1. Field of the Invention
The subject invention relates to systems for providing an isolation enclosure for patients for whom it is desirable to restrain or isolate to a bed area.
2. Background of the Related Art
Various illnesses and conditions such as brain trauma, dementia and Alzheimer's disease often leave people in such a condition that constant management of the patient is necessary to prevent further injury and mishap. Traditional systems and methods for monitoring and controlling patients with such needs have included bed straps or restraints, straight jackets, sedation, a monitoring device, a dedicated individual at hand, isolation rooms and the like both alone and in combination. Many of these prior art methods and systems are burdensome to all concerned and prohibitively expensive. For example, bed straps immobilize a patient on a bed. When the patient desires to move or change position, the restraints prevent such shifting. As a result, a restrained patient can become very uncomfortable and/or agitated in addition to suffering medical complications. For another example, a dedicated person to attend to the restrained person's needs on an all day, every day basis is cost prohibitive.
Recently, several techniques for addressing confining a patient to a bed area while allowing free movement have been developed to address the needs of the patient and caregiver. Some examples are illustrated in U.S. Pat. No. 5,216,291 to Eads et al. and U.S. Pat. No. 6,263,529 to Chadwick et al., each of which is incorporated herein by reference. However, there are problems associated with the prior art enclosure bed apparatus. Often, the condition which requires restraint may be temporary and as a result transportation, assembly and disassembly of the enclosure may be common. The prior art systems require extensive manpower for assembly and disassembly. When disassembled, loose parts can be lost and transport and storage is cumbersome and difficult. To assemble, tools and excessive know-how and manpower are needed. When assembled, excessive bulk prevents easy transport and storage.
Commonly a patient enters the hospital at the emergency room experiencing symptoms that convince the staff that some form of isolation is in order. Following some initial evaluation, a determination may be made indicating that additional tests, evaluation, admission, surgery, or more acute care is required. As a result, the patient may require transfer to multiple locations within the hospital facility, each requiring some form of isolation sufficient to provide protection to the caregiver(s) or patient. Multiple isolation units as well as the costs for decontamination in each of the various locations not only is extremely expensive but introduces additional risk of contamination. Furthermore, patients on occasion will need to be treated in such a manner that entry into the isolated enclosure is necessary, and therefore an additional airlock enclosure may be needed to facilitate such treatment while maintaining requisite patient isolation.
U.S. Pat. No. 5,314,377 shows a portable, collapsible clean air isolation enclosure that has a top mounted inflatable plenum chamber connected to a source of filtered air to provide a positive or negative pressure sterile or dust free environment, and peripheral curtains sealed at the bottom to the floor. The isolation enclosure of the '377 patent employs the floor as the lower portion of the isolation chamber and therefore would be difficult or impossible to move while in operation because the floor is exposed to any contamination within the enclosure. Moreover, such an enclosure would not be capable of fitting through doors, elevators and the like while in operation due to the fact that it employs the floor as the bottom of the isolation enclosure and to the usage of hinged wings that support the enclosure.
Accordingly, it is an object of the present invention to overcome one or more of the above-described drawbacks and/or disadvantages of the prior art.
The present invention is directed to an isolation enclosure for isolating a person to an area about a bed, wherein the bed is adapted to support the person and includes a frame and a mattress overlying the frame. The isolation enclosure comprises a frame adapted to surround the bed; and a canopy connectable to the frame and defining an isolation chamber sealed with respect to the ambient atmosphere. The isolation chamber extends over the frame of the bed and is sufficiently large to allow a person located within the isolation chamber to be supported on the bed and to move freely within the isolation chamber. The canopy includes a base wall adapted to at least one of (i) overly the mattress of the bed, and (ii) lie between the mattress and the frame of the bed. A frame transport device, such as wheels, casters, or sliders, is mounted on the frame and adapted to transport the frame and canopy in cooperation with the bed to thereby transport a patient supported on the bed and located within the isolation chamber. The bed and canopy frames either may be formed integral with each other, and mounted on the same transport device, or may be separate from each other and mounted on separate transport devices but configured to be moved in unison in order to transport a patient within the isolation chamber from one location to another. An environmental control device is connectable in fluid communication with the isolation chamber and includes (i) a filter adapted to at least one of filter air entering and filter air exiting the isolation chamber, and (ii) a pump adapted to at least one of pump air into the isolation chamber to increase the pressure within the isolation chamber relative to the ambient atmosphere, and pump air out of the isolation chamber to decrease the pressure within the isolation chamber relative to the ambient atmosphere.
In one embodiment of the present invention, the frame includes an upper laterally extending support, a first upstanding support coupled to a first side of the upper laterally extending support, and a second upstanding support coupled to a second side of the upper laterally extending support. The canopy preferably further includes at least one access portion movable between a closed position and an open position defining an opening through the canopy for allowing access to the isolation chamber, and at least one see-through portion for permitting visual monitoring of the isolation chamber from outside of the canopy
The environmental control device preferably includes at least one valve adapted to selectively control the direction of flow of pumped air to either (i) pump air into the isolation chamber to increase the pressure within the isolation chamber relative to the ambient atmosphere, or (ii) pump air out of the isolation chamber to decrease the pressure within the isolation chamber relative to the ambient atmosphere. The environmental control device includes preferably at least one battery for operating the device during transport of a person within the isolation chamber.
The isolation enclosure preferably further comprises an airlock frame releasably connectable to the frame and extending laterally therefrom; and an airlock canopy supported on the airlock frame, and defining a sealed airlock chamber connectable in fluid communication with the isolation chamber and environmental control device. As with the isolation chamber, the environmental control device is adapted to create in the airlock chamber substantially the same or similar pressure conditions as in the isolation chamber, i.e., either a predetermined increase in pressure in comparison to the ambient atmosphere or a predetermined decrease in pressure in comparison to the ambient atmosphere. Preferably, the airlock frame is at least one of telescopically and pivotally mounted to the frame. In one embodiment of the present invention, the environmental control device includes a UV source for sterilizing at least one of air entering the isolation chamber and air exiting the isolation chamber.
Accordingly, an advantage of one aspect of the present invention is found in an enclosure that is easily assembled, disassembled, transported, stored and cleaned.
Another advantage of the present invention is found in the ability to safely restrain or isolate a patient to an area while still allowing for free and comfortable movement within the area.
Still another advantage of the present invention is that the sealed isolation or quarantine enclosure (i.e., a positive pressure or negative pressure enclosure, respectively) can be transported while operating and with a patient located within it, to thereby avoid the need to remove a patient from the enclosure in order to transport the patient from one location to another, such as between different rooms of a hospital.
Yet another advantage of the present invention is found in it flexibility in application. Accordingly, it should be appreciated that the present invention can be implemented and utilized in numerous ways, including without limitation as a process, an apparatus, a system, a device and a method for applications now known and later developed. These and other unique features of the apparatus and method disclosed herein will become more readily apparent from the following description and the accompanying drawings.
So that those having ordinary skill in the art to which the disclosed invention appertains will more readily understand how to make and use the same, reference may be had to the drawings wherein:
The present invention overcomes many of the prior art problems associated with enclosures for restraining or isolating patients to a bed area. The advantages, and other features of the system disclosed herein, will become more readily apparent to those having ordinary skill in the art from the following detailed description of certain preferred embodiments taken in conjunction with the drawings which set forth representative embodiments of the present invention and wherein like reference numerals identify similar structural elements.
The subject enclosure safely confines a patient to an area defined around a bed. However, the patient is free to move within the area about the bed. Caregivers and attendants can see into the restrained area. In certain embodiments, caregivers and attendants can access the patient through selectively fastenable openings. The patient has the ability to see and interact with the general environment around the enclosure. In some of the disclosed embodiments, when not in use, the enclosure can be collapsed for easy storage and transport. However, as will be recognized by those of ordinary skill in the pertinent art based on the teachings herein, the canopy and enclosure of the present invention are equally usable with frames that are not collapsible, and/or frames that are mountable on the bed frame, or otherwise fixedly securable to the bed frame.
Referring to
A canopy 102 is draped about the frame 110 and secured in place to prevent a person from leaving the area of restraint. The canopy 102 leaves access to a portion of the bed 200 for adjustment thereto. The canopy 102 can be secured in place on or over the frame 110 by zippers, fabric sleeves which slide over the frame components, velcro and the like, or combinations thereof as would be appreciated by those of ordinary skill in the art based upon review of the subject disclosure. Zippers 108 allow movement of portions of the canopy 102 to allow access to the area of retention. Preferably, all of the zippers used on canopy 102 are self-locking.
In one embodiment, the canopy 102 drapes on the inside of the frame. Preferably, the canopy 102 is fabricated from a combination of vinyl or nylon portions 104 and netting 106. In a preferred embodiment, the netting 106 is black nylon netting. The advantage of the black color as well as brown, blue and the like is that dark colors allow for improved see-through capability and greater stain resistance. Further, nylon material is substantially lighter than vinyl and therefore easier to handle.
Now referring to
As shown in
Four lower corner brackets 116 secure the elongated supports 115 and transverse supports 117 of the base portion 113 in such a manner that both supports 115, 117 can selectively rotate. Preferably, each coupling 114 is pivotably connected and located intermediate each support 115, 117 for facilitating collapsing the frame 110 as will be described hereinbelow with respect to
The eave portion 111 is supported above the base portion 113 by four vertical, parallel rectangular bars 118. Two linear parallel elongated supports 121 extend between a head end and a foot end of the eave portion 111. Two parallel transverse supports 123 extend between the elongated supports 121 to form a rectangle therewith approximately the size of a standard hospital bed 200. Four upper corner brackets 116 secure the supports 121, 123 of the eave portion 111 in such a manner that each of the supports can selectively rotate downward therefrom. Preferably, each of the supports 121, 123 of the eave portion 111 has pivot devices couplings 114 located intermediate their length for facilitating collapsing the frame 110.
Still referring to
In order to position the bed 200 within the enclosure 100, the head end 112h and the foot end 112f of the base portion can be disconnected at an intermediate point via coupling 114 and rotated upwards along arrow A (
Referring to
Referring now to
Referring to
Referring to
Referring to
Referring to
As will be recognized by those or ordinary skill in the pertinent art based on the teachings herein, the illustrated canopies are usable with any of numerous different types of frames that are currently known, or that later become known. For example, the canopies may be used with frames that are not collapsible, frames that collapse in a different manner than the frame 110 as described above, or frames that are adjustable in size. For example, as shown in
In
With reference to
With reference to
As shown in
The isolation chamber 505 also is provided with one or more transparent portions 506 both enabling effective observation of a quarantined patient and enabling the patient to see through to the exterior of the enclosure. The transparent portions 506 may be either clear or tinted as desired and, as with the rest of the isolation chamber 505, are preferably hermetically sealed and airtight.
The isolation chamber 505 is further provided with one or more access panels 505b suitable to allow direct access to a quarantined patient as needed. These access panels 505b may be selectively opened and/or hermetically closed as needed. Also, the access panels may be provided with decontamination means, such as, for example, an ultra-violet (UV) source or a disinfecting gas source (not shown). In addition, the access panels may be transparent, semi-transparent, may include a dark-colored mesh overlay, layer or other mesh portion to prevent glare when looking through such panels, may be opaque, or any desired combination of the foregoing.
The isolation chamber 505 also includes one or more access glove ports 505c, best shown in
The airlock chamber 507 extends laterally adjacent to the isolation chamber 505 and extends the full length (or width) of the frame. The airlock chamber 507 may be provided with one or more ingress/egress openings 507a. The ingress/egress openings 507a preferably allow access to the airlock chamber 507. The ingress/egress openings 507a of the airlock chamber 507, similar to the access panels 505b of the isolation chamber 505, may be selectively opened and/or hermetically closed as needed, and may include decontamination means (not shown) to enable a person to safely enter and/or exit the airlock chamber 507. The airlock chamber 507 may be provided with one or more windows 507b, which may be substantially similar to the transparent portions 506 of the isolation chamber 505. The airlock chamber 507 is preferably located adjacent to the isolation chamber 505 and separated therefrom by at least one partition or side wall 505d that extends vertically between the upper and lower portions of the frame. In the illustrated embodiment, both the airlock chamber 507 and isolation chamber 505 are formed integral with each other within the canopy 502 and are supported by a common frame 510. The canopy 502 may be mounted on the frame 510 in the same manner as the canopy 102 described above (i.e., by sleeves releasably connected to the upper supports of the frame). In addition, the frame 510 may be the same as the frame 110 described above, or may be a different type of frame, such as a non-collapsible frame or a frame with telescoping supports for adjusting the size of the enclosure. In addition, as may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, the airlock chamber 507 may be separably connected to the isolation chamber 505 and/or may have a separate frame (not shown) associated therewith that may be separably connected to the frame 510.
In accordance with one aspect of the present embodiment, the windows 507b, the access panels 505b, the ingress/egress openings 507a, and/or the transparent portions 506 each may have one or more layers associated therewith. For example, each of the foregoing features of the present embodiment may be provided with at least one opaque layer, at least one tinted layer, and/or at least one clear layer. This multi-layered arrangement could, for instance, be utilized to control the degree of visibility into the chamber and/or the amount of ambient light that is allowed into the chamber. Further, one or more of the windows may include a dark-colored mesh layer as described above in connection with the canopies 102 and 302 so that the other layer(s) can be removed or folded downwardly to thereby leave only the mesh layer within the window. In this case, the canopy would be used as a restraining enclosure, but not as a quarantine enclosure. Alternatively, the mesh layer may be used with the transparent or semi-transparent layer(s) to prevent glare as described above.
The environmental control system 509 preferably includes at least one air pump, a HEPA or other suitable filtration system, and one or more air-ingress and air-egress ports connected in fluid communication with the isolation chamber 505 and airlock chamber 507. The environmental control system 509 is preferably portably compact and relatively lightweight for easy mobility. The environmental control system 509 may be selectively operatively connected to the isolation chamber 505 and/or to the airlock chamber 507. If desired, the environmental control system 509 may be secured to the frame 510 so as to establish an efficient, effectively self-contained portable quarantine unit suitable for a variety of different quarantine or isolation applications. Preferably, as indicated above, the frame includes means for transporting the enclosure, such as wheels, casters, bearings, sliders, or other devices that are currently known or that later become known for performing this function. Accordingly, the frame and canopy can be transported with the bed, and thus with a patient located within the isolation enclosure and supported by the bed. Also, the environmental control system 509 preferably includes a battery back up in order to allow the system to operate during transportation of a patient within the enclosure from one location to another.
Turning now to
As shown in
The isolation chamber 605 also is provided with one or more transparent portions 606 both enabling effective observation of an isolated patient and enabling the patient to see through to the exterior of the enclosure. The transparent portions 606 may be either clear or tinted as desired and, as with the rest of the isolation chamber 605, are preferably hermetically sealed and airtight. Accordingly, the canopy 602 is sealed unto itself, thus defining an isolation chamber 605 for receiving a patient that is sealed with respect to the ambient atmosphere, and is self-contained (i.e., the sealed enclosure is defined entirely by the canopy and is not defined by, for example, the floor or other external surface). Because the canopy 602 is preferably mounted to the frame 610 with detachable sleeves, as described above, the canopy can be removed from the frame between usages with relative ease and decontaminated in any of numerous ways that are currently known, or that later become known. If desired, the canopy may be disposable, such that it is disposed of after each use, or the canopy may include a sealed liner or liner(s) that form the interior surfaces of the canopy, are sealed with respect to the canopy and the ambient atmosphere, and that can be removed from the canopy, disposed of, and replaced with a fresh liner or liners (that can be pre-sterilized if desired) between usages.
The isolation chamber 605 is further provided with one or more access panels 605b suitable to allow direct access to a patient as needed. These access panels 605b may be selectively opened and/or hermetically closed as needed. Also, the access panels may be provided with decontamination means, such as, for example, an ultra-violet (UV) source or a disinfecting gas source (not shown). In addition, the access panels may be transparent, semi-transparent, may include a dark-colored mesh overlay, layer or other mesh portion to prevent glare when looking through such panels, may be opaque, or any desired combination of the foregoing.
The isolation chamber 605 also may include one or more access glove ports as depicted for the isolation chamber 505, as shown in
The airlock chamber 607 extends laterally adjacent to the isolation chamber 605 and extends substantially the full length (or width) of the frame 610. The airlock chamber 607 may be provided with one or more ingress/egress openings, access panels, windows, partitions or side walls, and the like similar to that of the isolation chamber 505. The canopy 602 may be mounted on the frame 610 in the same manner as the canopy 102 described above (e.g., by sleeves releasably connected to the upper supports of the frame 610). In addition, the frame 610 may be the same as the frame 110 described above, or may be a different type of frame, such as a non-collapsible frame or a frame with telescoping supports for adjusting the size of the enclosure. In the illustrated embodiment, the frame 610 also supports the bed 603 and environmental control system 609 and related ducts (i.e., the bed frame and canopy frame are integrated into a single frame). As with the isolation chamber, the environmental control device 609 is adapted to create in the airlock chamber 607 substantially the same or similar pressure conditions as in the isolation chamber 605, i.e., either a predetermined increase in pressure in comparison to the ambient atmosphere or a predetermined decrease in pressure in comparison to the ambient atmosphere.
Referring to
In the operation of the airlock chamber 607, the physician or other caregiver or attendant steps into the chamber 607 when the chamber is at atmospheric pressure and not connected in fluid communication with the isolation chamber 605. Once located within airlock chamber the physician then closes the respective access door 605b in the airlock canopy 602b, seals the airlock with respect to the ambient atmosphere, and activates the environmental control device 609 to set the pressure within the airlock chamber to be substantially the same as that within the isolation chamber. When the pressures are substantially equal (the airlock and isolation chambers include pressure sensors of a type known to those of ordinary skill in the pertinent art), the environmental control unit indicates audibly and/or visually that the isolation chamber may be opened to the airlock. The physician then may open the access port to the isolation chamber and attend to the patient supported on the bed within the isolation chamber. When finished attending to the patient, the physician closes the isolation chamber, and activates the environmental control device to evacuate the airlock chamber 607 and sterilize the evacuated air by filtration and/or UV radiation prior to exhausting the air into an ambient atmosphere.
One advantage of the currently preferred embodiment of the present invention is that the airlock frame and canopy may be attached only when needed, and thus the isolation enclosure can be relatively easily and rapidly converted from including an airlock to not including an airlock, or vice versa. Note that the term “airlock” as used herein is intended to contemplate either or both a positive pressure airlock chamber and a negative pressure airlock chamber. Another advantage of the currently preferred embodiments of the present invention is that the isolation enclosure can be easily and rapidly converted (i.e., by switching the valves 618) from a high pressure isolation chamber (i.e., a chamber intended to protect the patient located within the chamber from the ambient atmosphere, such as a patient with a compromised immune system), to a low pressure chamber (i.e., a chamber intended to quarantine the patient and protect the ambient atmosphere and/or the people within the ambient atmosphere from the patient (such as for a patient with an airborne and/or communicable disease)).
Another advantage of the currently preferred embodiments of the present invention is that the enclosures are dimensioned to fit through doorways and hallways, such as conventional doorways and hallways encountered in hospitals. Thus, the enclosures are uniquely configured to transport an isolated patient throughout the different locations within, for example, a hospital, without having to remove the patient from the isolation chamber. In one embodiment of the present invention, the battery back-up includes a microprocessor to monitor the amount of battery power remaining and to generate data indicative of the amount of battery power remaining, including an audible and/or visible alarm when the remaining batter power falls below a predetermined level (e.g., about 10 to 20 minutes of remaining power at then current power usage levels). Also, if the battery power does fall to zero, and the system is not plugged into a power outlet, or the battery is not replaced with a fresh one, the dampers/valves preferably are configured to automatically open in order to allow air to flow into the isolation chamber and thereby prevent harm to a patient located within the chamber. In addition, the enclosure may include any of numerous different types of sensors that are currently known or that later become known for monitoring and/or controlling the conditions within the isolation chamber and airlock chamber, including pressure sensors, humidity sensors and/or temperature sensors with appropriate feedback control for regulating the pressure, humidity and/or temperature within each chamber as desired. In addition, the enclosure may include chemical sensors, such as CO and/or CO2 sensors, and visible and/or audible alarms for generating an alarm signal if the sensed elements fall outside of a desired range and, if necessary, and if necessary appropriate feedback control to adjust the flow of air into or out of the chambers based thereon. The enclosure also may include any of numerous additional features for either protecting the patient within the isolation chamber, and/or to protect the persons outside of the chamber. For example, when the patient is first put into the isolation chamber, the environmental control system will require the user to confirm the internal pressure setting (i.e., high pressure or low pressure) in order ensure that the system is correctly operated both to protect the patient and the caregivers or other persons outside of the enclosure.
As would be appreciated by those of ordinary skill in the pertinent art upon review of the subject disclosure, the figures and associated detailed description are representative of preferred embodiments and various modifications can be made thereto. While the invention has been described with respect to preferred embodiments, those skilled in the art will readily appreciate that various changes and/or modifications can be made to the invention without departing from the spirit or scope of the invention as disclosed herein and as claimed.
This patent application is a Continuation-In-Part (CIP) of U.S. patent application Ser. No. 10/910,939 filed Aug. 3, 2004, now U.S. Pat. No. 7,380,296 which is a Continuation-In-Part (CIP) of U.S. patent application Ser. No. 10/294,313 filed Nov. 14, 2002, now U.S. Pat. No. 6,772,458 which claims priority to U.S. Provisional Patent Application No. 60/332,750, filed Nov. 14, 2001, the entire disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
875206 | Osborne | Dec 1907 | A |
1410830 | O'Neal | Mar 1922 | A |
1526038 | Allman | Feb 1925 | A |
2850027 | Smith | Sep 1958 | A |
3051164 | Trexler | Aug 1962 | A |
3119358 | Colson et al. | Jan 1964 | A |
3265059 | Matthews | Aug 1966 | A |
3272199 | Matthews | Sep 1966 | A |
3345996 | Sadove et al. | Oct 1967 | A |
3348890 | Trexler | Oct 1967 | A |
3492987 | Parker | Feb 1970 | A |
3501213 | Trexler | Mar 1970 | A |
3505989 | Truhan | Apr 1970 | A |
3601031 | Abel et al. | Aug 1971 | A |
3709210 | Matthews | Jan 1973 | A |
3802416 | Cazalis | Apr 1974 | A |
3935803 | Bush | Feb 1976 | A |
4026286 | Trexler | May 1977 | A |
4335712 | Trexler | Jun 1982 | A |
4641387 | Bondy et al. | Feb 1987 | A |
4731961 | Bona | Mar 1988 | A |
5216291 | Seevinck et al. | Jun 1993 | A |
5314377 | Pelosi, III | May 1994 | A |
5384925 | Vail | Jan 1995 | A |
5771651 | Shiina | Jun 1998 | A |
6125483 | Stroud et al. | Oct 2000 | A |
6216291 | Eads et al. | Apr 2001 | B1 |
6263529 | Chadwick et al. | Jul 2001 | B1 |
6321764 | Gauger et al. | Nov 2001 | B1 |
6418932 | Paschal et al. | Jul 2002 | B2 |
6425255 | Hoffman | Jul 2002 | B1 |
6461290 | Reichman et al. | Oct 2002 | B1 |
6966937 | Yachi et al. | Nov 2005 | B2 |
20060149120 | Melles | Jul 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060020159 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
60332750 | Nov 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10910939 | Aug 2004 | US |
Child | 11196654 | US | |
Parent | 10294313 | Nov 2002 | US |
Child | 10910939 | US |