The subject matter disclosed herein relates to shade devices for use with portable light sources.
Military units, such as for example special forces or other troops who are active at night, can use small, lightweight, inexpensive portable light sources such as chemiluminescent light sticks as light sources to provide lighting needs. These light sources can also be used in other applications, such as for example by hunters, law enforcement personnel, campers, and the like; as well as in any other situation requiring inexpensive, lightweight, long-lasting light. In some situations, emission of stray light from such devices could present a danger, for example by betraying a military unit's position to enemy forces, or an inconvenience, for example by ruining a hunter's night vision in directions away from the light source. Additionally, these portable light sources tend to be omni-directional while tasks that require lighting might be better served with a more directed beam from the light source.
In a first aspect, an apparatus includes a flexible device that has a first side, a second side shaped substantially similarly to the first side, an outer edge, a first joining edge, and a second joining edge. The flexible device is approximately flat with the first and the second sides disposed opposite one another such that the outer edge joins the first side and the second side along a substantial portion of a perimeter of the first side and the second side. The first joining edge and the second joining edge define a gap such that the outer edge does not continue uninterrupted around the entire perimeter of the flexible device. The flexible device flexes to form an assembled structure in which the first joining edge is disposed proximate to the second joining edge. The assembled structure encloses an inner volume with a first opening that is defined by the outer edge and an apex disposed opposite the first opening. The apex has a smaller cross sectional area than the first opening. The first side forms an inner surface of the assembled structure and the second side forms an outer surface of the assembled structure. The apparatus also includes joining means for connecting the first joining edge and the second joining edge and attaching means for securing a portable light source to the assembled structure to direct light from the portable light source in a desired manner. The portable light source has an elongated shape along a first axis and emits light both in the directions of the first axis and perpendicular to the first axis.
In an interrelated aspect, a method includes curving a flexible device such as those described herein into an assembled structure, securably connecting the first joining edge and the second joining edge of the flexible device; and attaching a portable light source to the assembled structure to direct light from the portable light source in a desired manner. The portable light source can have an elongated shape along a first axis and emit light both in the directions of the first axis and perpendicular to the first axis.
In optional variations, one or more of the following additional features can be included. The first side can include a reflective surface. The second side can include a dark colored and opaque surface. The attaching means can include a strap that wraps around the portable light source around the axis of the portable light source, thereby securing the portable light source to the assembled device. The flexible device can include a notch disposed approximately near a center of the flexible device. The notch can form a second opening that is opposite and smaller than the first opening when the flexible device forms the assembled structure.
The attaching means can include a strap disposed near the notch. The strap can wrap around the portable light source around the axis of the portable light source thereby securing the portable light source to the assembled structure with at least part of the portable light source extending out of the second hole to outside of the assembled structure. A remainder of the portable light source length along the axis can extend into the inner volume of the assembled device toward or out through the first opening. Alternatively, the portable light source can be secured to the assembled structure with at least part of the portable light source extending into the second hole to the inner volume of the assembled structure such that a remainder of the portable light source length along the axis extends outside the assembled device in a direction opposite the first opening so that the portable light source is supported by the assembled structure to form a free standing lantern device. The second side of the flexible device can include a reflective material and be oriented facing outward away from the inner volume in the assembled structure to reflect light from the portable light source outward and upward in the free standing lantern device.
The attaching means can include a light source affixing device that includes a socket side with a socket that accepts an end of the portable light source and an attachment side that can further include a tapered portion and a head with a larger cross section than the tapered portion. The head can be disposed at an opposite end of the tapered portion from the socket side. The socket can include a flexible or semi-flexible material that resiliently expands at least slightly to accept the end of the portable light source. The apex of the assembled structure can include a gap or opening that is large enough to accept the tapered portion but not to allow the head or the socket section to pass. The light source affixing device can be oriented in the assembled structure such that the socket section is disposed outside of the assembled structure so that the socket faces away from the first opening such that the portable light source affixed in the socket is supported by the assembled structure to form a free standing lantern device. The second side of the flexible device can include a reflective material and be oriented facing outward in the assembled structure to reflect light from the portable light source outward and upward in the free standing lantern device.
The apparatus can further include the portable light source, which can be a chemiluminescent light stick. The outer edge can define a substantial portion of a circle and the first joining edge and the second joining edges can each be perpendicular to the outer edge and each define a substantial portion of a diameter of the circle such that the first and the second sides are each circular with a fraction of the circle missing as defined by a gap between the first joining edge and the second joining edge. The assembled structure can include an approximately 45 degree cone-shaped shade with an approximately ⅝″ diameter second opening at the apex. An adjustable carrying strap can also be include at the apex.
The current subject matter can provide, among other potential benefits and advantages, a portable, adaptable device for shading and/or directing light from a portable light source. The subject matter can also provide a portable base for a light source. Among other potential benefits of the subject matter described herein, a rugged, lightweight, and versatile shade can be provided that directs light from a portable light source, such as for example a chemiluminescent light stick in a desired direction while minimizing light emission in other directions. This capability can be very useful in applications in which light is needed to perform various tasks but in which emission of the light outside of a controlled area can be undesirable. For example. The current subject matter provides a lightweight, inexpensive device that can be used in one example to direct the majority of the lighting power from a portable light source in one direction and to prevent light from escaping in other directions.
The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
The accompanying drawings, which are incorporated in and constitute a part of this specification, show certain aspects of the subject matter disclosed herein and, together with the description, help explain some of the principles associated with the disclosed embodiments. In the drawings,
The current subject matter can be implemented in a variety of configurations that each provide one or more of the aforementioned beneficial features. The following descriptions are addressed to an example implementation that include a device that is shaped approximately like a substantial portion of a flexible, circular disk having a central hole and means for connecting two joining edges of the disk to form a cone with a first opening near its apex and a larger second opening opposite the apex. A portable light source, perhaps having an elongated shape, can be secured within the first hole or otherwise near the apex of the cone such that the body of the light source is directed toward and possibly beyond the extent of the larger second opening. In this manner, the material forming the cone can prevent light from the light source from being projected outside of the device in the general direction of the apex of the cone. The interior surface of the assembled device can include a reflective coating that increases the intensity of light being projected out of the second opening of the device and in a general direction away from the apex. It will be readily understood that other geometrical shapes besides a circular disk and a cone are within the scope of the currently disclosed subject matter.
A notch 112 can also be provided approximately in the center of the flexible device 100. In the example shown, the notch 112 is curved in the shape of an arc describing about 75% of a circle. Other shapes of the notch 112 are possible as well. In some implementations, the notch 112 and the outer edge can define approximately congruent shapes to give the device 100 some degree of rotational and/or axial or planar symmetry when it is fully assembled. The notch 112 can also optionally be shaped to be compatible with the shape of a portable light source. A curved, circular notch 112 as shown in
The flexible device 100 can also include a connection means, such as for example a fastener device or devices or other means of affixing the first joining edge 106 and the second joining edge 110. In one example, as shown in
Additional perspective views of a flexible device 100 that is consistent with the current subject matter are shown in the isometric diagrams of
The second opening 504 can accept a portable light source 602, such as for example a chemiluminescent stick or similar sized light source as shown in
The flexible device 100 can also in some implementations be constructed so as to be capable of being assembled in a reversible configuration as shown in
The current subject matter also includes portable light source shade designs that include neither a notch 112 in the unassembled device nor a second hole 504 near the apex of the assembled device 500. In such implementations, an inner collar or other comparable means for affixing a portable light source 602 can be included on the second side 202 of the flexible device 100. An example of such a device is shown in
Although a few variations have been described in detail above, other modifications are possible. For example, the logic flow depicted in the accompanying figures and described herein do not require the particular order shown, or sequential order, to achieve desirable results. Other embodiments may be within the scope of the following claims.
This application claims the benefit of U.S. provisional patent application Ser. No. 60/968,844, filed on Aug. 29, 2007 and entitled “Portable Light Source Shade,” which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3884460 | Jiruse | May 1975 | A |
5733030 | Cohn et al. | Mar 1998 | A |
Number | Date | Country | |
---|---|---|---|
20090059575 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60968844 | Aug 2007 | US |