The present disclosure relates to juvenile swings, and particularly, to a portable juvenile swing. More particularly, the present disclosure relates to a portable juvenile swing having a foldable frame.
A conventional juvenile swing apparatus typically has a seat suspended from a floor-supported stand by one or more hanger arms. These conventional juvenile swing assemblies usually comprise some sort of drive mechanism to move the seat and hanger arms back and forth along a swing arc in an oscillatory manner. Some juvenile swings have frames that are collapsible for storage or transport. Other known juvenile swings may be disassembled for storage or transport.
According to the present disclosure, a swing apparatus comprises a swing and a support stand to which the swing is coupled for swinging movement. The swing comprises a seat and a hanger arm. The support stand comprises a foldable frame having a set of legs that are moveable between an expanded use position and a collapsed storage position.
In an illustrative embodiment, the support stand comprises first and second housings, four legs, and a linkage assembly that coordinates the folding movement of the four legs between the expanded use position and the collapsed storage position. The housings move toward one another and lower ends of the four legs are drawn towards one another when the frame is moved from the expanded use position to the collapsed storage position. One pair of the four legs serves as a first folding leg assembly having a front leg and a rear leg and the other pair of the four legs serves as a second folding leg assembly having a front leg and rear leg. The illustrative linkage assembly comprises four X-linkage pairs. Each X-linkage pair extends between a respective pair of the four legs. Two of the four X-linkage pairs extend between respective front and rear legs and comprise telescoping links.
In the illustrative embodiment, the support stand comprises four floor-engaging feet and four sliders. Each of the four floor-engaging feet is coupled to a bottom portion of a respective one of the four legs and each of the four sliders is coupled to a respective one of the four legs for movement therealong. Each of the X-linkage pairs is coupled to a respective pair of the floor-engaging feet and a respective pair of the sliders. The illustrative support stand comprises a stop and a lock coupled to one of the four legs. One of the sliders serves as a control slider that engages the stop when the legs are in the expanded use position. The lock has a locking position in which the control slider is unable to move away from the stop, thereby locking the legs in the expanded use position. The lock has a releasing position in which the control slider is able to move away from the stop to permit the legs to move from the expanded use position to the collapsed storage position.
Also in the illustrative embodiment, the swing apparatus has a pair of hanger arms and the seat is detachable from the pair hanger arms. The seat is at least partially collapsible when detached from the pair of hanger arms. The seat has a foldable seat frame and a set of panels coupled to the foldable seat frame. Each hanger arm includes a member and a coupling body coupled to the member. The seat has a pair of joints that couple portions of the foldable seat frame together for pivoting movement. The joints are attachable to the coupling bodies of the hanger arms, and when attached, the coupling bodies prevent the joints from pivoting, thereby preventing the seat frame from folding.
Additional features and advantages of the disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of an illustrative embodiment exemplifying the best mode of carrying out the disclosure as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
A swing apparatus 20 comprises a support stand 22 and a swing 24 suspended for swinging movement with respect to stand 22 as shown in
When seat 42 is coupled to hanger arms 40 and stand 22 is in the expanded use position, a child may be placed in seat 42 and swing 24 may be oscillated back and forth relative to stand 22. Illustrative swing 20 has a stabilizer member 44 coupled to one of hanger arms 40 for pivoting movement between a first position, shown in
Housing 26 contains a drive assembly (not shown) that is operable to move hanger arms 40 and seat 42 back and forth along a swing arc. Control buttons 48 are coupled to housing 26 and are engaged to turn the drive assembly on and off and to control the speed at which the drive assembly operates, thereby to adjust the frequency of oscillation of swing 24. In some embodiments, one of buttons 48 turns music on and off. Thus, appropriate control circuitry for controlling the music and the operation of the drive assembly is contained in housing 26 along with a power source, such as one or more batteries.
Seat 42 comprises a foldable seat frame 50 and a seat sling 52 coupled to frame 50 as shown in
Seat frame 50 has a first frame member 68, a second frame member 70, and a pair of main joints 72 coupling frame members 68, 70 together for pivoting movement about a main seat axis 74. Frame members 68, 70 are generally U-shaped and are received in pockets 75 of seat sling 52. When seat 42 is coupled to hanger arms 40, seat sling 52 hangs downwardly from frame members 68, 70, which provide the primary structural support for seat sling 52. First frame member 68 includes a first portion or strut 76, a second portion or strut 78, and a first auxiliary joint 80 coupling struts 76, 78 together for pivoting movement about a first axis 82. Similarly, second frame member 70 includes a first portion or strut 84, a second portion or strut 86, and a second auxiliary joint 88 coupling struts 84, 86 together for pivoting movement about a second axis 90. In the illustrative embodiment, pockets 75 of seat sling 52 contain padding (not shown) which surrounds or encases struts 76, 78, 84, 86 and joints 80, 88. Seat 42 also has a tray 89 which fits over frame member 68 and the associated padding and portions of sling 52.
Hanger arms 40 each comprise a main portion or member 92, a second portion or member 94, a joint 95 pivotably coupling member 94 to one end of member 92, and a coupling body 96 coupled to the other end of member 92. Hanger arms 40 also have mounts (not shown) which are situated in respective housings 32, 34 and which are pivotably coupled to housings 32, 34 for swinging movement about a horizontal main swing axis 112. Each member 94 couples to a bottom portion of a respective mount. In the illustrative embodiment, main portion 92 is somewhat J-shaped having a long segment 98, a short segment 100 parallel with segment 98, and an intermediate segment 110 interconnecting bottom ends of segments 98, 100. Coupling body 96 is coupled to the top end of segment 100 as shown in
Each main joint 72 of seat 42 comprises a first pivot body 114 and a second pivot body 116 as shown in
Coupling bodies 96 of hanger arms 40 are configured to fit into the body-receiving cavities 118, 120 of joints 72, thereby to couple seat 42 to hanger arms 40. In some embodiments, the coupling body 96 of one of hanger arms 40 and the associated body-receiving cavity 118, 120 are shaped differently than the coupling body 96 of the other of hanger arms 40 and the associated body-receiving cavity 118, 120. In such embodiments, having differently shaped bodies 96 and cavities 118, 120, seat 42 is attachable to hanger arms 40 while facing in one direction but not in an opposite direction. If desired, coupling bodies 96 and cavities 118, 120 may be shaped similarly so that seat 42 is attachable to hanger arms 40 while facing in either direction. In one embodiment, one of coupling bodies 96, shown in
Receipt of coupling bodies 96 in cavities 118, 120 prevents pivot bodies 114 and frame member 68 of seat 42 from pivoting about axis 74 relative to pivot bodies 116 and frame member 70 of seat 42. Thus, seat 42 is not collapsible while coupled to hanger arms 40. Each joint 72 has a lock 122 that is movable between a locking position preventing separation of the joint 72 from the respective coupling body 96 and a releasing position allowing separation of the joint 72 from respective coupling body 96. In the illustrative embodiment, each lock 122 comprises a plate 124 that is pivotably coupled to a respective body 116 and that has a lip or ledge 126 which underlies a bottom surface 128 of the respective body 96 when in the locking position as shown in
Illustrative coupling bodies 96 are configured with sloping side surfaces 134. When pivot bodies 114 are in the first position having spaces 118 of bodies 114 aligned with spaces 120 of pivot bodies 116 to form cavities 118, 120, seat 42 may be moved downwardly so that coupling bodies 96 enter cavities 118, 120 through respective openings provided at the bottom of bodies 114, 116 of joints 72. As seat 42 is moved downwardly in this manner, lips 126 wipe against respective surfaces 134 of each coupling body 96 thereby moving locks 122 automatically against the bias of springs 132 away from the locking positions toward the releasing positions. After lips 126 clear respective surfaces 134, springs 132 act to automatically move locks 122 back into the locking positions having lips 126 positioned beneath bottom surfaces 128 of coupling bodies 96.
The following description of one illustrative body 116 is applicable to both bodies 116 unless specifically noted otherwise. Body 116 has a vertical wall 136, a cylindrical boss 138 extending horizontally from wall 136 in a cantilevered manner, a set of interior walls 140 extending away from wall 136, and a set of outer perimeter walls 142 extending away from wall 136 as shown in
The following description of one illustrative body 114 is applicable to both bodies 114 unless specifically noted otherwise. Body 114 has a vertical wall 160, a cylindrical boss 162 extending horizontally from wall 160 in a cantilevered manner, a set of interior walls 164 extending away from wall 160, and a set of outer perimeter walls 166 extending away from wall 160 as shown in
When seat 42 is attached to hanger arms 40, first axis 82 of joint 80 is parallel with and spaced by a large distance from second axis 90 of joint 88 as shown in
Due to the large spacing between axes 82, 90 and the configuration of joints 72, portions 76, 78 of frame member 68 are unable to fold about axis 80 and portions 84, 86 of frame member 70 are unable to fold about axis 90 when frame member 68 and pivot bodies 114 are in the first position. However, after frame member 68 and bodies 114 are pivoted to the second position having axis 82 very close to, or coaxial with, axis 90, portions 76, 78 of frame member 68 and portions 84, 86 of frame member 70 are able to fold about axes 82, 90, respectively, to further collapse seat frame 50 as shown in
After seat 42 is detached from hanger arms 40, support stand 22 may be moved from the expanded use position to the collapsed storage position as mentioned above. Upper end portions of front legs 26 and upper end portions of rear legs 28 are coupled to respective housings 32, 34. In the illustrative embodiment, the orientation of housings 32, 34 are fixed relative to rear legs 28 and each front leg 26 is pivotable relative to the respective housings 32, 34 about a leg pivot axis 176. Thus, a first folding leg assembly 36 is provided on a right side of swing apparatus 20 by housing 32 and the associated legs 26, 28 and a second folding leg assembly 38 is provided on the left side of swing apparatus 20 by housing 34 and the associated legs 26, 28.
Stand 22 comprises four floor-engaging feet 180 as shown in
As stand 22 moves from the expanded use position to the collapsed storage position, sliders 182 move along respective legs 26, 28 away from the associated foot 180 and toward the associated housings 32, 34. As sliders 182 move along legs 26, 28 toward housing 32, 34, leg supports 30 pivot about respective axes 194 to draw the four feet 180 toward one another and to draw housings 32, 34 toward one another. The leg supports 30 of the X-linkage assemblies at the sides of stand 22 are telescoping leg supports 30 and comprise a first portion 196 which is pivotably coupled to a respective slider 182 and a second portion 198 which is pivotably coupled to a respective foot 180.
When stand 22 is in the expanded use position, portion 198 is in an extended position relative to portion 196 and when stand 22 is in the collapsed storage position, portion 196 is in a retracted position relative to portion 196. The leg supports 30 of the X-linkage assemblies at the front and rear of stand 22 are non-telescoping leg supports 30. Thus, the leg supports 30 at the sides of stand 22 coordinate the folding movement of legs 26, 28 relative to housings 32, 34 and the leg supports 30 at the front and rear of stand 22 control the lateral distance between the housing 32, 34 and legs 26, 28 of the folding leg assemblies. As housings 32, 34 move toward one another during folding of stand 22, hanger arms 40 move toward one another. Joints 95 of hanger arms 40 permit members 92, 94 to articulate, as necessary, so that hanger arms 42 nest compactly within spaces between legs 26, 28 and leg supports 30 as shown best in
The following description of one of sliders 182 is applicable to all of sliders 182 unless specifically noted otherwise. Slider 182 comprises a circular disk 200 and a flange structure 210 extending downwardly from a bottom surface 212 of disk 200 as shown in
One of sliders 182 is considered to be a control slider 182. Illustratively, the slider 182 coupled to the front leg 26 of folding leg assembly 36 on the right side of stand 22 is the control slider as shown in
Illustrative lock 232 comprises a pin or button 234 and a U-shaped spring 236 that is situated in an interior region 240 of leg 26 and that biases button 234 through an aperture 238 formed in leg 26 toward an outward locking position as shown in
The following description of one of floor-engaging feet 180 is applicable to all of feet 180 unless specifically noted otherwise. Foot 180 comprises a circular disk 250 and a somewhat X-shaped flange structure 252 extending upwardly from a top surface 254 of disk 250 as shown in
After seat 42 is removed from hanger arms 40 and collapsed and after stand 22 is moved to the collapsed storage position, the collapsed seat 42 may be coupled to the collapsed stand 22 with a strap 270 as suggested in
Although the disclosure has been described in detail with reference to certain illustrative embodiments, variations and modifications exist within the scope and spirit of the disclosure as described and as defined in the following claims.