The subject matter of the present disclosure refers generally to a portable lifting apparatus.
Professionals in a wide range of fields frequently need to lift equipment, building materials, or other heavy objects above a ground surface in order to perform various tasks. Often times, construction projects require these professionals to lift and subsequently transport various equipment and/or building materials to and from the rooftops of buildings. This is especially true for those professionals working in the fields of roofing or heating, ventilation, and air conditioning (HVAC) installation and repair. In some instances, heavy machinery lifting equipment, such as heavy-duty cranes with an attached cherry picker, hoist, and boom may be used to lift heavy materials. However, the time and expense associated with the transportation of such equipment to a desired location often renders the use of such heavy machinery largely impracticable. Additionally, the use of heavy machinery lifting equipment is not practical in many situations due to worksite accessibility problems. For instance, the oversized dimensions of most heavy machinery lifting equipment often exceed those afforded by smaller worksites or by pathways leading up to a worksite. Moreover, heavy machinery lifting equipment generally cannot be utilized in worksites having saturated or loose ground surfaces safely and/or without damaging the ground surface due to the intense weight of such equipment. Thus, as a result of the above-described issues, individuals often have to haul their equipment and/or building materials, often weighing hundreds of pounds, to roof tops or other elevated locations themselves, which can be extremely exhausting, time consuming, and dangerous.
A variety of non-heavy-machinery lifting devices designed for personal use or small-scale lifting jobs, e.g., such as hand trucks, car jacks, and small-scale boom and hoist devices, have been developed over the years. However, while such devices may sometimes provide improved portability over heavy machinery lifting equipment, such devices are not designed for commercial lifting applications, such as HVAC or roofing installation or repair. Known devices of this kind are generally designed to suspend and lower materials short distances—typically limited to a few inches or a few feet—and thus cannot be utilized in applications that require heavy materials to be transferred from a ground surface to a building's rooftop, or vice versa. Moreover, many such known devices are often configured as to only retain an assembled configuration, i.e., they cannot be readily disassembled to reduce the amount of storage space taken up by the device when the device is not in use. Additionally, those devices that can be disassembled often may only be done so through the aid and use of tools. As such, disassembling and subsequently reassembling such devices is a generally time consuming task, which renders such devices unsuitable for use in time-sensitive applications requiring the device to be transported and subsequently utilized across multiple worksites.
Accordingly, there is a need in the art for a portable lifting apparatus suitable for commercial lifting applications. Additionally, there is a need in the art for a portable lifting apparatus designed for rapid assembly and disassembly in order to reduce the space occupied by the apparatus when not in use.
In accordance with the present disclosure, a portable lifting apparatus is provided. The apparatus has a modular frame comprising a first frame member and a second frame member, which in combination support a load-bearing beam above a lifting surface when the apparatus is in an upright position. To lift materials above the lifting surface, the apparatus has a lifting device secured to the beam that is configured to lower and retract a cable attached thereto. In a preferred embodiment, the lifting device is automated such that the lowering and retraction of the cable may be controlled via engagement with an actuator operably connected to the lifting device. After securing the cable to a desired object, the lifting device may be engaged to lift the object above the lifting surface. The first frame member, second frame member, and lifting device are each removably secured to the beam such that the apparatus may be disassembled into constituent components in order to reduce the amount of space occupied by the apparatus when stored or transported. As such, the apparatus of the present disclosure may be transported to and from worksites, e.g., to and from a building's rooftop via the internal corridors of the building, which are generally not navigable for heavy machinery lifts. To provide for rapid assembly and disassembly, the first and second frame members may be removably secured to the beam via quick-release locking pins.
The first frame member and the second frame member each comprise a base that has at least two support rails extending upwardly therefrom. The base of each frame member is configured to support the assembled apparatus in an upright position on the lifting surface. Preferably, each support rail has a first end removably secured to its respective base and a second end removably secured to the beam in order to further limit the amount of space occupied by the apparatus when disassembled. In a preferred embodiment, each support rail is removably secured to its respective base via a quick-release locking pin. In some instances, each support rail may be extendable. In one preferred embodiment, each support rail may comprise an extension arm slidably disposed within a tube such that the support rail may be extended or shortened by sliding the extension arm in or out of the tube. In this way, the support rails of the first and second frame member may be adjusted to adjust the overall height of the apparatus or to accommodate worksites having uneven surfaces. The extension arm may be removably secured to the tube such that the support rail can be disassembled into two separate pieces. In such embodiments, the extension arm and tube of each support rail may be removably secured via a quick-release locking pin.
The lifting device may be movably secured to the beam such that the lifting device may move from a first end of the beam a second end of the beam, thereby allowing horizontal movement of an object once suspended by the lifting device. In some instances, the lifting device may have rollers or wheels associated therewith, such as a push-beam trolley, that allow the lifting device to roll upon a surface of the beam. To facilitate the transfer of an object to and from elevated worksites, the length of the beam may be such that at least one end of the beam extends beyond a perimeter defined by the first and second frame member when the apparatus is assembled. For instance, the apparatus may be assembled on the rooftop of a building such that the first and second frame member rest upon the building's roof and a portion of the beam extends over an edge of the building over a ground surface. To retrieve an object located on the ground surface, e.g., an HVAC unit, the lifting device is moved to the portion of the beam suspended above the ground surface. The cable of the lifting device is then lowered to the ground, secured to the object, and retracted. Once the object is suspended above the rooftop, the lifting device is moved to a portion of the beam within the perimeter defined by the first and second frame member and the object is lowered and released onto the rooftop surface. Thus, as the foregoing example illustrates, the apparatus of the present disclosure may find use in a variety of commercial lifting applications.
To reduce the possibility of the apparatus overturning while lifting a load, the apparatus may further comprise a counterbalance and/or anchor secured to at least one of the first frame member, the second frame member, and the beam. To transport the apparatus, the counterbalance may comprise a receptacle having dimensions sufficient to store the first frame member, the second frame member, the beam, and the lifting device therein when the apparatus is disassembled.
The foregoing summary has outlined some features of the apparatus of the present disclosure so that those skilled in the pertinent art may better understand the detailed description that follows. Additional features that form the subject of the claims will be described hereinafter. Those skilled in the pertinent art should appreciate that they can readily utilize these features for designing or modifying other structures for carrying out the same purposes of the device and methods disclosed herein. Those skilled in the pertinent art should also realize that such equivalent designs or modifications do not depart from the scope of the device and methods of the present disclosure.
These and other features, aspects, and advantages of the present disclosure will become better understood with regard to the following description, appended claims, and accompanying drawings where:
In the Summary above and in this Detailed Description, and the claims below, and in the accompanying drawings, reference is made to particular features, including method steps, of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature can also be used, to the extent possible, in combination with/or in the context of other particular aspects of the embodiments of the invention, and in the invention generally.
The term “comprises” and grammatical equivalents thereof are used herein to mean that other components, steps, etc. are optionally present. For example, a system “comprising” components A, B, and C can contain only components A, B, and C, or can contain not only components A, B, and C, but also one or more other components.
Where reference is made herein to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously (except where the context excludes that possibility), and the method can include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all the defined steps (except where the context excludes that possibility).
The term “removably secured” and grammatical equivalents thereof are used herein to mean the joining of two components in a manner such that the two components are secured together, but may be detached from one another and re-secured together without requiring the use of specialized tools. As used herein, the term “lifting surface” and grammatical equivalents thereof refers to any surface upon which the apparatus of the present disclosure may rest upon or sit.
Turning now to the drawings,
In a preferred embodiment, the modular frame comprises a first frame member 110 and a second frame member 120, which collectively support a beam 130 above a lifting surface 300 when the apparatus 100 is assembled and placed in an upright position. The first frame member 110 and the second frame member 120 are both removably secured to the beam 130 such that the first frame member 110, the second frame member 120, and the beam 130 may be separated in order to reduce the amount of space occupied by the apparatus 100 when stored or transported.
Secured to the beam 130 is a lifting device 140 configured to lower and retract a cable 142 associated therewith. The cable 142 may be secured around an object 200 and the lifting device 140 engaged to retract the cable 142, thereby suspending the object 200 above the lifting surface 300. The cable 142 may have a hook 144 or other attachment device secured to one of its ends to facilitate securement of the object 200. In a preferred embodiment, the lifting device 140 is automated such that the lifting device's 140 lowering and retraction of the cable 142 may be controlled through engagement with an actuator 150 operably connected to the lifting device 140. To facilitate horizontal movement of the object 200 once suspended, the lifting device 140 may be movably secured to the beam 130 such that the lifting device 130 may move from one end of the beam 130 to the other.
As shown in
To permit each respective frame member 110, 120 to be disassembled into smaller, constituent pieces, the support rails of each frame member are preferably removably secured to each frame member's respective base. To facilitate such removable securement, the first and second end 112A and 112B of the first base 112 and the first and second end 122A and 122B of the second base 122 may be configured to receive a support rail therein. In one such embodiment, the first and second end 112A and 112B of the first base 112 may have a first bracket 113 and a second bracket 114 secured thereto, respectively, as shown in
The dimensions of each bracket are preferably such that each bracket forms a female member to which an end of a support rail may be inserted therein. In one such embodiment, the first bracket 113 is configured to receive a first end 116A of the first support rail 116 therein, the second bracket 114 is configured to receive a first end 118A of the second support rail 118 therein, the third support bracket 123 is configured to receive a first end 126A of the third support rail 126 therein, and the fourth bracket 124 is configured to receive a first end 128A of the fourth support rail 128 therein. Alternatively, the first end of each support rail may be hollowed as to form a female member in which a bracket may be inserted. Each bracket and support rail preferably has a bore extending transversely therethrough such that a support rail may be secured in a substantially fixed position within a bracket, or vice versa, by aligning the bore of the support rail with the bore of the bracket and inserting a locking pin 170 therethrough, as best shown in
In another preferred embodiment, the first and second end 112A, 112B of the first base 112 and the first and second end 122A, 122B of the second base 122 may have an opening therein of sufficient size to receive the first end of a support rail therein without the use of a bracket, as shown best in
To allow for adjustment of the apparatus's 100 overall height when assembled, each support rail of the first and second frame members 110, 120 may be configured to extend. In one such embodiment, each support rail comprises a tube 116C, 118C, 126C, 128C and an extension arm 116D, 118D, 126D, 128D, as best shown in
For each support rail, the extension arm may be slidably disposed within the support rail's tube such that the support rail may be extended by sliding the extension arm out of the tube or collapsed by sliding the extension arm into the tube. In such embodiments, the tube of each support rail has an at least partially hollowed body having a diameter greater than at least one end of the support rail's extension arm. In one preferred embodiment, the dimensions of the extension arm and tube of each support rail are such that the extension arm may slide out of the tube to extend the overall length of the support rail to approximately 12 feet. In some instances, the extension arm and tube of each support rail may be slidably secured via a sliding rail, e.g., a linear ball slide rail, to facilitate sliding of the extension arm within the tube. In alternative embodiments, each support rail of the first and second frame member 110, 120 may be configured to telescopically extend.
The tube and extension arm of each support rail may have at least one bore extending transversely therethrough such that the support rails may be fixed in an extended configuration by sliding the extension arm into the tube, aligning the bore of the extension arm with the bore of the tube, and inserting a locking pin 170 therethrough, as best shown in
By extending or collapsing the support rails 116, 118, 126, 128, a user may adjust the overall height of the apparatus 100 to increase or decrease the maximum height in which an object 200 may be suspended above a lifting surface 300 when the cable 142 attached to the lifting device 140 is fully retracted. Moreover, a user may adjust the height of the support rails 116, 118, 126, 128 to accommodate uneven lifting surfaces 300, as shown in
To accommodate a wide array of commercial applications, the first and second frame members 110, 120 are preferably designed such that the apparatus 100 may support loads of at least 450 pounds without the first frame member 110 or second frame member 120 deforming or breaking. To reduce weight and provide increased portability of the apparatus 100, each component of the first frame member 110 and the second frame member 120 described above may comprise an aluminum material or other lightweight metal or metal-alloy material. However, one of skill in the art will appreciate that the components of the first and second frame members 110, 120 may comprise other materials including, but not limited to, wood, plastic, rubber, various metals such as steel, or a combination thereof without departing from the inventive subject matter disclosed herein.
As shown in
The beam 130 may have a first bracket 132 and a second bracket 134 either permanently or removably secured thereto. As shown in
As shown best in
When the first support rail 116 and the third support rail 126 are secured to the first bracket 132, the first support rail 116 and the third support rail 126 are linearly aligned. Similarly, when the second support rail 118 and the fourth support rail 128 are secured to the second bracket 134, the second support rail 118 and the fourth support rail 128 are linearly aligned. Accordingly, when the first frame member 110 and the second frame member 120 are secured to the beam 130, the first base 112 and the second base 122 are held in parallel relation and the first support rail 116 and the second support rail 118 are held in parallel relation, and the third support rail 126 and the fourth support rail 128 are held in parallel relation, as shown best in
The lifting device 140 is removably secured to the beam 130 and is configured to lower and retract a cable 142 attached thereto. As used herein, the term “cable” and grammatical equivalents thereof are understood to mean any elongated piece of material which can be lowered and retracted by the lifting device 140 including, but not limited to straps, chains, cables, ropes, or combinations thereof. The cable 142 may comprise materials including, but not limited to, polyester, synthetic rope, metal cable or wiring, or any other suitable material. To accommodate a wide array of commercial applications, it is preferred that the cable 142 have a tensile strength sufficient to suspend a load of at least 450 pounds above a lifting surface 300 without breaking. A first end of the cable 142 may be secured to the lifting device 140 and a second end of the cable 142 may have a securing member 144 configured to secure an object 200 to be lifted to the cable 142. In a preferred embodiment, as shown in
In one preferred embodiment, the lifting device 140 is automated such that the cable 142 may be lowered or retracted by engaging an actuator 150 operably connected to the lifting device 140, as shown in
In a preferred embodiment, the lifting device 140 comprises a push-beam trolley having a set of opposing wheels or rollers, as shown in
To facilitate the transfer of an object 200 to and from elevated work sites, the length of the beam 130 may be such as to extend beyond the framed perimeter 190 defined by the first and second frame members 110, 120 when the apparatus 100 is assembled, as shown in
In a preferred embodiment, only one end of the beam 130 extends beyond the framed perimeter 190. Alternatively, both ends of the beam 130 may extend beyond the framed perimeter 190. Preferably, the first bracket 132 and the second bracket 134 are configured to removably secure to the beam 130 such that the extent to which one or both ends of the beam 130 extend beyond the framed perimeter 190 may be adjusted by removing, repositioning, and subsequently re-securing the first and second brackets 132, 134 to the beam 130.
To reduce the risk of the apparatus 100 overturning while supporting a load, the apparatus 100 may further comprise a counterbalance 160 and/or an anchor 180, as shown best in
In applications requiring the apparatus 100 to support a load, at least temporarily, outside the framed perimeter 190, the counterbalance 160 is preferably secured to the first frame member 110 and/or second frame member 120 opposite the end of the beam 130 extending beyond the framed perimeter 190. For instance, if an end of the beam 130 extends beyond the framed perimeter 190 adjacent the first and third support rail 116, 126, the counterbalance 160 is preferably secured to the second support rail 118 and/or fourth support rail 128, as shown in
To enable convenient transport of the apparatus 100 to and from worksites, the counterbalance 160 is preferably configured to store various components of the apparatus 100 therein when the apparatus 100 is disassembled. In this way, the counterbalance 160 provides for centralized storage of constituent components of the apparatus 100, thereby enabling the apparatus 100 to be transported to and from worksites through routes and areas generally unnavigable by heavy machinery, such as a building's elevators or corridors. As shown in
As shown in
It is understood that versions of the inventive subject matter of the present disclosure may come in different forms and embodiments. Additionally, it is understood that one of skill in the art would appreciate these various forms and embodiments as falling within the scope of the inventive subject matter disclosed herein.
This application claims priority to U.S. Provisional Patent Application No. 62/373,452 entitled “Portable Lifting Apparatus,” filed Aug. 11, 2016, which application is incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
62373452 | Aug 2016 | US |