The present invention relates to a portable lighting device with a colored lens. More particularly, the present invention relates to a portable lighting device with a mechanically selectable colored lens providing focused filtered LED light.
Portable lighting devices, such as flashlights, are common. A typical flashlight includes one or more batteries arranged within a cylindrical battery compartment that forms the handle of the light. A front end, or head, typically houses a bulb or lamp. A switch mechanism, generally placed between the lamp and the batteries, controls the flow of electricity between the batteries and the lamp. Current portable lighting devices are offered in a multitude of shapes and sizes and provide many options for a variety of disciplines including but not limited to: military; fire fighting; police; industry; camping; boating; outdoor sports; scuba; hunting; and general household use.
The need for a focused high powered beam of colored filtered light is common among hunters, astronomers, and military and security personnel engaged in various operations. It is desirable in these applications for the filter mechanism to be simple to operate so as not to interfere with the task at hand. Also, colored filtered light is preferable to white light in many of these applications in that it helps preserve the night vision of the user and nearby individuals. Additionally, filtered light may be more difficult to detect by observers. High powered light emitting diodes (LEDs) may be preferable in these applications as they consume less power than conventional incandescent bulbs, therefore lasting hundreds of hours on a set of conventional batteries, as compared to a few dozen hours for incandescent bulbs. Additionally, LED flashlights are often electronically regulated to maintain a constant light output as batteries fade. By contrast, a standard flashlight using normal light bulbs emits a progressively dimmer output, sometimes spending much of the total running time below optimum brightness level.
One way of providing colored filtered light is to provide translucent lenses in various colors that the user may insert in place of a transparent bulb cover. However, changing the filter color of the light requires disassembly and reassembly. This may be difficult to accomplish in the dark, and may be a slow, time-consuming process. Also, disassembly increases the chances of dropping and possibly losing critical parts during the exchange process. Having loose parts necessitates storage when the light is not in use.
Another approach to providing colored filtered light is to use independent lamps or bulbs, each of a different color or with a separate color filter. However, the use of multiple bulbs increases the number of component parts and raises the cost of manufacturing. Additionally, the control of multiple light sources may require more user inputs, or more complex electronic switching to take advantage of the separate bulbs.
Yet another approach to providing a variable color light source is to use a single lamp, or bulb, and a wheel fitted with a variety of colored filters. The color wheel may be fitted over the lamp and rotated to provide colored filtered light. However, in this instance, the filtered light does not pass through a lens to provide a focused beam of light.
Therefore, there is a need for a portable lighting device to emit a beam of colored filtered light that is simple to operate and easily changeable by the user. There is also a need for a portable lighting device that can provide a focused beam of light at the output of a colored filter. There is still another need for a portable lighting device that can provide a high powered focused beam of light at the output of a colored filter.
One embodiment of the invention relates to a portable lighting device comprising a body having a central axis, a light source coupled to the body and configured to emit a beam of light along a central axis, and a head assembly rotatably coupled to the body along the central axis. The head assembly comprises a ring gear coupled to the head assembly along the central axis. The portable lighting device further comprises a filter assembly rotatably coupled to the body and having a rotational axis offset from the central axis. The filter assembly comprises a plurality of filters and a pinion gear interlocked with the ring gear. Rotation of the head assembly rotates the ring gear, thereby rotating the pinion gear to selectively align different filters of the plurality of filters along the central axis on an output side of the light source.
Another embodiment of the invention relates to a portable lighting device comprising a body, a light source coupled to the body and configured to emit a beam of light along a central axis, a head assembly rotatably coupled to the body, and a filter assembly rotatably coupled to the body. The filter assembly has a rotational axis and a plurality of filters offset from the central axis. Rotation of the head assembly rotates the filter assembly to align different filters of the plurality of filters along the central axis on an output side of the light source.
A further embodiment of the invention relates to a portable lighting device comprising a body, a light source coupled to the body and configured to emit a beam of light along a central axis, a head rotatably coupled to the body, a filter assembly rotatably coupled to the body having a plurality of filters, and a means for rotating the filter assembly about an axis offset from the central axis.
Referring to
Body 12 may be cylindrical or other shape and may be made of metal, plastic, or other materials. Body 12 may contain batteries or other power source as well as additional internal wiring or a switch, which may be embodied in a variety of types and configurations as is generally known in the art. Body 12 is centered on longitudinal axis 16.
In the embodiment shown in
Referring still to
Referring still to
Referring to
Referring to
A user may readily switch flashlight 10 between available filter positions. In operation, a user may rotate head assembly 14 of flashlight 10 about longitudinal axis 16. Rotation of head assembly 14 rotates ring gear 32, also about longitudinal axis 16. Rotation of ring gear 32 causes pinion gear filter plate 28 to rotate about rotating lens pivot 38, allowing the different available filters 30 to be selectively aligned or placed on the output side of light source 34.
The user may detect a positive tactile feedback as leaf springs and a detent mechanism engage in notches on the filter assembly 26, ensuring that the chosen filter 30 will be placed in proper position to allow an unobstructed pathway from light source 34 to the environment. The user may further use the indicators 22 on the face of the lens assembly 20 to place the lens assembly 20 in a known position. As these procedures do not necessarily rely on any visual cues, the user may perform color selection even in conditions of total darkness. Once the lens assembly is in a known position, other filters 30 may be selected by rotation of lens assembly 20 a predetermined number of steps to the right or left, as indicated by tactile feedback from the detent mechanism. Additional tactile cues may be provided on the lens assembly 20 or the housing 18 to further specify the precise rotational position of the lens assembly 20 during operation.
In other exemplary embodiments, flashlight 10 may be another type of portable lighting device such as a headlamp or lantern.
According to an exemplary embodiment, the present invention provides a high powered beam of colored and/or filtered light along a central axis of a portable lighting device. Additionally, the present invention allows for quick and easy selection of a variety of colors and/or filters, with no need to store loose, additional parts. Additionally, the present invention allows all internal rotating components to be housed within the portable lighting device and not exposed on the outside of the portable lighting device.
According to an exemplary embodiment, the present invention provides an improved light output form as the light source is an LED or a high powered LED. The location of the LED on a central axis allows for the placement of circuit boards and/or heat sinks. Additionally, the central axis location of the LED allows for the collection of light and a focused beam. The beam of light is filtered before it is received by an optical lens or reflector.
It is important to note that the construction and arrangement of the portable lighting device shown and described in the various exemplary embodiments is illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes, and proportions of the orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the description. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the invention as expressed in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1241771 | Schram | Oct 1917 | A |
1443106 | Walsh | Jan 1923 | A |
2296005 | Weiner | Sep 1942 | A |
2347531 | Yardeny | Apr 1944 | A |
2389591 | Brown | Nov 1945 | A |
3936147 | Murakami | Feb 1976 | A |
3936164 | Cohen et al. | Feb 1976 | A |
4202601 | Burbo et al. | May 1980 | A |
4346329 | Schmidt | Aug 1982 | A |
4517628 | McDermott | May 1985 | A |
4580196 | Task | Apr 1986 | A |
4677533 | McDermott et al. | Jun 1987 | A |
4697890 | Crookston | Oct 1987 | A |
4947291 | McDermott | Aug 1990 | A |
4963798 | McDermott | Oct 1990 | A |
5037346 | Cimock | Aug 1991 | A |
5161879 | McDermott | Nov 1992 | A |
5402326 | Belliveau | Mar 1995 | A |
5581356 | Vezard | Dec 1996 | A |
5617080 | Morich | Apr 1997 | A |
RE36197 | Walker | Apr 1999 | E |
5896189 | Watkins | Apr 1999 | A |
6061591 | Freitag et al. | May 2000 | A |
RE37136 | Vezard | Apr 2001 | E |
6366028 | Wener et al. | Apr 2002 | B1 |
6957905 | Pritchard et al. | Oct 2005 | B1 |
7048408 | Dallas et al. | May 2006 | B2 |
7178937 | McDermott | Feb 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20090002992 A1 | Jan 2009 | US |