The present invention relates to mounting assemblies for temporarily stowing locks, for example, U-locks and cable locks for bicycles and other transportation devices, when not in use, and for releasing the locks for ready use when needed or maintaining a portion of the lock housing during use.
Since the inception of bicycle U-locks and cable locks, a variety of holders have been proposed for removably carrying such a lock when the bicycle is in use, rather than parked. Such a U-lock typically comprises a semi-enclosure member or shackle having legs or fittings with configured feet, a straight crossbar having openings for reception of these feet, and a locking mechanism in the crossbar for retaining or releasing these feet. Such a cable lock typically comprises a cable having at one end a leg or fitting with a configured foot, a bar extending from the other end of the cable and having an opening for reception of this foot, and a locking mechanism in the bar for retaining or releasing this foot. For protection against theft, this tie lock assemblage ties a strut or the like of the bicycle to any suitable object, such as a post, rail, rack, or station.
The objectives of a holder for such locks are to carry the lock securely on the bicycle frame without rattling, to position the lock inconspicuously on the bicycle frame without hindering movement of the cyclist, and yet to facilitate convenient release of the lock from the holder whenever needed. Prior art holders have not completely met these objectives.
There is disclosed herein multiple embodiments of portable lock mounting assemblies. The mounting assemblies include at least one attachment assembly for securing the mounting assembly to a transportation device such as a bicycle or the like. Each mounting assembly has a structure defining a retaining assembly to securely retain a lock and readily release the lock from the mounting assembly. Various embodiments, aspects, features, advantages and objects are further disclosed in the description that follows.
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.
Referring to
With reference to
Referring to FIGS. 4 and 7-9, the bracket member 1020 includes a connection member 1023 and a mounting member 1030. The connection member 1023 defines the receiving slot 1024. A lever opening 1029 extends into the connection member 1023 perpendicular to and intersecting with the receiving slot 1024. A surface 1027 of the connection member 1023 opposite the receiving slot 1024 includes a plurality of posts 1028 extending outwardly from a surface 1027 adjacent the circumference of the outer perimeter of the surface 1027. The posts 1028 are illustrated spaced radially from one another at 15° intervals around central axis A1, but more or fewer posts 1028 may be provided. The posts 1028 are configured to be received in correspondingly aligned bores 1032 defined in an opposing surface 1031 adjacent to a perimeter of the mounting member 1030. The posts 1028 and bores 1032 are illustrated with circular cross-sections, but may have other configurations, for example, oval, elliptical, rectangular, irregular, or the like. The bores 1032 are illustrated spaced from one another at 15° intervals around surface 1031, but more or fewer bores 1032 may be provided. Additionally, while the posts 1028 and bores 1032 are illustrated in equal number, fewer posts 1028 than bores 1032 may be provided. Additionally, in another embodiment the posts 1028 may be provided on the mounting member 1030 while the bores 1032 are provided on the connection member 1023.
The interrelationship of the posts 1028 and bores 1032 allow the orientation of the slot 1024 and thus the locking apparatus 12 to be adjusted relative to the orientation of the attachment assembly 1060 and thus the transportation device. Once the connection member 1023 and the mounting member 1030 are oriented as desired, a fastener such as screw 1025 is secured through a hole 1021 in the connection member 1023 into a hole 1033 in the mounting member 1030. A retaining clip or the like (not shown) may be provided on the screw 1025 or between the connection and mounting members 1023, 1030 such that the connection and mounting members 1023, 1030 do not fully separate upon loosening of the screw 1025 to allow adjustment. Indicators 1019 and 1034 may be provided on the connection member 1023 and mounting member 1030, respectively, to indicate the relative orientation or slot 1024 with attachment assembly 1060 as connection member 1023 and mounting member 1030 are rotated relative to one another around central axis A1.
With reference to
To release the spline member 1054, the contact pad 1042 is pushed in the direction of arrow A in
The attachment assembly 1060 will be described with reference to FIGS. 4 and 10-11. The attachment assembly 1060 generally includes an attachment block 1062 and a strap 1080. The attachment block 1062 is configured to be received within a cavity 1036 in the mounting member 1030. The cavity 1036 is defined by opposed side walls 1037 and end wall portions 1038 that are opposite surface 1031 and extend between respective ends of side walls 1037. The end wall portions 1038 are configured to engage against a portion of the bicycle such as shown in
The attachment block 1062 has a surface 1061 with a screw receiving opening 1063. Upon attachment, the surface 1061 extends substantially parallel to the surface 1031 of the mounting member 1030. A pair of opposed walls 1064 and 1065 depend from the surface 1061 and a strap slot 1066, 1067 is defined adjacent the junction between the surface 1061 and the respective wall 1064, 1065. In the illustrated embodiment, the slot 1067 is sized to facilitate passage of a free end 1081 of strap 1080 while the slot 1066 is larger in size to facilitate passage of a looped portion 1082 of the strap 1080. The looped portion 1082 is configured to receive and retain a pin 1084 which abuts wall 1064 when tightened, but can be pivoted to pass through slot 1066 to allow quick assembly of the attachment assembly 1060 to the frame. In the alternative attachment block 1062′ illustrated in
To attach the lock mounting assembly 1020 to a frame member, the attachment block 1062 is positioned relative to the frame and the ends 1081 and 1082 of the strap 1080 are passed through the slots 1067, 1066. The strap 1080 is pulled to a snug tight fit about the frame member. The mounting member 1030 is positioned over the attachment block 1062 such that it is received in the cavity 1036. As the attachment block 1036 is received in the cavity 1036, the strap 1080 is snuggly maintained relative to the attachment block 1062 between the cavity walls 1037 and the attachment block walls 1064, 1065. At this stage, the lock assembly 1020 is considered coarsely mounted. To further refine the attachment, the screw 1025 is turned and through its engagement with the screw receiving opening 1063, pulls the attachment block 1062 further into the cavity 1036 in a direction along axis A1. Since the end walls 1038 are engaged with the frame or other portion of the bicycle, the movement of the attachment block 1062 into cavity 1036 causes increased tension on the strap 1080.
Referring to
The attachment block 1162 includes opposed legs 1070 and 1072 which connect with hinge 1161 and define a space 1075 therebetween. The space 1075 allows leg 1072 to flex about hinge 1161 as will be described hereinafter. A surface of leg 1072 includes a series of serrations 1074 angled away from the hinge 1161. The screw receiving opening 1163 extends through the hinge 1161 and communicates or connects with the space 1075 such that the secondary screw 1079 passes through the space 1075 and engages a nut member 1071 aligned with the opening 1163. To attach the lock mounting assembly 1020′, the strap free end 1081′ is looped around the frame member and then fed through an opening 1078 in the opposite mounting member wall 1037′. The serrated portion of the strap 1080′ is passed by the attachment block serrations 1074, with the leg 1072 flexing to allow the strap 1080′ to pass. The strap 1080′ is passed through with the serrations 1074, 1085 engaging one another until the strap 1080′ is snug fit about the frame. Thereafter, the secondary screw 1079 is tightened, drawing the attachment block 1162 toward the strap end 1082′, thereby increasing the tension on the strap 1080′.
Another alternative attachment assembly 1060″ is illustrated in
Various aspect of the transportation device accessory of
In one embodiment, the connection member includes a first surface and the mounting member includes a second surface facing the first surface. One of the first and second surfaces includes a plurality of posts extending therefrom and the other of said first and second surfaces includes a plurality of bores for receiving the posts to lock the connection member in the rotational orientation. In one refinement of the embodiment, the plurality of posts and the plurality of bores are spaced radially about a respective one of the first and second surfaces adjacent a perimeter of a respective one of the connection member and the mounting member. In a further refinement, one of the connection member and the mounting member includes an outer surface with a plurality of indicators aligned with respective ones of the plurality of bores and posts and the other of the connection member and the mounting member includes an indicator aligned with the locking apparatus. In another embodiment, the connection member defines a slot and the locking apparatus includes a spline extending therefrom that is removably received in the slot.
According to another aspect, the transportation device accessory comprises a locking apparatus configured to secure a transportation device to an object where the locking apparatus includes a spline defining a notch, and a mounting assembly mountable to the transportation device and to the locking apparatus. The mounting assembly includes a bracket including a connection member defining a slot for removably receiving the spline of the locking apparatus. The connection member including a release lever having a contact pad projecting from the connection member and a blocking pad extending from the contact pad that is normally biased into the notch to removably secure the locking apparatus to the connection member. The bracket further includes a mounting member coupled to the connection member. The mounting assembly further includes an attachment assembly engaged to the mounting member where the attachment assembly is removably attachable to the transportation device.
In one embodiment, the transportation device accessory includes the connection member fixed to the locking apparatus and the attachment assembly removably attachable to the transportation device in a fixed orientation. The connection member is rotatable relative to the mounting member around an axis extending through the connection member and the mounting member to change a rotational orientation of the connection member relative to the mounting member. The connection member and the mounting member are lockable into the rotational orientation to prevent rotation of the connection member relative to the mounting member and changing of the rotational orientation of the connection member relative to the mounting member changes an orientation of the locking apparatus relative to the transportation device.
In another embodiment of the transportation device accessory, the contact pad extends from an inner end to an outer end that projects from the connection member for actuation of the release lever and the blocking pad projects from the inner end and is removably positioned in the notch. The release lever further includes a stand extending from the inner end transversely to the contact pad and at least one counter-balance leg extending from the stand that is fixed relative to the connection member. The contact pad is actuatable to pivot the release lever relative to the at least one counter-balance leg about the stand and displace the blocking pad from the notch to release the locking apparatus from the bracket, and upon release of the contact pad the at least one counter-balance leg biases the lever to return the blocking pad into the notch.
In a further embodiment of the transportation device accessory, the spline includes a stop at one end thereof that contacts the connection member when the spline is seated in the slot. In another embodiment of the transportation device accessory, the spline extends from a collar that is engaged to the locking apparatus.
According to another aspect, a transportation device accessory comprises a locking apparatus configured to secure a transportation device to an object and a mounting assembly mountable to the transportation device and to the locking apparatus. The mounting assembly includes a bracket extending along an axis between a first end removably engaged to the locking apparatus and a second end engaged to an attachment assembly. The attachment assembly is removably attachable to the transportation device. The attachment assembly includes an attachment block removably engaged to the bracket, a strap positionable around the transportation device that is removably engaged to the attachment block, and a fastener that is engaged to the attachment block and operable to displace the attachment block to tighten the strap around the transportation device.
In one embodiment of the transportation device accessory, the attachment block includes an opening and the fastener engages the attachment block in the opening, where operation of the fastener displaces the attachment block along the axis into a cavity at the second end of the bracket. In one refinement of this embodiment, the bracket includes a connection member at the first end and a mounting member at the second end. The connection member and the mounting member are rotatable relative to one another around the axis to change an orientation of the locking apparatus relative to the transportation device. The fastener extends through openings of the connection member and the mounting member to engage the opening of the attachment block.
In another embodiment of the transportation device accessory, the second end of the bracket includes at least one concavely curve end wall portion and a cushioning member at the end wall portion positionable against the transportation device when the strap is tightened against the transportation device. In a further embodiment of the transportation device accessory, the attachment block defines first and second slots and the strap includes opposite first and second ends positioned though respective ones of the first and second slots to secure the strap to the bracket.
In another embodiment of the transportation device accessory, the attachment block is moved transversely to the axis with operation of said fastener. In one refinement of this embodiment, the fastener extends through a first end of the strap and through the bracket into an opening of the attachment block and operation of the fastener displaces the attachment block along the fastener. In yet a further refinement, the strap includes a second end opposite the first end and the strap defines a plurality of serrations along the second end. The attachment block defines a plurality of serrations in engagement with the serrations of the strap so that displacement of the attachment block displaces the second end of the strap to tighten the strap against the transportation device. In yet another further refinement, the attachment block includes opposed first and second legs separated by a space through which the fastener extends, and the first and second legs are connected together with a hinge allowing the first leg to move relative to the second leg to permit passage of the second end of the strap through an opening in a side wall of the bracket. In one refinement, the plurality of serrations of the strap and the attachment block are obliquely oriented to the axis. In another refinement, the plurality of serrations of the strap and the attachment block are parallel to the axis.
Referring to
The bracket body 1322 defines a through-hole 1319 configured to receive a portion of the bicycle frame or the like. Opposed legs 1321 and 1323 extend from the bracket body 1322 and support the connection bolt 1324. A nut 1325 is threadably secured to one end of the connection member 1324 and the other end includes a cam member 1326. The nut 1325 is tightened against the leg 1323 and then the cam 1326 is moved in the direction of arrow C (see
A pair of seats 1330 and 1350 extend from the bracket body 1322, with each seat 1330, 1350 configured to receive a portion of the lock. The seats 1330 and 1350 are positioned relative to one another such that their respective axes SA1 and SA2 are at an angle α relative to one another as shown in
For each seat 1330, 1350, a pair of flanges 1334, 1354 extends outwardly from the ends of first and second arms of the respective saddle 1332, 1352. The flanges 1334, 1354 define through slots 1336, 1356, respectively, configured to receive straps 1370 therethrough. A cross slot 1338, 1358 may be provided through the bracket body 1322 adjacent to each seat 1330, 1350. The cross slots 1338, 1358 preferably have an arcuate configuration which helps to retain a strap 1370 extending therethrough.
With reference to
To secure the lock 12, the lock 12 is positioned with the lock housing 14 received in seat 1330 and sitting on saddle 1332 and shackle 16 received in seat 1350 and sitting on saddle 1352. The free end 1374A of the strap 1370 is passed over the lock housing 14, through the slot 1336 of the opposite flange 1334 and looped upon itself and secured. In the illustrated embodiment, the strap 1370 includes areas of opposed hooks and loops 1373, 1375 for securing, but other attachment mechanisms may be utilized. Similarly, the free end 1374B of the strap 1370 is passed over the shackle 16, through the slot 1356 of the opposite flange 1354 and looped upon itself and secured.
The bracket body 1322 defines through-hole 1319 configured to receive portion 18 of the bicycle frame or the like. Opposed legs 1321 and 1323 extend from the bracket body 1322 and support connection bolt 1324. In one embodiment, nut 1325 is threadably secured to one end of the bolt 1324 and the other end includes cam member 1326. In other embodiments, cam member 1326 can be omitted. In the illustrated embodiment, the nut 1325 is tightened against the leg 1323 and then the cam 1326 is moved to a locked position to finally compress legs 1321, 1323 and secure the resilient bracket body 1322 against portion 18. For portions of the bicycle having a smaller diameter, e.g. a seat post, or other location in which through-hole 1319 to too large to provide a secure mounting arrangement, an adapter 1327 may be provided as illustrated and discussed below with respect to
Bracket body 1322 defines a flexible support for saddles 1332, 1352 extending outwardly therefrom to receive portions 14, 16, respectively, of locking apparatus 12. Saddles 1332, 1352 extend from the bracket body 1322 to support transversely, orthogonally, or otherwise non-parallel oriented portions of locking apparatus 12. The seat 1330 and the seat 1350 of the respective saddle 1332, 1352 are shaped to conform to the portion of the locking apparatus received therein to provide a secure engagement along with elastic strap 1370. In the illustrated embodiment, each saddle is concavely curved between the ends of the arms from which flanges 1334, 1354 extend. At least one elastic strap 1370 extends from and is connected with respective ones of the saddles 1332, 1352 to releasably secure the locking apparatus portions against surfaces defining the seats 1330, 1350. While one strap 1370 is shown, the invention is not limited to such and may include more straps such as, for example, a strap for each saddle 1332, 1352. In one embodiment, each strap 1370 includes a series of hook and loop fasteners and attachment pad to provide quick and relatively simple securement and release of the locking apparatus.
In order to retain a locking apparatus, at least each strap 1370 is looped about a portion 14, 16 of the locking apparatus 12 and secured to a respective saddle 1332, 1352 in any suitable manner that provides the desired fit and retention of the locking apparatus portion. First saddle 1332 includes a first passage or cross slot 1338 between bracket body 1322 and first and arms of saddle 1332. Each of the arms of saddle 1332 defines a flange 1334 with a passage or slot 1336 for receiving strap 1370 therethrough. Tensioning of strap 1370 can flex the arms of saddle 1332 toward one another to grip the portion 14 of locking apparatus 12 therebetween. Second saddle 1352 includes a second passage or cross slot 1358 between bracket body 1322 and first and second arms of saddle 1352. The first and second arms of second saddle 1352 each define a flange 1354 and slot 1356 for receiving strap 1370 therethrough. Tensioning of strap 1370 can flex the arms of saddle 1352 toward one another to grip the portion 16 of locking apparatus 12 therebetween.
For portions of the bicycle having a smaller diameter, e.g. a seat post, adapter 1327 may be provided as illustrated in
In one aspect of the mounting assembly of
In one refinement of this aspect, the bracket defines a first through-hole for receiving a portion of the transportation device therein and a pair of legs along one side of said bracket that define a gap therebetween. The bracket also includes a connection member extending through the pair of legs and a cam member operable to move the pair of legs toward one another to clampingly engage the bracket to the portion of the transportation device.
In another refinement of this aspect, the bracket defines a first passage or cross slot between the bracket body and the first saddle for receiving the at least one strap. The bracket also defines a second passage or cross slot between the bracket body and the second saddle for receiving the at least one strap. The first and second arms of the first saddle define respective ones of third and fourth slots or passages for receiving the at least one strap, and the first and second arms of the second saddle each define respective ones of the fifth and sixth passages or slots for receiving the at least one strap. In a further refinement, tightening of the first and second straps flexes the first and second arms of the respective one of the first and second saddles to tighten the first and second arms thereof against the respective one of the first and second portions of the locking apparatus positioned therein.
While certain embodiments of the invention have been shown and described herein, it will be understood that such embodiments are provided by way of example only. Numerous variations, changes and substitutions will occur to those skilled in the art without departing from the spirit of the invention. Accordingly, it is intended that the appended claims cover all such variations as fall within the spirit and scope of the invention.
The present application claims the benefit of the filing date of and priority to U.S. Provisional Application Ser. No. 61/508,216 filed on Jul. 15, 2011, which is incorporated herein by reference in its entirety. The present application is also a continuation-in-part of International Patent Application No. PCT/US2012/039630 May 25, 2012, which claims the benefit of the filing date of and priority to U.S. Provisional Application Ser. No. 61/519,564 filed on May 25, 2011, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
470878 | Mease | Mar 1892 | A |
613038 | Hill | Oct 1898 | A |
632858 | Waibel et al. | Sep 1899 | A |
669677 | Bray | Mar 1901 | A |
3888397 | Koizumi | Jun 1975 | A |
4155231 | Zane et al. | May 1979 | A |
4966382 | Giles | Oct 1990 | A |
5076526 | Zane et al. | Dec 1991 | A |
5127562 | Zane et al. | Jul 1992 | A |
5133568 | Balterman | Jul 1992 | A |
5156031 | Gaul | Oct 1992 | A |
5226341 | Shores | Jul 1993 | A |
5251796 | Shelhart | Oct 1993 | A |
5386961 | Lu | Feb 1995 | A |
5395016 | Minoura | Mar 1995 | A |
5395018 | Studdiford | Mar 1995 | A |
5405113 | Jaw | Apr 1995 | A |
5458308 | Lin | Oct 1995 | A |
5538167 | Winner | Jul 1996 | A |
5551609 | Best | Sep 1996 | A |
5647520 | McDaid | Jul 1997 | A |
5669536 | Wang | Sep 1997 | A |
5673889 | DeValcourt | Oct 1997 | A |
5704526 | Kuo | Jan 1998 | A |
5706679 | Zane et al. | Jan 1998 | A |
5832762 | McDaid | Nov 1998 | A |
5836491 | Chuang | Nov 1998 | A |
5893501 | Schwimmer | Apr 1999 | A |
5913466 | Revels | Jun 1999 | A |
6016673 | McDaid | Jan 2000 | A |
6036215 | Bruner | Mar 2000 | A |
6042065 | Benjamin | Mar 2000 | A |
6095386 | Kuo | Aug 2000 | A |
6321961 | McDaid et al. | Nov 2001 | B1 |
6422442 | McDaid et al. | Jul 2002 | B1 |
6557808 | Ling | May 2003 | B1 |
6619084 | Kuo | Sep 2003 | B2 |
6971564 | Yang | Dec 2005 | B2 |
7311233 | Chen | Dec 2007 | B2 |
7654550 | Chuang | Feb 2010 | B2 |
7815082 | Arnone et al. | Oct 2010 | B1 |
8083112 | Kuo | Dec 2011 | B2 |
8087558 | Tsai | Jan 2012 | B2 |
20030075652 | Studdiford et al. | Apr 2003 | A1 |
20040031834 | Barr | Feb 2004 | A1 |
20060124679 | Chen | Jun 2006 | A1 |
20070108244 | Chuang | May 2007 | A1 |
20090159626 | Hoidal et al. | Jun 2009 | A1 |
20100139344 | Kuo | Jun 2010 | A1 |
20100200630 | Yu et al. | Aug 2010 | A1 |
20140182094 | Zuraski et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
201208996 | Mar 2009 | CN |
201800827 | Apr 2011 | CN |
8-282564 | Oct 1996 | JP |
Entry |
---|
International Search Report and Written Opinion, dated Dec. 21, 2012, International Application No. PCT/US12/46881, pp. 1-9, International Searching Authority, Virginia. |
European Search Report, dated Oct. 7, 2014, European Application No. 12814573.7, pp. 1-8, European Patent Office. |
Number | Date | Country | |
---|---|---|---|
20130015219 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61508216 | Jul 2011 | US | |
61519564 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2012/039630 | May 2012 | US |
Child | 13550003 | US |