other desired and controlled time period, the compressor recommences the air pulses for another predetermined time period, e.g., 2-3 seconds. This predetermined X:Y sequence, e.g., 2-3 seconds ON and 17 or 20 seconds OFF, continues for a predetermined time period, e.g., 20 minutes, unless manually switched off before then. Further use of the device requires the unit to be switched off and then switched on again. Alternatively, the device is configured to automatically switch off, with the LED light no longer displaying power indicia. Using a pair of two 9 V batteries as the power source 180, the device is capable of providing twelve 20 minute treatments, or about 4 hours of operation. The device is configured such that a red LED light 271 will illuminate when the batteries require replacement or recharging.
In another embodiment, the delivery device 120 is connected to an external applicator of pulses. In particular, a cup of about 18 mm inside diameter and 4 mm depth is held by hand or with a strap against the neck 190 of the user. The cup is shaped and configured to prevent the cup from being filled by the skin of the user. The device is then operated to provide air pulses to the outer skin of the neck, so as to evoke swallowing in the same manner as that achieved by more complex electro-mechanical systems.
Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As such, it is intended that the foregoing detailed description be regarded as illustrative rather than limiting and that it is the appended claims, including all equivalents thereof, which are intended to define the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/310,590, filed Mar. 4, 2010 and entitled Portable High Frequency Air Pulse Delivery Device, U.S. Provisional Application No. 61/311,145, filed Mar. 5, 2010 and entitled Oral Mouthpiece and Method for Use Thereof, and U.S. Provisional Application No. 61/417,041, filed Nov. 24, 2010 and entitled Oral Mouthpiece and Method for the Use Thereof, the entire disclosures of which are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61310590 | Mar 2010 | US | |
61311145 | Mar 2010 | US | |
61417041 | Nov 2010 | US |