Current application relates with a steam generator producing steam of pressure 6 KG/cm2 at a rate of 30 kg/hr.
Steam generators are designed to produce a large amount of steam to use the moisture of the steam itself. Most of portable steam generator is comprised of water tank wherein electric heaters are installed. Those electric steam generators are easy to make in a compact module and easy to handle. However, due to the inner structure of the steam generating vessel, water tank, there is limit to raise the pressure of the generated steam. The other drawback of those electric heaters is the high electricity cost. The low pressure steam produced by the electric steam generator is not high enough to wash out dirt from a vehicle. Traditional boilers can produce steam of higher pressure and temperature more easily. However, they are designed to utilize the high temperature and pressure of the steam, rather than the moisture of the steam. Those boilers have many tubes in the steam generating vessel to increase the heat transfer capacity. Those boilers are economical for producing steam at a pressure higher than 10 Kg/cm2. The production rate of the steam increases with the number of pipes in the steam generating chamber. Most of all, those boilers are too heavy to manufacture in a compact module.
U.S. Pat. No. 6,397,788 to Besik illustrates a compact, gas fired steam generator comprised of a steam separation chamber integrated with vertical fin tubes, a down corner tube and a tube header immersed in a thermally insulated firebox chamber provided with horizontally firing gas burners, a condensing heat exchanger for recovery of the waste heat from flue gases to preheat the feed water and the return condensate and a heat exchanger to recover waste heat from the blow down boiling water to the incoming feed water, all enclosed in a thermally insulated casing. The steam generator generates low pressure steam at higher rate. However, the structure is much too complicated.
U.S. Pat. No. 6,135,062 to Palmers illustrates a steam generator of the type incorporating a heating body provided with means for supply of heat to the body and with at least one internal cavity provided with a connection for supply of water, which shall be evaporated and with an outlet for water that has been transferred to steam, whereby the connection of the steam generator for supply of water is provided in the bottom of the cavity, and that the steam generator is equipped with a control system, which permits supply and also discharge of water via the connection, and which is adapted to maintain a constant feeding pressure on the water independent of the direction of water flow. The steam generator of this design has a very thick heating medium to control the pressure of steam.
U.S. Pat. No. 6,094,523 to Zelina, et al. illustrates a flash steam generator to be used as an integral component of a steam sterilizer. The generator is constructed of a metal block having a first bore drilled lengthwise through the metal block. Surrounding the first bore is a plurality of additional heater bores in which heating elements are inserted. The generator is integral to the sterilizer piping and control systems. Water is supplied to the first bore by the sterilizer piping system, and electricity is supplied to the heating elements by the sterilizer power supply. The heating elements convert the electricity to heat, which transfers via the metal block to the first bore where the heat rapidly boils the water contained therein in what is essentially a flash vaporization process.
U.S. Pat. No. 5,542,021 to Hopper, et al. illustrates a steam generator for a wall paper steamer having a two section boiler. The boiler is mounted in a framework of lightweight aluminum tube, having two trapezium ends and interconnecting members. The boiler is secured to bottom members. Top members support a stepping board. That kind of steam generators can produce ‘hot moisture stream’. The pressure of the steam generated from that type generator is atmospheric or too low to remove any dirt from the surface of a car.
U.S. Pat. No. 4,974,411 to Bruckner, et al. illustrates a super-charged, coal-fired steam generator that has an exhaust gas vent line connected to the gas turbine. The steam generator includes at least one sub-stoichiometrically operated fluidized bed furnace system. That steam generator is too big to be installed in a car washing place. U.S. Pat. Nos. 2,044,270 and 2,271,880 to Wood illustrate steam generators that have many inner pipes carrying waters. Steam generators of that kind have too many pipes and too heavy to install on a module.
None of the prior arts illustrates a simple and light steam generator of the current application for producing medium pressure steam at high rate.
Conventional boilers, which are very heavy, can produce high pressure steam but they take a long time to generate steam from the start up of the gas burner. Meanwhile, conventional simple structured electric steam generators produce low pressure steam relatively fast. The steam generator of the current application produces 6 kg/cm2 steam at a rate of 30 kg/hr. The steam generator uses gas as a heat source. The inner structure of the steam generator does not have heat exchanging inner tubes to make it easy to clean the inside. Main body of the steam generator is made of 3 mm thickness steel plate roll pressed. The steam generator of the current application has smaller volume and lighter weight than the conventional steam boiler. The whole unit, including a gas container, is mounted on one structure. For the safety reason, special valve control system is adapted to cut the gas if the ignition is failed.
Sensors, which is not shown in the figures, from the gas container (3), burner (4), combustion chamber (15)'s lower section ‘C’, combustion chamber (15)'s upper section ‘A’ are connected to the gas burner controller (20). If the ignition of the burner is failed, i.e., the temperature of the combustion chamber is not high enough, the burner controller (20) send out a signal to the gas valve, which is not shown in the figures, to open more and provide more gas.
Sensors, which are not illustrated in the current application, from the water pump (21), the steam generating chamber (16), the level gauge (13) and the steam line regulator (8-1) are connected to the water and steam controller (22). The water and steam controller (22) controls the water pump (21) by the water level reading from the level gauge (13).
The gas burner controller (18) and the water and steam controller (22) exchange the temperature readings from the combustion chamber (15), steam generating chamber (16), and water level and steam pressure in the steam generating chamber (16) and controls the gas burner (4), water pump (21) and the line regulator (8-1) to control the pressure and amount of steam produced.
The dimension of the generator (1) body is 572 mm in height by 400 mm in outer diameter. And net weight of the generator (1) is only 25 Kg. It is easily installed on a small mobile module.
Number | Name | Date | Kind |
---|---|---|---|
2699155 | Olson et al. | Jan 1955 | A |
4158248 | Palmer | Jun 1979 | A |
4414037 | Friedheim | Nov 1983 | A |
5419308 | Lee | May 1995 | A |
5673715 | Carter | Oct 1997 | A |
6675437 | York | Jan 2004 | B1 |