This invention relates to portable lights, and more particularly to a portable light in which illumination is produced by a plurality of light-emitting diodes.
With the development, beginning around 1996, of light-emitting diodes (LEDs) capable of emitting white light, LEDs have come into use in flashlights, and in portable headlights for use in activities such as diving, cave exploration, hiking, camping, etc. Moreover, in recent years, with the development of more powerful LEDs, these devices have even displaced incandescent bulbs in some flashlights and personal headlamps. For illumination comparable to that of an incandescent flashlight or personal headlamp, manufacturers have incorporated multiple LEDs into a single lamp. In some cases, for maximum light output, all the LEDs can be operated together. Where maximum light output is not needed, groups of fewer than all of the LEDs in a multiple LED lamp can be selectively operated by suitable switching, in order to avoid excessive battery drain. A similar result can be achieved by electronically adjusting the duty cycle of an LED or group of LEDs.
Although LEDs are generally more efficient than incandescent bulbs insofar as the ratio of light output to electrical power input is concerned, the higher power LEDs still generate a substantial amount of heat, and can fail if they become too hot. Heretofore, it has been difficult to dissipate heat adequately in a high power LED light, especially where plural LEDs are arranged in close proximity to one another. Accordingly, it has been necessary to limit LED power input, or to operate the LEDs intermittently when utilizing maximum power.
A general object of this invention is to provide a high power LED light with adequate heat dissipation so that it can be operated reliably over a long period of time.
A preferred portable light in accordance with the invention comprises a housing composed of a synthetic resin, a printed circuit board mounted within the housing and having a front face and an opposite back face, a plurality of light-emitting diodes mounted on the front face of the circuit board, and a metal heat sink. Each light-emitting diode has a lead which extends through the printed circuit board and is connected to a printed conductor on the back face of the board. The heat sink has a plurality of projections on a front side thereof, each projection being associated with a different one of the light-emitting diodes and being in heat-conducting relationship with the printed conductor to which the lead of its associated light-emitting diode is connected. A set of heat-dissipating fins is provided on the back side of the heat sink.
Preferably, the housing has an opening through which the heat-dissipating fins extend, and a protective cover composed of synthetic resin is connected to the housing but spaced from the heat-dissipating fins. This cover has a plurality of openings for the release of heat from said fins.
Each printed conductor extends at least part way around the lead to which it is connected, and each projection on the heat sink has a contacting surface extending in an arc at least part way around the lead of its associated light-emitting diode. Each projection contacts the printed conductor to which the lead of its associated light-emitting diode is connected over substantially the entire length of its arc, which preferably subtends an angle of at least approximately 180 degrees, and is centered on the lead of the light-emitting diode with which the projection is associated.
The front side of the heat sink preferably has a plurality of recesses, each recess receiving a second lead of an LED, and preventing the second lead from contacting the heat sink.
A reflector, having a plurality of through holes, is preferably disposed adjacent the front face of the circuit board, and each of the light-emitting diodes extends into one of the holes. The reflector has a plurality of pins extending therefrom through the circuit board and projecting rearward from the back face of the circuit board. The pins on the reflector fit into holes formed on the front face of the heat sink to maintain alignment of the heat sink with the circuit board.
Other objects, details and advantages of the invention will be apparent from the following detailed description when read in conjunction with the drawings.
The invention will be described as embodied in a personal headlamp designed to be worn on an individual's head with the aid of a flexible headband (not shown). As shown in
A transparent lens 18 is secured by a suitable adhesive to the front part 10 of the housing, covering the front opening 20 therein, the adhesive providing a seal.
A bracket 22 is connected in pivoting relationship to the back housing part 12 by a pin 24, which extends through a pair of knuckles 26 formed on the bracket and a knuckle (not shown) formed on the housing part 12, which extends into a slot between knuckles 26. The pin is threaded into a lock nut 28. The knuckles and pin 24 cooperate to form a hinge, which allows the housing to be tilted relative to the bracket about a horizontal axis so that the beam of light can be aimed. The bracket is provided with slots for receiving head strap (not shown) so that the light can be worn on an individual's forehead. A separate battery pack (not shown) can be positioned on another part of the head strap for supplying electrical power to the light.
The three main elements inside the housing are a printed circuit board 30, on which an array 32 of light-emitting diodes (LEDs) is mounted, a molded reflector 34 having a set of through holes, e.g., hole 36 for receiving the LEDs, and a cast aluminum heat sink 38. In addition, the housing is provided with a switch assembly 40, which fits into a pair of opposed slots (not shown) underneath the top 42 of the front housing part 10, and a pair of flexible, elastomeric, push-buttons 44 and 46, by which the switches of the switch assembly 40 are operated manually. These push buttons fit, in sealing relationship, into holes 48 and 50, respectively, in top 42 of the front housing part.
The wiring and circuitry for operating the LEDs is straightforward and need not be described in detail. Preferably, the switch assembly will allow the user to activate all of the LEDs, or a small group thereof, depending on the required intensity of illumination.
As shown in
In the embodiment shown, either LEDs are mounted on the circuit board, on the side opposite from the side shown in
Two more arcuate conductor areas, 68 and 70, are electrically isolated from the common conducting area 52, to provide for selection of different groups of LEDs. In the embodiment shown, the user can select two, six, or all eight LEDs. The other leads of the two LEDs served by conductor areas 68 and 70 are connected to printed conductors on the back face of the circuit board.
Arc-shaped projections on the front face of the heat sink press against the protective coating on the arcuate conductor areas, so that the projections and arcuate conductors are in heat-conducting relationship. As shown in
A sealing grommet 78 fits through an opening 80 in the front part of the housing for the entry of power leads from the battery pack into the interior of the housing. The heat sink is preferably sealed to the housing part 12 by a sealing ring clamped between the back wall of the heat sink and a groove, formed on an internal wall of housing part 12, so that the internal space within the housing, but in front of the heat sink, is completely sealed from the surrounding atmosphere. Thus the light can be used for underwater applications.
Alignment of the heat sink with the circuit board is maintained by pins 82, which extend rearward from the reflector 34, through the circuit board, and into holes 84, formed in the front face of the heat sink, as shown in
The invention allows for reliable operation of high-power LEDs over a relatively long time, in a compact light structure. The advantages of the invention may be realized in flashlights and other portable lighting devices as well as in personal headlamps, and in configurations other than the configuration specifically described. For example, the number of LEDs and their arrangement can be varied, and the shape of the housing and the arrangement of parts can be modified in various ways, such as by forming the LED leads so that only one lead of each LED extends through the circuit board while the other lead is connected to a conductor on the front side of the board. In the case where only one lead of each LED extends through the circuit board, the conductive area can surround the lead completely, and the projections of the heat sink can be in the form of complete circles rather than arcuate in shape.
Still other modifications may be made to the apparatus and method described above without departing from the scope of the invention as defined in the following claims.
This application claims priority, under 35 U.S.C. §119(e)(1), on the basis of provisional patent application 60/592,646, filed Jul. 29, 2004.
Number | Date | Country | |
---|---|---|---|
60592646 | Jul 2004 | US |