The present invention relates to material transport vehicle unloading systems, and more particularly, to a portable drive-over truck dump conveyor system with a low profile drive-over ramp.
Material transport vehicle unloading conveyor systems are commonly used whenever there is a need to transport and store materials at a variety of locations. For example, the agricultural and aggregate industries use unloading conveyor systems to transport and stockpile various materials. Conventional unloading conveyor systems include a material deposit hopper that feeds a conveyor system to transport the deposited material to a final destination for stockpiling. The deposit hopper of such unloading systems typically has a height of six feet or more above the ground. Access to the hopper for material transport vehicles is provided by building large earthen ramps on either side of the hopper. The set up time for such unloading conveyor systems requires a large volume of earthen material (e.g., 1,000 cubic yards or more) and time (e.g., ten hours or more) to construct the earthen ramps. As such, conventional unloading conveyor systems are not suited to circumstances requiring periodic relocation of the unloading conveyor, such as road construction projects. There is a need for a material transport vehicle unloading system that is portable, quick and easy to set up, and able to be relocated at minimal cost.
A portable material transport vehicle dump system comprises a longitudinally extending frame that carries a material conveying system generally from a first end of the frame to a second end of the frame. The first end of the frame is in close proximity to a ground surface. A grate is supported by the frame near the first end of the frame so as to be positioned over a portion of the conveying system. A pair of ramps are connected to the frame on opposite sides of and aligned with the grate. Each ramp of the pair of ramps has a first portion that is engageable with the ground surface and a second portion that is supportable above the ground surface. The second portions define, in combination with the grate, a drive over surface for a material transport vehicle when second portions are in a first lowered position. The first portion of each ramp comprises a U-shaped frame having a pair of side frame members and an end frame member connected between the pair of side frame members at an end of each side frame member that is spaced from the longitudinally extending frame. The end frame member defines a height above the ground surface. An end portion of the drive over surface of the second portion of each ramp is positioned adjacent to the end frame member of the U-shaped frame when the second portion of each ramp is in the first lowered position. The second portion of each ramp is pivotable away from the first portion while the first portion remains in contact with the ground surface.
The drive-over ramp system 20 is uniquely configured to define a low-profile material deposit access for belly dump and rear dump material transport vehicles. Ramp system 20 generally includes a first ramp section 26 mounted on a first side 27 of frame 12, and a second ramp section 28 mounted on second side 29 of frame 12. Located between first and second ramp sections 26, 28 is a third ramp section 30. Ramp section 30 comprises a grate supported by frame 12, which allows material deposited on ramp system 20 to access the endless conveyor belt assembly 22.
Each ramp section 26, 28 includes a ramp support frame 32 and a ramp 34, which in the embodiment shown are pinned together in a raised and stored position for transport or storage of conveyor system 10. Each ramp section 26, 28 of ramp system 20 may be stabilized in this raised and stored position by connecting the respective ramp section to frame 12, such as with bracing bar 36. In one embodiment bracing bar 36 is connected to each ramp section 26, 28 by providing a flange 39 on, for example, ramp support frame 32.
In one embodiment, each ramp support frame 32 comprises a perimeter of metal frame members that include a pair of side frame members 38 and a pair of end frame members 40A and 40B. End frame member 40B has a height, as measured between lower frame edge 42 and upper frame edge 44, which is greater than the height of end frame member 40A. In one embodiment, end frame member 40B has a height of less than about twenty five inches. In a particular embodiment, end frame member 40B has a height of about twenty two inches. End frame members 40A, 40B are connected to side frame members 38 by welding. A metal gusset 46 is further welded to each side frame member 38 and a respective end portion of end frame member 40B. End frame members 40A and 40B may be stabilized such as by a metal brace 48 connected between frame members 40A, 40B. In the embodiment shown, each ramp support frame 32 is connected to frame 12 by a hinge plate 50 that is welded to each side frame member 38 adjacent to end frame member 40A. Hinge plates 50 are pivotally connected to frame 12. The pivotal connection of ramp support frame 32 provides a convenient way for storing and deploying ramp support frame 32 of each ramp section 26, 28. When conveyor system 10 is set up for unloading material transport vehicles, ramp support frame 32 rests on the ground. Ramp support frame 32 provides two independent functions. First, ramp support frame 32 serves as a low profile support structure for building an earthen ramp to access the ramp system 20. Second, ramp support frame can additionally serve as a stable base to support ramp 34 at a level of end frame member 40B. The present invention contemplates utilizing the first function of ramp support frame 32 alone, or a combination of the first and second function of ramp support frame 32.
As shown in
The second frame section 102 has a first linear portion shown generally at 108 which is complimentary to first linear portion 104 of the first frame section 102. First linear portion 108 is sized to fit between opposite sides of first frame section 102 and is pivotally connected to the first frame section 102. Second frame section 102 also includes a second linear portion 110 which extends at an angle relative to the first linear portion 108. To assist the conveyor belt of conveyor belt assembly 22 to angularly transition from the second conveyor section 102 to the first frame section 100, a pair of wheels 103 are rotationally mounted relative to first frame section 100 adjacent to the ramp system 20. Wheels 103 engage the upper surface of the conveyor belt 109 to redirect the conveyor belt 109 for travel beneath the third ramp section 30.
The second linear portion 110 rests on a pedestal 112 carried by first frame section 100 when the second frame section 102 is in a first position. In the exemplary embodiment, the height H1 of second end 16 relative to the ground 105 when the second frame section 102 is in the first position is about twelve feet, three inches. The second frame section 102 may be elevated above the pedestal 112 by a pair of hydraulic cylinders 114 mounted between opposite sides of the second linear portion 110 and the second linear portion 106 of the first frame section 100. Adjustable supports 116 are further provided between first frame section 100 and second frame section 102 to assist in stabilizing the second frame section 102 at the height selected. The overall length of first and second frame sections in the exemplary embodiment is about fifty two feet. In the exemplary embodiment, the height H2 of conveyor system 10, as defined by ramp system 20 in the up position, is about nine feet, four inches. Ramp system 20 has a width W of about ten feet, five inches.
As further shown in
Each side frame member 38 of ramp support frame 32 further includes a metal flange 39, as previously discussed, and metal flange 126. Flanges 39 are secured to side frame members 38 such as by welding. Flanges 126 are also secured to side frame members 38 such as be welding and are provided with a through hole for linking ramp support frame 32 to corresponding flanges 128 associated with beam 58 on opposite sides of beam 58, such as with a metal pin. When flanges 126 and 128 are pinned together, ramp support frame 32 can be raised to the raised and stored position (shown in
In the embodiment shown, ramp support frame 32 and ramp 34 are configured to pivot about a common pivotal connection. Each side frame member 55 of ramp frame 51 includes a hinge plate 128 secured to an end portion of the respective side frame member 55, such as by welding. Ramp frame 51 has a width slightly less than a width of ramp support frame 32 such that hinge plates 50 overlap an outer surface 130 of hinge plates 128. The configuration and placement of hinge plates 128 is selected to locate the pivot point P of hinge plate 128 in close proximity to the inward edge E of the metal decking 56 of ramp 34. Pivot point P is located on frame 12 to maintain edge E of metal decking in close proximity to the edge of third ramp section 30 when ramp 34 is in either the raised or lowered position (see e.g.,
Associated with each side frame member 55 of ramp sections 26, 28 is a side wall 132, which extends generally from end frame member 54B to edge E of metal decking 56. Side Wall 132 is secured to side frame members 55 by a plurality of spaced metal braces 134 that are welded to the outer surface 136 of each side frame member 55 and the outer surface 138 of side wall 132. A lower edge 140 of side wall 132 fits close against side frame member 55. The upper edge 142 of side wall is sloped to define the greatest wall height at or near the pivot point P, which corresponds to the area where material is deposited, with the lowest wall height located near the end frame member 54B. Side walls 132 function to retain excess material on the decking 56 of ramp 34 as it is being deposited by a material transport vehicle.
As further shown in
When it is desired to transport conveyor system 10 to a new location, ramp support frame 180 can be stored relative to each ramp section 26, 28. As shown in
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This is a continuation of U.S. patent application Ser. No. 12/589,573, filed Oct. 26, 2009, now U.S. Pat. No. 7,845,482 which is a continuation of U.S. patent application Ser. No. 12/220,754, filed Jul. 28, 2008, now U.S. Pat. No. 7,607,529, which is a continuation of U.S. patent application Ser. No. 11/322,133, filed Dec. 29, 2005, now U.S. Pat. No. 7,424,943, which claimed priority to provisional patent application Ser. No. 60/728,614, filed Oct. 20, 2005.
Number | Name | Date | Kind |
---|---|---|---|
671122 | White | Apr 1901 | A |
1001212 | Moore | Aug 1911 | A |
2037860 | Hummel | Apr 1936 | A |
2875888 | Swain et al. | Mar 1959 | A |
3291258 | Twilley | Dec 1966 | A |
3552546 | Rath | Jan 1971 | A |
3606050 | Silver | Sep 1971 | A |
3620579 | Brown | Nov 1971 | A |
3708937 | Sterner | Jan 1973 | A |
3752298 | Wenger | Aug 1973 | A |
3944054 | Ensinger | Mar 1976 | A |
4669674 | Oldengott et al. | Jun 1987 | A |
4715488 | Hewitt et al. | Dec 1987 | A |
4773521 | Chen | Sep 1988 | A |
4813839 | Compton | Mar 1989 | A |
4881691 | Oldengott et al. | Nov 1989 | A |
5297914 | Ash | Mar 1994 | A |
5390777 | Gage | Feb 1995 | A |
5964566 | Stewart et al. | Oct 1999 | A |
6053284 | Fountain | Apr 2000 | A |
6186311 | Conner | Feb 2001 | B1 |
6238162 | Mayer et al. | May 2001 | B1 |
6360876 | Nohl et al. | Mar 2002 | B1 |
6966740 | Mast et al. | Nov 2005 | B2 |
7090066 | Kirsch | Aug 2006 | B2 |
7255198 | Lo | Aug 2007 | B1 |
7284947 | Felton | Oct 2007 | B1 |
7424943 | Gausman et al. | Sep 2008 | B2 |
7607529 | Gausman et al. | Oct 2009 | B2 |
7845482 | Gausman et al. | Dec 2010 | B2 |
20050123385 | Kirsch | Jun 2005 | A1 |
20050167197 | Logiudice | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
2360474 | Oct 2001 | CA |
2393119 | Jul 2002 | CA |
758372 | Oct 1956 | GB |
2 021 527 | Dec 1979 | GB |
21876989 | Sep 1987 | GB |
Number | Date | Country | |
---|---|---|---|
20110079488 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
60728614 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12589573 | Oct 2009 | US |
Child | 12928216 | US | |
Parent | 12220754 | Jul 2008 | US |
Child | 12589573 | US | |
Parent | 11322133 | Dec 2005 | US |
Child | 12220754 | US |