Portable hybrid communication system and methods

Information

  • Patent Grant
  • RE38127
  • Patent Number
    RE38,127
  • Date Filed
    Wednesday, February 5, 1992
    33 years ago
  • Date Issued
    Tuesday, May 27, 2003
    22 years ago
  • US Classifications
    Field of Search
    • US
    • 379 61
    • 379 63
    • 379 67
    • 379 94
    • 379 98
    • 379 420
    • 379 432
    • 379 9301
    • 379 9305
    • 379 9306
    • 379 9307
    • 455 422
    • 455 432
    • 455 435
    • 455 556
    • 455 557
    • 455 560
    • 455 561
  • International Classifications
    • H04M1100
Abstract
A laptop device includes a personal computer, a cellular transceiver, a speakerphone, and a hybrid communications control unit. The device has connectors for attaching a headset, cellular control unit, land telephone line, and additional speakers and microphones. The micro-processor-controlled hybrid communications control unit includes a modem, a data access arrangement, and a tone generator as well as digital, analog, and power switches. The hybrid communications control unit switches the communications components and provides, under program control, the proper protocols, level, and impedance matching to connect the modem, speakerphone, headset, speaker/microphone, or cellular control unit to the landline or to the cellular network via the transceiver. Matching and switching operations are automatic and transparent to the user. The unit can also connect two of the terminal devices or connect the cellular and landlines for call relaying. The device is capable of connecting plural calls at the same time. The hybrid communications control unit may be controlled by its internal firmware, by toggle switches, or by commands issued from the personal computer.
Description




BACKGROUND ART




Technology offers the consumer many choices in communications hardware, allowing both data and voice transmission. These choices include portable computers with internal modems, hands-free speakerphones, landline telephones, and cellular telephones.




Modern portable computers may be equipped with an internal modem and data access arrangement that allows the internal modem to be connected through an RJ-11 connector to the Public Switched Telephone Network. Examples of this technology include portable computers manufactured by Zenith and NEC. These portable computers generally include a speaker used for call progress monitoring; and this speaker is used strictly as an analog output device. The internal modems are used only for sending and receiving modulated digital information through the public switched telephone network. Methods of modulation include the Bell 212, Bell 103 CCITT V.21, CCITT V.22 and CCITT v.22 bis standards.




Hands-free speakerphones can be found in many offices and homes. Generally, these speakerphones are used as an adjunct to a classical telephone which consists of a cradle and handset, and these speakerphones are used for analog voice communications over the public switched telephone network. Digital switching techniques are sometimes used within the speaker phone circuits to prevent analog feedback from microphone pickup of the speaker output.




Cellular telephones as currently manufactured by Motorola (USA), OKI (Japan) and others consist of a radio transceiver unit (TRU) and a control unit (CU), analogous to the cradle and handset of a conventional landline telephone. The transceiver unit is connected to the control unit with numerous wires, these wires transferring the analog information as in a conventional landline telephone, and also transferring digital information not used in a conventional landline telephone. This digital information may contain key press, display, and monitoring information, as well as cellular call set-up instructions. An example of this digital and analog connection can be found in AMPS based cellular telephones, as well as other functionally similar specifications. A complete description of the AMPS system is provided in “The Bell System Technical Journal”, 1979, V.1 58, No. 1, pages 1-269. Cellular phones may also provide a hands-free speakerphone, similar to speakerphones available for landline phones.




Landline and cellular telephones generally provide means of indicating to the user their current operating state. For example, when a key is pressed, an audible tone is heard, providing audio feedback, or, when an incoming call is sensed, an audible tone (RING) is heard.




There have been attempts in the prior art to combine some of the devices described above. For example, the addition of a modem to a cellular phone and means for controlling a cellular phone was disclosed by the present inventor in his U.S. Pat. No. 4,697,281. Although this patent provides for modem, transceiver unit and control unit analog and digital control, it does not provide a method for connecting numerous communication devices selectively to both land line and cellular telephone networks.




U.S. Pat. No. 4,718,080 shows a device which connects a standard landline telephone or modem to a cellular car phone, while U.S. Pat. No. 4,578,537 shows an interface which may connect a personal computer, a speakerphone, and a modem to one or more landlines. As a final example, U.S. Pat. No. 4,685,123 teaches a method of adapting one or more telephone lines for either data or voice communications.




None of these known devices or methods succeeds in achieving the functionality ultimately possible from the combination of a modem, portable computer, cellular phone, speakerphone, headset, and landline connection. Were these devices combined within a compact, portable package, the user could use the computer, transmit data, and/or place a cellular voice call, using speakerphone or headset, from any location served by a cellular network. Further, the user could bring the unit into home or office and connect it to the public switched telephone network. With both cellular and landline connections available, the user could place two calls at once, transmitting voice or data over either line. Significantly, the portable computer could initiate all these operations under program control. If all these devices could be combined in an integrated unit so that any pair of devices could function together, the result would be an uniquely valuable business and personal tool.




Prior to the invention disclosed herein, this combination was not conceived of in the art for a number of reasons, but primarily because the devices described were considered to be incompatible. For example, as explained in the inventor's prior U.S. Pat. No. 4,697,281, an ordinary modem loses data during cell handoffs, when operated over a cellular link. As another example, ordinary telephones do not provide the correct control signals to place calls on the cellular network, and cellular control units cannot be used as landline handsets. Thus, an integrated portable unit which combines a personal computer, cellular transmitter, modem and speaker phone with headset, cellular control unit, and land telephone connections could not be implemented by merely wiring known devices together.




SUMMARY OF THE INVENTION




It is a primary object of the present invention to provide a novel and improved portable hybrid communication system incorporating an integrated, portable unit which includes a personal computer, cellular transmitter, modem, and speakerphone, and which has external connections for a headset, cellular control unit, and land telephone line, such that any of these devices may be used with any other device. The invention further includes a novel and improved method and apparatus to switch the numerous analog and digital parts of landline telephones, cellular telephones and modems so that any parts of this unit may be used together. This is all accomplished with a control system mounted on a circuit card which fits in a modem slot or similar card receiving slot in a portable computer.




Another object of the present invention is to provide a novel and improved portable hybrid communication system which provides a personal computer with the means to command a specific pairing of a cellular transmitter, modem, and speakerphone, as well as external connections to a headset, cellular control unit and landline telephone line. This command may be sent by an automated program, or at the interactive request of the person using the personal computer.




Yet another object of the present invention is to provide a novel and improved portable hybrid communication system which can switch a modem onto either a landline or cellular telephone network.




A further object of the present invention is to provide a novel and improved portable hybrid communication system which controls the power to a cellular control unit as necessary, so that power to the control unit is available only when the control unit is to be used.




Yet another object of the present invention is to provide a novel and improved portable hybrid communication system which can sense the ON or OFF condition of the power to a transceiver unit.




A further object of the present invention is to provide a novel portable hybrid communication system which has complete control of a transceiver unit, providing the necessary signals to the transceiver unit for the transceiver unit to function properly, and sensing all of the signals generated by the transceiver unit, said control being possible without the need of a cellular control unit.




Yet another object of the present invention is to provide a novel portable hybrid communication system with complete control of a cellular control unit, providing the necessary signals to the control unit for the control unit to function properly, and sensing all of the signals generated by the control unit, allowing use of the cellular control unit.




A further object of the present invention is to provide a novel portable hybrid communication system that can sense whether of not a headset, cellular control unit, landline, or other device is connected to the invention.




A further object of the invention is to provide a novel portable hybrid communication system that selectively provides suitable control signals and data transfer protocols depending on the devices used and depending on whether cellular or land lines are being used.




A further object of the invention is to provide a novel portable hybrid communication control system that performs analog signal conditioning so that the analog signals of the speakerphone, headset, control unit, modem, tone generator, transceiver, and landline are matched in impedance and level according to definite standards.




A further object of the invention is to provide a novel portable hybrid communication system that can relay a cellular call over a land line or a land line call over a cellular network.




A further object of the invention is to provide a novel portable hybrid communication system that can simultaneously connect a modem or voice terminal device to the cellular network, while connecting another device (modem or terminal) to a landline, permitting simultaneous voice and data communications.




A further object of the invention is to provide a novel portable hybrid communication system which integrates a modem, portable computer, and cellular transmitter into a case, the case having a retractable cellular antenna.




These objects and others are achieved by providing a novel and improved portable hybrid communication system which is a laptop device including a personal computer, a cellular transceiver, a speakerphone, and a hybrid communications control unit. The device has connectors for attaching a headset, cellular control unit, land telephone line, and additional speakers and microphones.




The hybrid communications control unit is microprocessor controlled and includes a modem, a data access arrangement, and a tone generator as well as digital, analog, and power switches. The hybrid communications control unit switches the communications components and provides, under program control, the proper protocols, level, and impedance matching to connect the modem, speakerphone, headset, speaker/-microphone, or cellular control unit to the landline or to the cellular network via the transceiver.




Matching and switching operations are automatic and transparent to the user. The unit can also connect two of the terminal devices or connect the cellular and landlines for call relaying. Finally, the device is capable of connecting plural calls at the same time over different networks.




The hybrid communications control unit may be controlled by its internal firmware, by toggle switches, or by commands issued from the personal computer.




Other objects and advantages of the invention will be apparent to those skilled in the art from the drawings, description, and claims herein.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram of a typical cellular telephone, with reference to appropriate external connections;





FIG. 2

is a block diagram of a typical landline telephone, with reference to appropriate external connections;




FIG.


3


,., is a block diagram of a typical speakerphone system; speakerphone,.





FIG. 4

is a block diagram of the invention, with typical externally connected devices shown;





FIG. 5

is a schematic diagram showing examples of the level and impedance matching circuitry associated with the analog switch of the present invention;





FIG. 6

is a cutaway view showing the installation of the hybrid communication control unit in the computer case;





FIG. 7

is a flow diagram showing the procedure for relaying an incoming cellular call to a landline;





FIG. 8

is a schematic diagram of a port of the digital switch;





FIG. 9

is a schematic diagram of a typical method of digitally .sensing an analog signal; and





FIG. 10

is a schematic diagram showing how a toggle switch may simultaneously provide power to an external device and generate a digital logic signal.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The drawings of

FIGS. 1

,


2


and


3


show the inputs, outputs, and components of prior art cellular telephones, landline telephone and speakerphones.




In

FIG. 1

, a conventional cellular telephone is shown generally at


2


. The cellular telephone includes a transceiver unit


4


, with an external power line


6


which obtains power from an external power supply


8


. The transceiver unit


4


uses an external antenna


10


to send and receive analog voice and modulated digital instructions relative to a cellular network


12


having an antenna


32


. These cellular network instructions include call set-up instructions, incoming call instructions and other cellular network control instructions. A cellular control unit


14


comprises a display


16


, a keypad


18


, a speaker


20


, and a microphone


22


. The transceiver unit


4


communicates with the cellular control unit


14


using a bus


24


consisting of numerous wires including analog wires


26


, digital wires


28


, and power wires


30


. It is important to note that without this bus (collection of numerous wires) between the transceiver unit and the control unit, neither the transceiver unit nor the control unit will function properly. The analog voice signals present at the control unit


14


can be obtained from the analog wires


26


, or can be generated by the microphone


22


to be sent through the analog wires. The digital information that occurs when a key is pressed on the key pad


18


is sent through the digital wires


28


. Also digital information may be received over the digital wires


28


. The power that is necessary to the proper functioning of the control unit


14


is obtained from the transceiver unit


4


through the power wires


30


. The transceiver unit


4


communicates with the cellular telephone network


12


using radio waves, these waves being transmitted and received using antennas


10


and


32


.




In

FIG. 2

a conventional landline telephone is shown generally at


34


. This telephone


34


consists of a cradle


36


and a handset


38


. The telephone


34


is connected to a public switched telephone network


40


by analog wires


41


which carry analog telephone signals. The cradle


36


includes Data Access Arrangement (DAA) section


42


, keypad


44


, and ringer circuit


46


, while the handset


38


includes speaker


48


and microphone


50


. Data Access Arrangement section


42


contains the analog filters and protection devices required to connect to the public switched telephone network


40


. The key pad


44


is used to provide the number to be called to the public switched telephone network


40


, and ringer circuit


46


and associated signalling means are provided to inform the user when there is an incoming call.





FIG. 3

is a block diagram of a conventional speakerphone, shown generally at


52


. It consists of a microphone


54


and speaker


56


connected respectively by analog transmitting lines


58


and analog receiving lines


60


to an analog feedback prevention switch


62


. Analog signals are sent via analog wires


64


between the speakerphone


52


and other devices and networks (not shown). If the speakerphone


52


needs a power source, it is provided through power wires


66


.




The novel means for connecting and controlling these prior art devices will now be described with particular reference to FIG.


4


. In this figure, units previously described are given like reference numerals. The hybrid communications control unit of the present invention is shown generally at


68


. The hybrid communications control unit contains a microprocessor


70


with RAM and ROM memory and input and output ports, an analog switch


72


, a digital switch


74


, a power arbitration unit


76


, a computer interface


78


, a tone generator


80


, a modem


82


, a data access arrangement


42


, and end user accessible toggle switches


86


. All power to the unit and its parts is obtained from an external power supply


88


. A portable personal computer


90


is connected to the unit


60


through the computer interface


78


.




The power supply


88


is preferably the battery of the portable computer


90


, or an external power supply for the portable computer, but the power supply


88


may also be any other source of power.




The microprocessor


70


may preferably be a Toshiba Z84—C15, which incorporates a Zilog Z80 processor, Z80—PI0 parallel port, Z80—SIO serial port, and Z80—CTC. As explained previously, both random access and readonly memories are connected to the microprocessor for data and software storage. The read-only memory preferably contains operating software which is the machine-code equivalent of the source code contained in the microfiche appendix attached to this specification.




The portable personal computer


90


may be any programmable computing device, such as a hand-held calculator or portable computer. One suitable model is an ITC CAT 286 which uses the MS-DOS operating system and is compatible with the IBM personal computer AT.




The hybrid communications control unit


68


connects to the public switched telephone network


40


using wires


41


and data access arrangement circuit


42


, which are the essential components of the landline telephone


34


of FIG.


2


. The physical connection is preferably by means of a conventional RJ-11 modular telephone connector. Analog lines


92


connect from the data access arrangement


42


to analog switch


72


, where the analog signals may be switched or conditioned using methods which will be described later in more detail. This switching and conditioning allows the analog lines from the data access arrangement


42


to be selectively connected by the analog switch with the analog lines of any other connected device, such as speakerphone


52


. This selective connections is controlled by the microprocessor


70


, either as a result of a user request made known to the microprocessor


70


through toggle switches


86


or because of a request from the portable personal computer


90


transmitted through the computer interface


78


.




The toggle switches


86


are connected to input ports of microprocessor


70


. They may be of the type that can be sensed directly by the microprocessor


70


, that is of a 5 volt DC logic level, or they may require debouncing or other conditioning before being sensed by the microprocessor


70


. Preferably, four toggle switches are provided. The first switch can be manually actuated to signal the microprocessor


70


that the cellular control unit


14


is inserted. The second toggle switch, when manually activated, signals the microprocessor that the user wishes to mute the output of a microphone


103


in use during a voice communication. The third toggle switch provides power to the cellular control unit


14


, and the last toggle switch both controls power to the cellular transceiver


4


and provides a logic signal to the microprocessor


70


in the manner explained below. The power control functions of these last two toggle switches may occur directly, with the toggle switch making or breaking a connection between the power supply and the controlled unit as shown in

FIG. 10

, or the toggle switch may cause the microprocessor to control the provision of power to the controlled unit.




As shown in

FIG. 10

, any of the toggle switches may be used to provide high current 12V DC power to an external device. In this figure, power is provided to control unit


14


. External power supply


88


producing


12


VDC is connected to one of the toggle switches


86


, which is connected to control unit


14


by power line


85


. A conventional emitter follower voltage regulator circuit


87


is connected between power line


85


and an input port of microprocessor


70


. Voltage regulator circuit


87


provides approximately 5 volts DC to microprocessor


70


when toggle switch


86


is closed, and zero volts when toggle switch


86


is open. Of course, any other voltage regulator circuit could be used in place of the circuit shown. In this way, high current 12V DC power may be switched and at the same time presented to the microprocessor as a low current, 5 volt logic level so that the microprocessor can sense the position of toggle switch


86


.




Of course, a larger number of toggle switches may be provided depending on the preference of the end user. These additional switches might initiate any function performed by the present invention.




The hybrid communication control unit


68


is preferably constructed on a circuit card about four inches wide by five inches long. In the preferred embodiment, as shown in

FIG. 6

, this card containing the hybrid communications control unit is of an appropriate configuration to fit in a modem slot


89


of personal computer


90


. The card is provided with an appropriate conventional connector


95


which mates with a conventional modem card connector


91


mounted on the motherboard


93


of computer


90


, allowing transfer of signals between the computer interface


78


of hybrid communication control unit


68


and portable computer


90


.




The type of connector


95


used depends on the computer selected for construction of the present invention. The connector might be any multi-pin male, multi-pin female, or EIA connector. Alternatively, the card containing hybrid communication control unit


68


might be provided with edge contacts to mate with a printed circuit board edge connector in the computer


90


. While the most common and desirable connection means have been described herein, those skilled in the art will recognize that other known connections means could be used.




In addition, the card of hybrid communications control unit


68


could be installed in computer


90


in many locations other than modem slot


89


. For example, the card could be installed in a memory expansion or other expansion slot of computer


90


. The card could also be located externally to the case of computer


90


, either mounted on the case or designed as a separate unit to be cabled to computer


90


. Similarly, the card could be located in any available space inside the computer case and connected by cable to the modem connector, an expansion connector, or another connector provided on the motherboard


93


of computer


90


.




Since the hybrid communications control unit


68


may be installed in the computer


90


, it should be recognized that, for so me applications, the microprocessor


70


can be eliminated and its functions can then be performed by the computer


90


. For this type of operation, the computer interface


78


would be connected back into an input port of the computer


90


and the input-output ports of the computer


90


would be connected to other components in the hybrid communications control unit


68


in the same manner as are the input-output ports of the microprocessors


70


. For this type of operation, the computer


90


must have RAM and ROM memory and the capability to operate in response to a program which performs the functions of the program in Appendix A.




A cellular antenna


10


may be extended from or retracted into a compartment


97


of the portable computer case so as to protect the antenna when not in use and so as to increase the functionality and aesthetic appeal of the computer case when the system is used but cellular access is not desired. In the embodiment shown, the antenna moves in a linear fashion in and out of the compartment. Locking means (not shown) may hold the antenna in a fixed position. For example, ball-and-socket or frictional locks could be used. Alternatively, the antenna could be retracted by folding about a hinge into a recess in the portable computer case. In another embodiment, an external jack for connection of a roof-mount or other antenna could be provided.




The card bearing the hybrid communication control unit


68


is also provided with several other connectors. A first of these connectors on the card forms a connector for the speakerphone


52


and has three pins which provide transmit, receive, and signal ground lines. A second connector on the card is for the cellular transceiver and provides a pin for each line in the cellular bus


24


(shown in FIG.


1


). This connector must be compatible with the cellular control unit jack of the cellular transceiver selected, and may be provided with an extension cable to facilitate the connection. A third connector of the card allows external connection of the cellular control unit


14


to the card, and is of the type that mates with the second connector previously described. A fourth connector allows external connection of additional speakers and microphones. This connector preferably takes the form of a headset jack. A final connector accepts the RJ-11 plug of the public switched telephone network as described previously. Additional connectors may be provided for additional speakers or other known telephone and computing equipment.




The computer interface


78


is preferably of the type that converses directly with a central logic bus of the portable computer


90


, using the Signetics INS


8250


universal asynchronous receiver and transmitter and conventional techniques. Of course, the device might also converse with the portable computer using RS-


232


C or another known standard.




The data access arrangement


42


(DAA) may be a standalone DAA, such as Midcom part number 681—0012. A slight reduction in construction costs can be obtained by assembling a DAA out of components using techniques well-known in the art, so as to provide the protection required to connect to the public switched telephone network. This method is preferred. Digital DAA control lines


94


connect the DAA


42


to the input/output ports of microprocessor


70


, and the control lines include a ringing line. The DAA


42


may be controlled directly by the microprocessor


70


using the DAA digital control lines


94


. This control prompts the data access arrangement to issue appropriate signaling directions to, and relay directions from, the public switched telephone network. Such signalling directions include Dual Tone Multi-Frequency (DTMF) dialing, on-hook and off-hook conditions, timed on/off hook sequences used for pulse dialing, and ringing sense. When ringing on the public switched telephone network line


41


is detected by the DAA


42


, the DAA preferably causes an interrupt in the program sequence of microprocessor


70


. Alternatively, the ringing line of the DAA control lines


94


can be latched and then polled by the microprocessor periodically.




The DTMF signals are obtained from the tone generator


80


which is shown as a separate entity but may also be located either within the data access arrangement


42


or within the modem


82


. The tone generator


80


is connected to the analog switch by analog lines


96


and to the microprocessor


70


by tone control lines


98


. The tone generator operates in response to control signals from the microprocessor transmitted through the tone control lines


98


. The microprocessor may obtain the sequence of tones to be transmitted from control unit


14


or portable computer


90


in a manner that will be explained further. Analog signals of the tone generator may be passed to the data access arrangement


42


through the analog switch


72


.




The analog switch


72


may be a


4053


manufactured by Toshiba, and a number of devices are connected to this analog switch


72


. The connections internal to the hybrid communications control unit


68


will be described first. As explained previously, DAA


42


is connected to analog switch


72


by analog line


92


. Tone generator


80


is connected to the analog switch


72


by analog lines


96


, and modem


82


is connected to analog switch


72


by analog lines


102


. Analog switch control lines


100


connect the analog switch


72


to microprocessor


70


. The analog switch


72


accepts digital commands from the microprocessor


70


through analog switch control lines


100


to connect and disconnect the attached devices.




Next, the connections of the analog switch to devices external to the hybrid communications control unit


68


will be described. An optional microphone


103


may be connected to analog switch


72


by analog lines


104


, while an optional speaker


105


may be connected to the analog switch by analog lines


106


. The speakerphone


52


may be connected to the analog switch by analog lines


64


, and the cellular transceiver


4


is connected to the analog switch by analog lines


108


. The cellular control unit


14


is connected to the analog switch by analog lines


110


.




As shown in

FIG. 5

, additional components connected at the analog switch


72


provide the level conditioning (amplification or attenuation) and impedence matching appropriate to each device. These components comprise operational amplifiers with associated resistors and capacitors. A similar circuit is used for each input and output connection of the analog switch


72


, the only variation being the valves of the components, which are selected depending on the signal characteristics of the devices connected to the analog switch


72


. The output and input signals are standardized according to a unique and novel scheme. This standardization is essential if the system is to be capable of operably connecting any two devices. In explaining these standards, reference will be made to terminal devices and line devices, the terminal devices being the DTMF tone generator


80


, modem


82


, control unit


14


, speakerphone


52


, microphone


103


, and speaker


105


. The line devices are the DAA


42


and transceiver


4


.




Preferably, the output signals of all terminal devices, such as the microphone signal, are converted to a low-impedance, −10 DbV signal as part of the connection to analog switch


72


. This signal is suitable for direct input to DAA


42


, and is converted appropriately at the analog switch connection for input to other line devices, such as the cellular transceiver. The input signals of all connected terminal devices, such as the external speaker input, are provided at the analog switch connection with circuitry which converts a medium-impedance −10 DbV signal, as produced by DAA


42


, to a signal with the characteristics required for input to the individual terminal device. The analog outputs of other line devices, such as transceiver


4


, are converted at their analog switch connections to produce a signal with the same level and impedance characteristics as the signal produced by DAA


42


.




Of course, other standard impedances and signal levels could be chosen within the scope of the invention. In another preferred embodiment, standards for terminal and line devices could be made the same to facilitate implementation of call relaying and connection of terminal devices to other terminal devices.





FIG. 5

shows two examples of the level and impedance matching circuits used in the preferred embodiments of the device of the present invention.




In the first example, the output of microphone


103


, which may be a high-impedance (greater than 10 K Ohms), −40 DbV signal, is converted by op-amp circuit


112


to a low-impedance (less than 1K Ohms), −10 DbV signal suitable for direct switching to the DAA


42


. O-amp circuit


114


converts this same low-impedance, −10 dBV signal to a −20 dBV low-impedance signal suitable for input to cellular transceiver


4


.




In the second example shown in

FIG. 5

, the medium impedance (1-10 K Ohms), −10 dBV output signal of DAA


42


is converted by op amp circuit


116


to a low-impedance, 0 dBV signal appropriate for input to speaker


105


. The analog output of cellular transceiver


4


is converted by op-amp circuit


118


to produce a signal with the same level and impedance characteristics as the analog output signal of DAA


42


.




The following chart shows typical input and output impedance and level values for devices included in the present invention. Naturally, these values will vary depending on the specific devices selected.





















IMPEDANCE






ITEM




DIRECTION




LEVEL (DBV)




(KILO OHMS)











DTMF




OUTPUT




−6




1-10






MODEM




OUTPUT




−9




>10






MODEM




INPUT




−10 TO −40




>10






DAA




OUTPUT




−10 TO −40




1-10






DAA




INPUT




−9 MAXIMUM




<1






TRU




OUTPUT




−20




1-10






TRU




INPUT




−20




>10






CU




OUTPUT




−20




1-10






CU




INPUT




−20




>10






SPEAKER-




OUTPUT




−40




>1






PHONE






SPEAKER-




INPUT




0




<10






PHONE






MICRO-




OUTPUT




−40




>100






PHONE






SPEAKER




INPUT




−0




<0.01














Referring again to

FIG. 4

, when a signal appears on one of the lines


104


,


106


,


64


,


108


, or


110


, circuitry parallel to with the analog switch


72


generates a service request to the microprocessor


70


.

FIG. 9

shows how this service request is generated in response to an analog transmission from any of the lines noted above, and for purposes of explanation, an analog signal from cellular transceiver


4


will be used in

FIG. 9

, Referring now to

FIG. 9

, the transceiver


4


is connected to analog line


108


, which is connected to an input of an amplifier


120


which has an output


121


. The output


121


of amplifier


120


is connected to a capacitor and resistor circuit


122


having an output


123


. This output


123


is connected to the base of a transistor


124


having an emitter tied to ground and a collector


126


which provides an output. Collector


126


is connected to an RC network


128


having a resistor connected between collector


126


and +5 VDC, and a capacitor connected between collector


126


and ground. The RC network


128


is connected to a sensing line of the analog switch control lines


100


. The service request is created by taking the low level analog signal provided at analog line


108


and amplifying it to a very high level voltage with the amplifier


120


. This high level signal will alternately charge and discharge the capacitor and resistor circuit


122


in accordance with the period of the analog signal on analog line


108


. This charging and discharging of the circuit


122


will turn the transistor


124


off and on, and this transistor switching can be used to provide a digital level signal directly to the microprocessor. Preferably, however, the signal is further conditioned by the RC network


128


to provide a signal which is easily sensed by the microprocessor. The microprocessor can record in RAM memory the condition of signals received in this manner, or the processor can poll the outputs


100


when it is necessary to know which devices are connected. The circuit of

FIG. 9

thus allows the microprocessor to keep track of the devices that are connected to the portable hybrid communications system in an unique and novel manner.




The analog switch


72


acts as a cross-point switch, so that it is possible for more than one pair of analog signals to be connected at once without interference. For example, the cellular transceiver


4


could be connected to the speakerphone


52


while the data access arrangement


42


is connected to the modem


82


, allowing simultaneous voice and data communications. This operation is made possible in part by the unique circuit disclosed and the standardization of analog levels of the present invention.




The modem


82


is directed by the microprocessor


70


using a modem control line


129


. These directives include turning on and off the various stages of the modem's modulation and demodulation circuits. The analog signals produced by modem


82


are connected to the analog switch


72


so that the analog signals are available for switching, in a manner similar to the analog connection of the data access arrangement


42


to the analog switch


72


. The microprocessor preferably receives and retransmits data to and from modem


82


and computer interface


78


. Alternatively, a direct data connection or connection switchable manually or under the control of microprocessor


70


may be provided.




The operation of the power arbitration unit


76


will now be described. Input/output ports of microprocessor


70


are connected by power arbitration control lines


94


to the power arbitration unit


76


. The power arbitration unit


76


contains circuitry which responds to the digital signals of microprocessor


70


to connect and disconnect external power from external power supply


88


to control unit


14


and transceiver


4


. This power arbitration uses conventional microprocessor controlled switching units and techniques and the microprocessor signals are used at the request of the user or by the microprocessor's own internal program. Power wires


162


are provided between the control unit


14


and power arbitration unit


76


. These wires provide the control unit


14


with power for operation, and are controlled by the microprocessor


70


using the power arbitration unit


76


, thus giving the microprocessor


70


control of signal and power availability to the control unit


14


. Power line


132


and external power line


134


connect power arbitration


76


and transceiver


4


so that the power arbitration unit


76


can control power to transceiver


4


in response to signals from microprocessor


70


. The microprocessor


70


may store the status of power to the control unit and transceiver in random access memory for use as described later.




Digital switch


74


is connected to microprocessor


70


by digital switch control line


135


and digital data line


136


. The digital switch is also connected to the cellular transceiver


4


by digital lines


130


and to the control unit


14


by digital lines


131


. The digital signals provided by the transceiver unit


4


and control unit


14


are presented to the digital switch


74


of the hybrid control unit where they may be conditioned as necessary before being presented to the microprocessor


70


.





FIG. 8

is a schematic diagram of a portion of digital switch


74


. Only the circuit for one pair of digital data lines


131


and


130


is shown. There are actually a plurality of digital data lines


131


and


130


, so that a plurality of the circuits illustrated in

FIG. 8

are used in the system, one for each digital data line pair


130


and


131


. Depending on the control unit and transceiver selected, some of the digital lines


130


and


131


may need only some of the digital switch functions. For example, a line may only require sensing by the processor. Those skilled in the art will appreciate that the entire circuit shown need not be provided for such lines. The circuit shown consists of a control unit pull down transistor


138


, a control unit-to-transceiver pass thru transistor


140


, a transceiver pull down transistor


142


, each transistor having a base, emitter, and collector, and associated resistors. Transistors


138


,


140


and


142


may preferably be Motorola 2N2222A types.




Specifically, the digital switch control line


135


is connected to a control unit-to-transceiver pass thru control line


148


which is connected through a resistor to the base of the control-unit to-transceiver pass thru transistor


140


. The collector of transistor


140


is connected to digital data line


131


, while the emitter of transistor


140


is connected to digital data line


130


.




Digital data line


131


is connected through a resistor to a control unit sense line


156


, which is connected through an internal input/output bus


160


to one of the digital data lines


136


. Likewise, digital data line


130


is connected through a resistor to a transceiver sense line


158


, which is also connected through the bus


160


to a different digital data line


136


.




Two additional digital data lines


136


are connected through bus


160


to a control unit assert line


152


and a transceiver assert line


154


respectively. Control unit assert line


152


is connected through a resistor to the base of the control unit pulldown transistor


138


. The collector of this transistor


138


is connected directly to digital data line


131


, while its emitter is connected directly to ground. Likewise, transceiver assert line


154


is connected through a resistor to this base of the transceiver pulldown transistor


142


. The collector of the transistor


142


is connected directly to digital data line


130


, while its emitter is connected directly to ground.




The digital lines


131


of the control unit


14


and digital lines


130


of the transceiver


4


are, in the preferred embodiment, open-collector type lines. Inside the transceiver


4


and control unit


14


are pull-up resistors


144


and


146


that provide the voltage used to sense the logic level when the digital lines


131


and


130


are in their open collector state. These pull-ups may be placed within the digital switch


74


when not provided by the control unit


14


and transceiver


4


. When the microprocessor asserts digital switch and control


135


, the control unit-to-transceiver pass thru control line


148


is asserted, turning on the control unit-to-receiver pass thru transistor


140


thus connecting the control unit digital line


131


to the transceiver digital line


130


and allowing data to flow between the control unit


14


and transceiver


4


. When the control unit-to-transceiver pass thru transistor


140


is turned off, the control unit


14


and transceiver


4


cannot exchange digital information.




The control unit and transceiver may be used independent of each other if proper digital information is provided to them. The microprocessor can provide the proper digital information by using its digital data lines


166


. A plurality of digital lines


136


are used to enable assertion and sensing of each pair of digital data lines


130


and


131


. These asserting and sensing lines are bussed internally to the digital switch


74


on the internal Input/Output Bus


160


. When asserted, the appropriate digital data line


136


asserts the control unit assert line


152


or transceiver assert line


154


to turn on respectively control unit pull down transistor


138


or transceiver pull down transistor


142


. This will change the state respectively of the control unit digital line


131


or transceiver digital line


130


from their open collector pulled up (high) condition to an asserted pulled down (ground) condition, thus allowing transmission of digital signals between the microprocessor


70


and the control unit


14


or transceiver


4


respectively. Any digital signals present on the digital lines


131


or


130


are sensed by the microprocessor through the control unit sense line


156


or the transceiver sense line


158


, which are connected through bus


160


to appropriate digital data lines


136


. Preferably, individual digital switch control lines


135


and digital data lines


136


are provided from the input/output ports of the microprocessor. If sufficient ports are not available, additional multiplexing circuits may be interposed between microprocessor


70


and digital switch


74


in a manner well known in the art.




Of course, methods of digital signaling other than the open collector method could have been chosen for the signaling used between the control unit


4


and transceiver


4


, such as open-emitter, with pulldown resistors and pullup transistors, or methods where no open circuit conditions exist.




Referring again to

FIG. 4

, all required digital signals necessary to the proper functioning of the transceiver unit


4


are provided by directives issued from the microprocessor


70


through digital data lines


136


, through the digital switch


74


, through the digital wires


130


to the transceiver unit


4


. An example of a necessary digital signal of this type is an ON/OFF signal, this signal being conventionally given to the transceiver unit


4


by user keystrokes on the key pad of the cellular control unit. These necessary signals may be directed by the microprocessor


70


as a result of its own internal program, or at the request of the user. User requests may be obtained through the portable computer


90


and computer interface


78


or by the user setting one of the toggle switches


86


.




The relationship and connections of conventional devices to the hybrid communications control unit will now be described. The speakerphone


52


is preferably built into a case holding the portable computer


90


. The hybrid communications control unit obtains access to the analog signals of the speakerphone


52


using the analog wires


64


included in the speakerphone


80


, which terminate in a three-pin connector which mates with the speakerphone connector on the hybrid communications control unit board. The microprocessor


70


controls switching and conditioning of the analog signals using the analog switch


72


, in a manner similar to the switching of the data access arrangement signals by analog switch


72


.




The invention may incorporate other optional speakers


105


and microphones


103


, with their analog signals connected to the analog switch


72


using analog wires


106


and


104


, respectively, in a manner similar to that used with the analog signals of the data access arrangement


42


or speakerphone


52


. An external speaker and microphone in the form of a telephone headset is preferably used in the present invention.




The cellular transceiver unit


4


is preferably built into the personal computer case in a space which might otherwise be occupied by a disk drive. The transceiver is connected to the invention by wires similar to those in the transceiver unit bus


24


(shown in FIG.


1


), specifically analog wires


108


, digital wires


130


, power wires


132


and external power wires


134


. All analog signals present at the transceiver unit


4


are switched and conditioned by the analog switch


72


.




Thus, the total operating condition of the transceiver unit


4


is known and may be controlled by the microprocessor


70


. Control signals may be initiated through the microprocessor's internal program or by user interaction with the microprocessor, either through the toggle switches


86


or through the portable computer


90


. The microprocessor


70


can switch the analog signals of the transceiver unit


4


onto any of the remaining analog paths by controlling the operating state of the analog switch


72


. The microprocessor


70


can selectively apply or remove external power to the transceiver unit


4


using the power arbitration unit


76


.




The cellular control unit


14


preferably connects to a jack on the portable computer case, this jack being connected to the hybrid communications control unit board through a cable and connector which mates with the appropriate connector on the board (previously described). The analog wires


110


are connected to the analog switch


72


, thus providing the microprocessor with the ability to switch the analog signals of the control unit as required. The digital wires


131


are connected to the digital switch


74


, thus providing the microprocessor


70


with status sense and digital control of the control unit


14


as described previously, and the power wires


162


are connected to the power arbitration unit


76


, providing the microprocessor with the ability to control the power to the control unit


14


as explained previously. Thus, the microprocessor


70


has complete control of the functioning of the control unit


14


as it has with the transceiver unit


4


.




OPERATION




In the first mode of operation, voice calls can be placed and received on the public switched telephone network. At the request of the user communicated by toggle switches


86


or as a result of a user- or software-generated signal from the portable computer


90


sensed through computer interface


78


, the microprocessor


70


instructs the data access arrangement


42


through the digital control lines


94


to take the public line off-hook.




If tone dialing is to be used, the microprocessor directs the analog switch


72


to connect data access arrangement


42


and tone generator


80


, whereupon the microprocessor transmits tone commands for the number to be dialed to tone generator


80


through tone control line s


98


. If pulse dialing is desired, the microprocessor transmits the proper series of on- and off- hook signals to the data access arrangement


42


using DAA control lines


94


.




After dialing, the microprocessor commands the analog switch


72


to connect the analog wires


92


of the data access arrangement


42


to the analog wires


64


of the speakerphone


52


thus providing the user with speakerphone access to the public switched telephone network


40


.




On completion of the call, the user can instruct the microprocessor to disconnect the public telephone line using the switch or computer means previously described. The microprocessor will then instruct the data access arrangement to place the landline on-hook, and instruct the analog switch to disconnect the voice device and data access arrangement.




When the public switched telephone network signals to the data access arrangement


42


that an incoming call is present, that condition (ringing) is sensed by the microprocessor through the ringing line of data access arrangement control lines


94


, either through an interrupt or by polling the circuit. The microprocessor makes the user or portable computer aware of this condition by sending a message through the computer interface


78


or by placing an audible tone generated by the data access arrangement


42


or elsewhere (such as the tone generator


80


) on any speaker analog path (such as an optional speaker


105


by means of wires


106


). The user may then elect to answer or ignore the call. This decision is sent to the microprocessor


70


by the user using the portable computer


90


. Alternatively, a toggle switch could be provided for this purpose. In addition, the microprocessor


70


may be instructed any time prior to the ringing condition to always answer the call (auto-answer mode).




For incoming calls, the microprocessor


70


selects the device to be connected in a novel manner, based on the devices connected and programmed priorities. The microprocessor knows the present power-on condition of the transceiver unit


4


and control unit


14


by monitoring the power arbitration unit


76


. The presence of optional speakers


105


can be sensed at the optional speaker connection, using the toggle switch method similar to that previously described for the high current external power switch for the transceiver unit. The presence of public switched telephone network


40


can be sensed using the data access arrangement


86


and analog switch


72


as described previously with reference to FIG.


9


. The microprocessor can then choose, based on the availability of speakers and microphones and based on its preprogrammed priorities, the most appropriate analog path to use for all analog signals. Preferably, the microprocessor will first check for the presence of a headset, connecting the incoming call thereto if the headset is present. If there is no headset present, the microprocessor will direct that the incoming call be connected to the speakerphone. Those skilled in the art will appreciate that these priorities could be modified and that other devices could be included in the priority. While the priority is preferably built into the firmware, priorities could also be modifiable by the end user, either by sending a command from the personal computer or by adjusting toggle or dual-inline-pin switches.




The device of the present invention may also place and answer calls over the public switched telephone network


40


using analog devices that are not part of the speakerphone


52


, such as speaker


105


and microphone


103


which are preferably embodied in a unitary headset which plugs into the hybrid communications control unit board.




In a second mode of operation, the modem


82


can be used to send and receive data over the public switched telephone network


40


using the data access arrangement


42


in a manner similar to that previously described using the speakerphone


52


, except that the analog switch


72


connects the modem


82


to the data access arrangement


42


rather than connecting the speakerphone. After the call is set up, the microprocessor


70


directs modem


82


to transmit data using standard protocols and error checking that are well-known in the art. Data is transmitted to and received from the microprocessor


70


by the portable computer


90


through computer interface


78


. The microprocessor


70


retransmits the transmitted data to the modem


82


, where the digital data is converted to a modulated analog signal and transmitted over the public switched telephone network. The microprocessor receives incoming data from the modem and retransmits this received data to the portable computer


90


.




In a third mode of operation, the system can place and receive calls over the cellular telephone network. Cellular calls may be placed using the speakerphone


52


or the headset comprising speaker


105


and microphone


103


, but in a manner different from that previously described for placing and receiving speakerphone calls over the public switched telephone network. Microprocessor


70


first sends the proper digital signals to transceiver


4


through digital data lines


136


, digital switch


74


, and digital data lines


130


, instructing the transceiver to initiate a call to the desired number. The microprocessor then instructs analog switch


72


to connect the analog wires


108


of the transceiver unit


4


and the analog wires


64


of the speakerphone


52


. When the user indicates to the microprocessor that the call is complete, disconnect instructions are transmitted to the transceiver and analog switch.




When there is an incoming call on the cellular network, the system processes the incoming call in a novel and unique manner. The processing required depends on the type of transceiver used. For example, Motorola brand transceivers generate a digital signal to alert the user to ringing, while OKI brand transceivers generate an alternating series of analog tones. The OKI transceiver also uses analog tones to indicate busy, ringing, and out-of-service area signals. These signals differ from the incoming call signal.




If the transceiver used produces digital signals, an incoming call will be signalled on digital line


130


, causing the digital switch


74


to request service from the microprocessor


70


. The microprocessor will read the data from the transceiver; if the data indicates an incoming call, the microprocessor will inform the user and may connect the call to the speakerphone, headset, or other device.




If the transceiver produces an analog signal to announce an incoming call, this signal will appear on analog data line


108


. Analog switch


72


will generate a service request to microprocessor


70


using the circuitry described earlier and shown in FIG.


9


. The microprocessor will evaluate the cadence or period of the signal to determine whether it is actually an incoming call signal, rather than one of the other signals described previously. On confirmation of an incoming call condition, the microprocessor will inform the user and take action as described previously.




In a fourth mode of operation, the invention allows the modem


82


to be used during a cellular telephone network call placed using the transceiver unit


4


. The microprocessor first signals the transceiver


4


to initiate the call as described in the procedure for placing a cellular voice call. Next, the processor directs analog switch


72


to connect transceiver


4


to modem


82


using analog lines


108


and analog lines


102


, respectively. The microprocessor


70


then accepts data from the portable computer


90


through interface


78


for retransmission. The microprocessor then selects a special protocol for use on the cellular network, this automatic protocol selection being novel and unique. Rather than using standard data transfer methods as with the landline, the microprocessor will preferably retransmit the data through the modem in variable-sized packets with special protocols and error checking appropriate to a cellular environment. These methods are described in detail in the inventor's U.S. Pat. No. 4,697,281, which disclosure is incorporated herein by reference. Data received from the cellular link will be demodulated by the modem


82


and checked by the processor, which will remove the overhead bits needed for error checking and then retransmit the data to the portable computer


90


. As in the other operating modes described, the setup process is reversed when the call is complete.




In a fifth mode of operation, the microprocessor


70


can cause the control unit


14


to assume its “original” function of placing and receiving calls over the cellular telephone network. The microprocessor


70


sends controlling information to the power arbitration unit, analog switch


72


, and digital switch


74


directing these devices to connect all control unit wires and paths to their corresponding transceiver unit ires and paths. Transceiver functions can then be controlled directly by the control unit.




In a sixth mode of operation, the cellular control unit


14


can be used to place calls on the public telephone network. This mode of operation provides novel and unique functionality since cellular control units cannot normally be used with public telephone network lines. In this operation mode, the speaker and microphone of the cellular control unit are used in conjunction with the data access arrangement


42


to place and receive calls over the public switched telephone network


40


in a manner similar to that shown for placing and receiving calls over the public switched telephone network using the speakerphone


52


.




The keypad


18


(shown in

FIG. 1

) of control unit


14


can be used to direct the microprocessor


70


, rather than using the toggle switches


86


or portable computer


90


. As described previously, the digital switch


74


makes data available to the microprocessor when a connected device transmits. This signal can be used as an interrupt or can be latched and polled by the processor. Through digital data line


131


, digital switch


74


, and digital data line


136


, the microprocessor can then accept data representative of the keys pressed on the control unit. Thus, dialing instructions may be obtained from the key pad


18


of the control unit


14


. Note that the control unit


14


does not provide any internally generated audible feedback when a key is pressed on the key pad


18


. This audible feedback is normally provided by the transceiver unit


4


when the control unit


14


is used with the transceiver unit


4


as in FIG.


1


. Therefore, audible feedback must be provided by other means. When a key is pressed on the key pad


18


of the control unit


14


, the microprocessor may instruct the tone generator


80


to produce a specific frequency and cadence analog signal that is transmitted through the analog switch to any available speaker, such as the optional speaker


105


.




Further, as the control unit


14


contains a display, audible signals and digital messages previously described that originate from microprocessor


70


may be augmented by a visual message on that display, shown at


16


in FIG.


1


. The microprocessor


70


produces the visual message by sending the appropriate digital commands through the digital switch


74


means to the control unit


14


and thus to its display


16


.




Also, as the control unit may not always have its microphone


22


and speaker


20


enabled, the microprocessor


70


ma issue appropriate directives to the control unit


14


through digital data line


136


to enable the control unit's microphone and speaker. Disabling of the speaker and microphone can be directed in a like manner.




As the key pad of the control unit


14


contains an ON/OFF switch, said switch may be used as a toggle switch


86


in a manner similar to that of the previously described high current power switch for the transceiver unit


4


.




Additional functions possible with minor modifications to the preferred embodiment include connections that are not commonly desired such as speakerphone to control unit.




The present device can also relay calls in a novel and unique manner by connecting the data access arrangement to the transceiver unit. While the software in the attached microfiche appendix does not implement this feature, the flow diagram of

FIG. 7

shows the required steps for relaying a cellular call to a landline.




Referring now to

FIG. 7

, a cellular ringing condition initiates the process. The microprocessor sends signals to the transceiver, directing the transceiver to answer the cellular call. The microprocessor then determines whether the user would like the call connected to the speakerphone or headset, or to the modem. The user can give instructions at the time of call receipt, or the instructions may have been given at an earlier time. If no connection to a terminal device is desired, the microprocessor waits for a landline phone number. This number can be entered from the personal computer


90


, from the control unit


14


, or may have been entered at an earlier time. When the number is ready, the microprocessor follows the steps required to place a landline call, including taking the line off hook, connecting tone generator


80


to DAA


42


, and generating DT MF t ones. The microprocessor then instructs the analog switch to connect the transceiver


4


and DAA


42


. The microprocessor then waits until the cellular call is terminated, either by the caller or by the user. The microprocessor then signals the DAA to place the landline on-hook and signals the analog switch to disconnect the TRU and DAA.




This same general procedure can be used to relay calls from landline to cellular.




In addition, those skilled in the art will appreciate that more than one of the functions described hereto can be performed simultaneously so long as the analog switch chosen is capable of connecting more than a single pair of devices. Thus, in a novel and unique manner, the system can either provide voice and data channels at the same time, or provide two voice channels at the same time, one channel being over the public telephone network and one channel being over the cellular network.




INDUSTRIAL APPLICABILITY




The present invention relates to communications in the portable environment generally, and more specifically to the cellular and landline telephone networks, and their access using both voice and data methods a well as portable computer control of that access.



Claims
  • 1. A portable hybrid communications system comprising:(a) entry means for entering a data signal; (b) public telephone network connection means for accessing a public telephone network in response to public telephone accessing control signals; (c) modem means for modulating and demodulating data signals; (d) cellular transceiving means for accessing a cellular network in response to cellular network accessing control signals; (e) analog switch means connected to the public telephone network connection means, to the cellular transceiving means, and to the modem means; (f) digital data connecting means for selectively creating a digital data transmission connection with the cellular transceiving means; (g) central processing means connected with said entry means, said public telephone network connection means, said modem means, said analog switch means, and said digital data connection means for generating public telephone accessing control signals and cellular network accessing control signals and for selectively operably connecting the modem means to either the public telephone network or the cellular network so that the central processing means may transmit or receive information over the public or cellular network.
  • 2. The system of claim 1 wherein the entry means is a personal computer interfaced to the central processing means.
  • 3. The system of claim 1 having means to selectively control power application to the cellular transceiving means.
  • 4. The system of claim 1 wherein signal sensing means responsive to incoming cellular or public telephone network calls signals the user that an incoming call condition exists.
  • 5. The system of claim 1 wherein the central processing means may selectively operably connect an active cellular network line to an active public telephone network line for call relaying.
  • 6. The system of claim 1 wherein a cellular antenna associated with the cellular radiotelephone transceiving means is retractable into a case housing the system.
  • 7. The system of claim 1 wherein the central processing means resides on a circuit board which fits in a card slot of the personal computing means.
  • 8. The system of claim 7 wherein the card slot is a modem card slot.
  • 9. The system of claim 1 further including voice signalling means for generating and receiving voice signals connected to the central processing means, wherein the central processing means selectively operably connects said voice signalling means to either the public telephone network connection means or the cellular transceiving means.
  • 10. The system of claim 9 wherein the central processing means may selectively operably connect the modem means to either the cellular transceiving means or the public telephone network connection means, while the central processing means may operably connect the voice signal generating and receiving means to the other of the cellular transceiving means or public telephone network connection means, permitting simultaneous voice and data communications.
  • 11. The system of claim 9 wherein the central processing means selectively produces a first processing method when data signals are transmitted or received using the public telephone network and a second processing method when data signals are transmitted or received using the cellular transceiving means.
  • 12. The system of claim 9 wherein signal sensing means responsive to an incoming cellular or public telephone network call cause the central processing means to connect the call selectively to a data or voice terminal means associated with the system.
  • 13. The system of claim 9 wherein the voice signalling means is a speakerphone built into a case housing the personal computing means.
  • 14. The system of claim 9 having means for connecting one or more external voice signal generating and receiving devices which the central processing means may selectively operably connect to either the cellular transceiving means or the public telephone network connection means.
  • 15. The system of claim 14 wherein one of the external voice signal generating and receiving devices is a telephone headset.
  • 16. The system of claim 14 wherein the central processing means generates all the signals which cause the cellular transceiving means to transmit and receive voice signals over the cellular network.
  • 17. The system of claim 14 having sensing means to sense the connective status of the external voice signal generating and receiving devices.
  • 18. The system of claim 17 wherein signal sensing means responsive to incoming cellular or public telephone network calls cause these calls to be connected selectively to a data or voice terminal means associated with the system, where the choice of terminal means to be connected depends on the terminal means available and on a preselected priority when a plurality of terminal means are available.
  • 19. The system of claim 14 wherein one of the external voice signal generating and receiving devices is a cellular control unit.
  • 20. The system of claim 19 including means to selectively control the application of power to the cellular control unit and cellular transceiving means.
  • 21. The system of claim 19 wherein the cellular control unit has means for information display or audio signalling, and wherein the central processing means transmit signals to the cellular control unit, causing the control unit to display information or signal audibly.
  • 22. The system of claim 19 wherein the cellular control unit has input means for accepting user input and wherein the central processing means accepts signals from the control unit representative of the user input.
  • 23. The system of claim 19 wherein the cellular control unit has a microphone and speaker, and wherein means are provided for selectively transmitting signals from the central processing means to the cellular control unit to enable or disable the microphone and speaker.
  • 24. The system of claim 19 wherein the central processing means may control operation of the system such that the cellular control unit functions to transmit and receive signals over the public telephone network while the cellular transceiver is disabled.
  • 25. Apparatus for controlling the path of voice and data signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (TRU), a cellular (CU) handset and a computer having at least a communications software program, a keyboard and an I/O port for communications, said apparatus for controlling comprising: analog switching means structured to receive voice signals and data signals from a plurality of different predetermined input sources and to route the received voice signals and data signals to different predetermined selectable destinations, said routing being determined by control signals received by said analog switching means; landline interface means operatively connected to said analog switching means, said landline interface means being structured to be connected to a landline; TRU interface means operatively connected to said analog switching means, said TRU interface means being structured to be connected to the cellular transmit/receive unit; cellular interface means operatively connected to said analog switching means, said cellular interface means being structured to be connected to the cellular (CU) handset; speaker phone interface means operatively connected to said analog switching means, said speaker phone interface means being structured to be connected to the speaker phone; a modem operatively connected to said analog switching means; and a central processing unit operatively connected to said analog switching means, landline interface means, TRU interface means, cellular interface means and said modem to receive sense signals therefrom and to send control signals thereto, said central processing unit being structured to be connected to the I/O port for communications of the computer.
  • 26. The apparatus of claims 25 wherein said analog switching means comprises at least one analog multiplexer/demultiplexer unit operatively connected to receive an input from any one of said plurality of different predetermined input sources and provide an output to one of said different predetermined selectable destinations, said plurality of different predetermined input sources comprises the microphone of the cellular (CU) handset through the cellular interface means, the microphone of the speaker phone through the speaker phone interface means and the output of the modem, said different predetermined selectable destinations comprises the cellular transmit/receive unit through the TRU interface means and the landline through the landline interface means.
  • 27. The apparatus of claim 25 wherein said analog switching means comprises at least one analog multiplexer/demultiplexer unit operatively connected to receive an input from any one of said plurality of different predetermined input sources and provide an output to one of said different predetermined selectable destinations, said plurality of different predetermined input sources comprises the cellular transmit/receive unit through the TRU interface means and the landline through the landline interface means, said different predetermined selectable destinations comprises the speaker of the cellular (CU) handset through the cellular interface means, the speaker of the speaker phone through the speaker phone interface means and the input of the modem.
  • 28. The apparatus of claim 25 wherein said cellular interface means comprises amplifier means to amplify the signals from the microphone of said cellular (CU) handset to the analog switching means and to amplify the signals from the analog switching means to the speaker of said cellular (CU) handset.
  • 29. The apparatus of claim 25 wherein said TRU interface means comprises amplifiers means to amplify the signals from the analog switching means to the cellular transmit/receive unit and to amplify the signals to the analog switching means from the cellular transmit/receive unit.
  • 30. The apparatus of claim 25 wherein said landline interface means comprises amplifier means to amplify the signals from the landline to the analog switching means and to amplify the signals to the landline from the analog switching means.
  • 31. The apparatus of claim 25 wherein said computer, said speaker phone, said cellular transmit/receive unit, said cellular (CU) handset and said apparatus for controlling are built into a single portable unit.
  • 32. In combination:a computer having at least a communications software program, a keyboard and an I/O port for communications; a speaker phone having at least a speaker and a microphone; a cellular transmit/receive unit (TRU) and a cellular (CU) handset, sand cellular (CU) handset including a microphone and a speaker; apparatus for controlling the path of voice and data signals from and to said computer, said speaker phone, said cellular transmit/receive unit (TRU) and said cellular (CU) handset, said apparatus for controlling comprising: analog switching means structured to receive voice signals and data signals from a plurality of different predetermined input sources and to route the received voice signals and data signals to different predetermined selectable destinations, said routing being determined by control signals received by said analog switching means; landline interface means operatively connected to said analog switching means, said landline interface means being structured to be connected to a landline; TRU interface means operatively connected to said analog switching means, said TRU interface means being structured to be connected to the cellular transmit/receive unit; cellular interface means operatively connected to said analog switching means, said cellular interface means being structured to be connected to the cellular (CU) handset; speaker phone interface means operatively connected to said analog switching means, said speaker phone interface means being structured to be connected to the speaker phone; a modem operatively connected to said analog switching means; and a central processing unit operatively connected to said analog switching means, landline interface means, TRU interface means, cellular interface means and said modem to receive sense signals therefrom and to send control signals thereto, said central processing unit being structured to be connected to the I/O port for communications of the computer.
  • 33. The apparatus of claim 32 wherein said analog switching means comprises at least one analog multiplexer/demultiplexer unit operatively connected to receive an input from any one of said plurality of different predetermined input sources and provide an output to one of said different predetermined selectable destinations, said plurality of different predetermined input sources comprises the microphone of the cellular (CU) handset through the cellular interface means, the microphone of the speaker phone through the speaker phone interface means and the output of the modem, said different predetermined selectable destinations comprises the cellular transmit/receive unit through the TRU interface means and the landline through the landline interface means.
  • 34. The combination of claim 32 wherein said analog switching means comprises at least one analog multiplexer/demultiplexer unit operatively connected to received an input from any one of said plurality of different predetermined input sources and provide an output to one of said different predetermined selectable destinations, said plurality of different predetermined input sources comprises the cellular transmit/receive unit through the TRU interface means and the landline through the landline interface means, said different predetermined selectable destinations comprises the speaker of the cellular (CU) handset through the cellular interface means, the speaker of the speaker phone through the speaker phone interface means and the input of the modem.
  • 35. The combination of claim 32 wherein said cellular interface means comprises amplifier means to amplify the signals from the microphone of said cellular (CU) handset to the analog switching means and to amplify the signals from the analog switching means to the speaker of said cellular (CU) handset.
  • 36. The combination of claim 32 wherein said TRU interface means comprises amplifier means to amplify the signals from the analog switching means to the cellular transmit/receive unit and to amplify the signals to the analog switching means from the cellular transmit/receive unit.
  • 37. The combination of claim 32 wherein said landline interface means comprises amplifier means to amplify the signals from the landline to the analog switching means and to amplify the signals to the landline from the analog switching means.
  • 38. The combination of claim 32 wherein said computer, said speaker phone, said cellular transmit/receive unit, said cellular (CU) handset and said apparatus for controlling are built into a single portable unit.
  • 39. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (TRU) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of: placing the power switch of the cellular TRU to the ON position applying power to the cellular TRU; sending a sense signal to the CPU indicating the power switch of the cellular TRU has been placed to the ON position; placing the power switch of the cellular (CU) handset to the ON position; sending a sense signal to the CPU indicating the power switch of the cellular (CU) handset has been placed to the ON position; sending a control signal from the CPU to the cellular interface means to cause power to be applied to the cellular (CU) handset; and sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the cellular (CU) handset to the transmit input of the cellular TRU through the TRU interface means and to cause the analog switching means to switch the receive output of the cellular TRU to the speaker of the cellular (CU) handset through the TRU interface means; thereby allowing voice signals to be transmitted to and received from a location whose telephone number has been dialed on the cellular (CU) handset and also allowing voice signals to be received from and transmitted to a location which has dialed the telephone number of the cellular TRU and the cellular (CU) handset.
  • 40. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (TRU) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of: placing the power switch of the cellular TRU to the ON position applying power to the cellular TRU; sending a sense signal to the CPU indicating the power switch of the cellular TRU has been placed to the ON position; placing the power switch of the computer to the ON position applying power to the computer; activating the speaker phone; sending a sense signal to the CPU indicating the speaker phone has been activated; sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the speaker phone to the transmit input of the cellular TRU through the TRU interface means and to cause the analog switching means to switch the receive output of the cellular TRU to the speaker of the speaker phone through the TRU interface means; and activating the communications software program in the computer; thereby allowing voice signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the telephone number of the cellular phone system and a proper command-to-answer coding has been input on the keyboard of the computer.
  • 41. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a telephone-type headset, a cellular transmit/receive unit (TRU) having a telephone number, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communication, said method comprising the steps of: placing the power switch of the cellular TRU to the ON position applying power to the cellular TRU; sending a sense signal to the CPU indicating the power switch of the cellular TRU has been placed to the ON position; placing the power switch of the computer to the ON position applying power to the computer; activating the telephone-type headset; sending a sense signal to the CPU indicating the telephone-type headset has been activated; sending control signals to cause the analog switching means to switch the output of the microphone of the telephone-type headset to the transmit input of the cellular TRU through the TRU interface means and to cause the analog switching means to switch the receive output of the cellular TRU to the speaker of the telephone-type headset through the TRU interface means; and activating the communications software program in the computer; thereby allowing voice signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the telephone number of the cellular phone system and a proper command-to-answer coding has been input on the keyboard of the computer.
  • 42. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (TRU) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of: placing the power switch of the computer to the ON position applying power to the computer; activating the speaker phone; sending a sense signal to the CPU indicating the speaker phone has been activated; sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the speaker phone to the landline through the transmit lead of the landline interface means and to cause the analog switching means to switch the output of the landline, through the receive lead of the landline interface means, to the speaker of the speaker phone; and activating the communications software program in the computer; thereby allowing voice signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the landline telephone number of the system and a proper command-to-answer coding has been input on the keyboard of the computer.
  • 43. A method of controlling the path of voice signals in a communications system which comprises at least a speaker phone, a telephone-type headset, a cellular transmit/receive unit (TRU) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of: placing the power switch of the computer to the ON position applying power to the computer; activating the telephone-type headset; sending a sense signal to the CPU indicating the telephone-type headset has been activated; sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the microphone of the telephone-type headset to the landline through the landline interface means and to cause the analog switching means to switch the output of the landline, through the receive lead of the landline interface means, to the speaker of the telephone-type headset; and activating the communications software program in the computer; thereby allowing voice signals to be transmitted to and receive from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing voice signals to be received from and transmitted to a location which has dialed the landline telephone number of the system and a proper command-to-answer coding has been input on the keyboard of the computer.
  • 44. A method of controlling the path of data signals in a communications system which comprises at least a speaker phone, a cellular transmit/receive unit (TRU) having a telephone number, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of: placing the power switch of the cellular TRU to the ON position applying power to the cellular TRU; sending a sense signal to the CPU indicating the power switch of the cellular TRU has been placed to the ON position; placing the power switch of the computer to the ON position applying power to the computer; sending control signals from the CPU to the analog switching means to cause the analog switching means to switch the output of the modem to the transmit input of the cellular TRU through the TRU interface means and to cause the analog switching means to switch the receive output of the cellular TRU to the input of the modem through the TRU interface means; and activating the communications software program in the computer; thereby allowing data signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing data signals to be received from and transmitted to a location which has dialed the telephone number of the cellular phone system and a proper command-to-answer coding has been input on the keyboard of the computer.
  • 45. A method of controlling the path of data signals in a communications systems which comprises at least a speaker phone, a cellular transmit/receive unit (TRU) having a telephone number, a cellular (CU) handset, apparatus for controlling the path of voice and data signals having at least a CPU, an analog switching means, a TRU interface means, a landline interface means, a speaker phone interface means, a modem and a cellular interface means and a computer having at least a communications software program, a keyboard and an I/O port for communications, said method comprising the steps of: placing the power switch of the computer to the ON position applying power to the computer; sending a control signal from the CPU to the analog switching means to cause the analog switching mean to switch the output of the modem to the landline through the transmit lead of the landline interface means and to cause the analog switching means to switch the output of the landline, through the receive lead of the landline interface means, to the input of the modem; and activating the communications software program in the computer; thereby allowing data signals to be transmitted to and received from a location whose telephone number and associated coding has been input on the keyboard of the computer and also allowing data signals to be received from and transmitted to a location which has dialed the landline telephone number of the system and a proper command-to-answer coding has been input on the keyboard of-the computer.
  • 46. A portable hybrid communications control unit for selectively transmitting and receiving data over different telephone networks including a cellular network using a cellular transceiver, comprising(a) entry means for entering a data signal; (b) public telephone network connection means for accessing a public telephone network in response to public telephone accessing signals; (c) modem means for modulating and demodulating data signals; (d) cellular transceiving connection means adapted to be connected with a cellular transceiver for accessing a cellular network in response to cellular network accessing control signals; (e) analog switch means connected to the public telephone network connection means, to the cellular transceiving connection means, and to the modem means; (f) digital data connecting means for selectively creating a digital and data transmission connection with the cellular transceiving means; and (g) central processing means connected with said entry means, said public telephone network connection means, said cellular transceiver connection means, said modem means, said analog switch means, and said digital data connection means for generating public telephone accessing control signals and cellular network accessing control signals and for selectively operably connecting the modem means to either the public telephone network or the cellular network through the cellular transceiver so that the central processing means may transmit or receive information over the public or cellular network.
  • 47. The system of claim 46 wherein the entry means is a personal computer interfaced to the central processing means.
  • 48. The system of claim 46 having means to selectively control power application to the cellular transceiver.
  • 49. The system of claim 46 wherein the central processing means may selectively operably connect an active cellular network line to an active public telephone network line for call relaying.
  • 50. The system of claim 46 wherein a cellular antenna associated with the cellular radiotelephone transceiver is retractable into a case housing the system.
  • 51. The system of claim 46 wherein the central processing means resides on a circuit board which fits in a card slot of the personal computing means.
  • 52. The system of claim 51 wherein the card slot is a modem card slot.
  • 53. The system of claim 46 further including voice signalling means for generating and receiving voice signals connected to the central processing means, wherein the central processing means selectively operably connects said voice signalling means to either the public telephone network connection means or the cellular transceiving connection means.
  • 54. The system of claim 53 wherein the central processing means may selectively operably connect the modem means to either the cellular transceiving connection means or the public telephone network connection means, while the central processing means may operably connect the voice signalling means to the other of the cellular transceiving connection means and public telephone network connection means, permitting simultaneous voice and data communications.
  • 55. The system of claim 46 wherein the central processing means selectively produces a first processing method when data signals are transmitted or received using the public telephone network and a second processing method when data signals are transmitted or received using the cellular transceiving connection means.
Government Interests

A microfiche appendix is attached. The total number of microfiche is 1 and the total number of frames is 79.

US Referenced Citations (33)
Number Name Date Kind
3613004 Wycoff Oct 1971 A
3674935 Lawrence Jul 1972 A
3711777 Tink Jan 1973 A
3714586 Mason Jan 1973 A
3714650 Fuller et al. Jan 1973 A
3745251 Fretwell Jul 1973 A
3766479 Thalimer et al. Oct 1973 A
3878333 Shimizu et al. Apr 1975 A
3899772 Mead et al. Aug 1975 A
3974343 Cheney et al. Aug 1976 A
4025853 Addeo May 1977 A
4109283 Rast Aug 1978 A
4284849 Anderson et al. Aug 1981 A
4415774 Driver Nov 1983 A
4419756 Cheng-Quispe et al. Dec 1983 A
4425665 Stauffer Jan 1984 A
4503288 Kessler Mar 1985 A
4519068 Krebs et al. May 1985 A
4577182 Millsap et al. Mar 1986 A
4578537 Faggin et al. Mar 1986 A
4578796 CharaLambous et al. Mar 1986 A
4591661 Benedetto et al. May 1986 A
4677656 Burke et al. Jun 1987 A
4694473 Etoh Sep 1987 A
4697281 O'Sullivan Sep 1987 A
4718080 Serrano et al. Jan 1988 A
4775997 West, Jr. et al. Oct 1988 A
4823373 Takahashi et al. Apr 1989 A
4837812 Takahashi et al. Jun 1989 A
4887290 Dop et al. Dec 1989 A
4991197 Morris Feb 1991 A
5046082 Zicker et al. Sep 1991 A
5170470 Pindar et al. Dec 1992 A
Foreign Referenced Citations (11)
Number Date Country
0295146 Dec 1988 EP
0309627 Apr 1989 EP
3433900 Mar 1986 GB
2170977 Aug 1986 GB
8700718 Jan 1987 WO
WO 8700718 Jan 1987 WO
WO 8905553 Jun 1989 WO
8905553 Jun 1989 WO
WO 9003076 Mar 1990 WO
9003076 Mar 1990 WO
9107044 May 1991 WO
Non-Patent Literature Citations (22)
Entry
AT&T 208A Data Set product, Jul. 1975, Circuit Description, CD-1D232-01.
“Technical Aspects of Data Communication,” John E. McNamara, Jul. 1979, Digital Press.
“A Tale of Two Modems,” F.R. Derfler Jr., Aug. 21, 1984, PC Magazine.
“Advanced Mobile PhoneService: Control Architecture,” Z.C. Fluhr & P.T. Porter, Bell System Technical Journal, vol. 58, No. 1, Jan. 1979.
“Advanced Mobile Phone Service: A Subscriber Set for the Equipment Test,” R.E. Fisher, Bell System Technical Journal, vol. 58, No. 1, Jan. 1979.
Overview of AMPS Mobile Call Processing System, Robert M. Fuller and Fred A. Epler, 1980 Annual Conference of the IEEE Vehicular Technology Society.
“Advance Mobile PhoneService,” F.H. Blecher, IEEE, vol. VT-29 No. 2, May 1980.
“Data Transmission for Mobile Radio,” T. Brenig, IEEE Transactions on Vehicular Technology, VT-27, No. 3, Aug. '78.
“An 800Mhz Approach to Underground Data Communications,” T.M. Caridi and P. Mighdoll, IEEE 1981 Industry Applications.
“ARQ Schemes for Data Transmission in Mobile Radio Systems,” R.A. Comroe and D.J. Costello, Jr., IEEE Transactions on Vehicular Technology, vol. VT-33, Aug. 1984.
“Optimal Blocklengths for ARQ Error Control Schemes,” Joel M. Morris, IEEE Transactions on Communications, vol. COM-27, No. 2, Feb. 1979.
“Data Transmissions Over VHF and UHF Land Mobile Radio Channels,” P.J. Cadman and R.L. Brewster, IEEE Proceedings vol. 130, Part F, No. 6, Oct. 1983.
“Data Signaling Functions for a Cellular Mobile Telephone System,” V. Hachenburg, B.D. Holm, and J.I. Smith, IEEE Transactions on Vehicular Technology, vol. VT-26, No. 1, Feb. 1977.
“Quality of Service and Bandwidth Efficiency of Cellular Mobile Radio with Variable Bit-Rate Speech Transmission,” D.J. Goodman and C.E.W. Sundberg, IEEE Transactions on Vehicular Technology, vol. VT-32, Aug. 1983.
AT&T's Dimension PBX described in AT&T publication Bell System Practice Section 503-100-103, Issue 3, published Mar. 1981, whichrelates to a multi-button electronic telephone set.
“Cellnet adds data to cellular service,” International News Telephone Engineer and Management, Nov. 1, 1985.
“Celldata launched,” British Telecom Journal, No. 3, (1985), vol. 6, Autumn.
Supplementary European Search Report dated Feb. 3, 1995.
“Dailing Data Via Mobile Telephones” Ira Brodsky, pp. 103-110, Data Communications International, Oct. 1989.
“R/F Linked Portable Digital Communications System System Overview”, Proceedings Of The National Electronics Conference (1984), Sep. 24-26 Rosemont, Illinois, USA, J. Krebs, pp. 402-407.
“Portable Computer And Host Talk Over Radio-Frequency Link”, Electronic vol. 56, Aug. 25, 1983, J. Krebs.
Stone, P. S., “286 Laptop” Info World Pews, May 25, 1988, p. 5.
Divisions (1)
Number Date Country
Parent 07/301521 Jan 1989 US
Child 07/831671 US
Reissues (1)
Number Date Country
Parent 07/301521 Jan 1989 US
Child 07/831671 US