The present invention relates to apparatus for assisting obstetrics practitioners during the delivery of a baby, and in particular relates to portable chairs for supporting practitioners during standing deliveries.
Obstetrics practitioners, such as midwives and consultants, are required to facilitate delivery of a baby no matter what position a pregnant mother assumes during labour. To minimise pain, some mothers prefer not to be confined to a bed during labour, and instead may choose to walk around the delivery room and/or assume other relaxing positions and postures.
A significant number of pregnant mothers prefer to give birth in an upright or standing position, or else may choose to perch on the edge of a bed or table etc. Although, this may be beneficial to the mother, the practitioner generally has to maintain a low position relative to the ground, so as to monitor and assist with the delivery of the baby. Typically practitioners may have to spend considerable periods of time either sitting on a cold floor, or else kneeling in front of the pregnant mother.
Apart from being uncomfortable for the practitioner, prolonged kneeling and contact with the floor environment may cause long term injury to the practitioner during his/her career, including damage to knee cartilage, possibly leading to osteoarthritic and rheumatic conditions in later life, and generally poor circulation in the practitioner's legs.
Conventional seating, such as static chairs and adjustable computer chairs, do not address the problems of the practitioner, since neither is able to provide seating at a sufficiently low level to the ground. Moreover, conventional seating is typically designed to be non-portable, and especially in the case of computer chairs, can be particularly heavy and cumbersome for a practitioner to easily transport around with them. Hence, it is generally impractical for a practitioner (such as a community midwife) to carry conventional seating with them, when, for instance, assisting with deliveries in a non-hospital environment (e.g. home settings etc.).
A further disadvantage of conventional seating is that it generally includes materials, such as upholstery or leather etc., which cannot be readily disinfected prior to introduction into the delivery environment. Hence, conventional seating may be unhygienic for use by a practitioner, and therefore must be avoided so as to minimise the risk of infection to the mother and/or child.
An object of the present invention is to provide a portable chair which allows an obstetrics practitioner to maintain a low position relative to a floor surface to facilitate child birth during standing deliveries.
A further object of the present invention is to provide a compact, lightweight and hygienic chair which can be readily cleaned and transported between deliveries by a practitioner.
A further object of the present invention is to provide a height adjustable chair having a low profile and which is highly manoeuvrable within a delivery environment.
According to a first aspect of the present invention there is provided a portable chair for an obstetrics practitioner, comprising:
According to a second aspect of the present invention there is provided a portable chair for an obstetrics practitioner, comprising:
According to a third aspect of the present invention there is provided a portable chair for an obstetrics practitioner, comprising:
Embodiments of the present invention will now be described in detail by way of example and with reference to the accompanying drawings in which:
a) is a side elevation view of an alternative base unit according to the present invention, and (b) is a plan view of the underside of the base unit.
With reference to
It is to be understood herein that any references to “standing position” or “standing posture” are taken to mean that the pregnant mother 2 has assumed a substantially upright position in order to give birth, or has assumed a (forward/backward facing) perched position against the edge of a bed, desk or table etc.
As is clear from
Referring to
In a preferred arrangement of the present invention, as shown in
The seat 10 is preferably moulded as a single element from any plastic suitable for medical use or use in sterile environments, provided the plastic is resilient to disinfecting agents and cleaners. To reduce weight further, the seat 10 may also be perforated across all of its surface, or else localised regions of the surface (not shown). Alternatively, the seat 10 may be fabricated from a suitable sheet metal, such as aluminium or thin steel, which again may be perforated to reduce weight.
In another arrangement, a sheet metal seat may be coated with a thin layer of plastic or rubber which is suitable for sterile use.
Preferably the seat 10 is substantially saddle shape in form (as shown in
The lower back rest 101 may be integral to the seat 10, forming part of the mould from which the seat 10 is fabricated. Alternatively, the lower back rest 101 may be a separate component that is permanently attached to the seat 10 using any suitable form of attachment means, such as screws, heat bonding agents or adhesives etc. In these arrangements, the lower back rest 101 may include a handle (not shown), either attached to the rest or else formed as part of the rest e.g. a hand slot etc., to aid portability of the chair 4.
In other arrangements, the lower back rest 101 may be detachably connected to the seat 10 by any suitable means, e.g. clips, pins or slotted arrangements. In this way, the lower back rest 101 may be removed to allow the chair 4 to be stowed for subsequent storage and/or transport.
However, it is to be appreciated that the seat 10 may have any suitable shape or form, and can be either planar or contoured, provided the shape allows easy cleaning and appropriate comfort during prolonged periods of labour. Hence, in all preferred arrangements the seat 10 is essentially free of any surface features which are likely to attract dirt, grime and germs and/or impede cleaning of the chair.
To assist with the portability of the chair 4, the seat 10 can be detachably connected to the height adjustment means 12, using any suitable attachment means, such as clips, a locking screw or a bayonet fitting etc. Therefore, the seat 10 may be removed from the height adjustment means 12 when the chair 4 is to be stowed for storage or transportation. Advantageously, this functionality also allows the seat 10 to be more easily cleaned and disinfected after use.
In alternative arrangements, the seat 10 may be pivotally connected to the height adjustment means 12 via a suitable hinge, to allow the seat 10 to be placed in a stowed position for storage and/or transportation. For example, the “stowed position” would be arrived at by tilting the seat 10 so that the plane of the seating portion is substantially parallel to the longitudinal axis of the height adjustment means 12 (not shown).
In preferred arrangements, the seat 10 is mounted to the height adjustment means 12 for 360 degree continuous rotation about the seat's axis of rotation. This allows the practitioner 3 to swivel in either direction while remaining seated on the chair 4, thereby permitting the practitioner 3 to locate equipment/medical supplies etc. situated peripherally around his/her location. The ability to swivel on the chair 4 also allows the practitioner 3 to track small lateral movements of the mother during labour and delivery, without having to leave the seat 10.
The seat 10 may be mounted to the height adjustment means 12 via a mounting head which allows the seat to be tilted through a plurality of degrees of freedom, relative to the base unit 14. The mounting head may be any suitable device, such as a ball and socket etc., which permits the seat to be releasably locked in a plurality of tilted arrangements. This feature provides further comfort for the practitioner 3, as the seat may be oriented into the most appropriate position for monitoring and facilitating delivery of the child.
The height adjustment means 12 is adapted to vary the height of the seat 10 above the floor surface 5 of the delivery environment 1. Herein, the “height of the seat” may correspond to the level of the upper surface, or seating portion (or major part thereof) of the seat 10 as measured from the floor surface 5. So as to position the practitioner 3 at the appropriate height to facilitate delivery when the mother is in a standing position (see
Preferably, the minimum height level is about 15 cm above the floor surface 5 of the delivery environment 1, and therefore in preferred arrangements the maximum height level is about 45 cm above the floor surface 5. It is to be appreciated that this range of operation is not intended to be limiting, and the minimum height level may be less than 15 cm, depending on the maximum height dimension of the base unit 14.
The minimum height level will also depend on the minimum height dimension of the height adjustment means 12, and therefore the height adjustment means 12 must have a minimum height dimension that is less than or equal to the minimum height level. In preferred arrangements, the height adjustment means 12 is adapted to retract substantially into the base unit 14 when the seat 10 is lowered to the minimum height level.
Preferably, the height adjustment means 12 is a telescoping pneumatic pedestal, of the form used in conventional adjustable computer chairs, which is adapted to have a low profile when retracted to its minimum height dimension. The pedestal is preferably made from metal, such as tubular steel, and may contain two or more telescoping sections, depending on the desired maximum height level of the seat 10. The pedestal must have sufficient structural strength to support the weight of a practitioner 3, when retracted and extended to its maximum height.
The telescoping pneumatic pedestal is preferably operated using a suitable lever, in the conventional manner, connected to a section of the pedestal, or alternatively to the underside of the seat 10 or mounting head etc.
In alternative arrangements, the height adjustment means 12 may be a hydraulic based telescoping pedestal or a rack and pinion shaft assembly. In the latter arrangement, the height of the seat 10 would be varied by turning a suitable form of crank, such that one direction of rotation would increase the height and a counter direction of rotation would decrease the height.
In another arrangement, the height adjustment means 12 may be in the form of a short threaded barrel of fixed length, adapted to receive a reciprocally threaded stem attached to the underside of the seat 10. The height of the seat 10 would be varied by turning the seat 10 such that the stem travels upwardly and downwardly through the length of the barrel.
In a further arrangement, the height adjustment means 12 may be a short barrel having a plurality of periodically spaced hole pairings, diametrically opposed across the width of the barrel. The barrel receives a stem attached to the underside of the seat 10, the stem having a corresponding pattern of periodically spaced hole pairings. The practitioner 3 adjusts the height of the seat 10 by sliding the stem through the barrel until a set of holes in the stem match a set of holes in the barrel at an appropriate height, whereupon the practitioner 3 inserts a pin through the aligned sets of holes.
It is to be appreciated that any suitable means of varying the height of the seat 10 may be used, provided that the seat 10 can be lowered to a minimum height level at which the posterior of the practitioner 3 is maintained substantially at the level of the floor surface 5, thereby positioning the practitioner 3 at a low level with respect to the pregnant mother 2.
By “substantially at the level of the floor surface” we mean that the posterior of the practitioner 3 is supported in close proximity to the floor surface 5, typically below a height of about 45 cm from the floor surface, and most preferably below a height of about 30 cm. Such a height level is clearly below the typical height provided by conventional computer chairs and seating, which operate at height levels consistent with the vertical extent of desks and tables etc. (e.g. about 60-80 cm high) and thus do not achieve height levels which are in close proximity to the floor surface.
The base unit 14 has a low maximum height dimension, so as to reduce the overall height of the chair 4. Preferably, in order to position the practitioner 3 at an appropriate height to facilitate standing deliveries, the base unit 14 has a maximum height dimension of about 15 cm. It is to be appreciated however, that this is not intended to be limiting, and the maximum height dimension may be less than or more than 15 cm, depending on the desired overall height of the chair 4.
In the preferred arrangement of
In preferred arrangements, the spokes 15 are detachably connected to the hub 17 permitting the practitioner 3 to remove the spokes 15 when the chair 4 is to be stowed for storage and/or transport. The spokes 15 may be attached to the hub 17 using any suitable attachment means, such as, but not limited to, threaded screws or a slot arrangement.
In alternative preferred arrangements, as shown in
The ability to detach or fold the spokes 15 of the base unit 14, provides the advantage of increasing the portability of the chair 4, thereby allowing the practitioner 3 to readily transport the chair 4 between different delivery environments 1.
To further increase the portability of the chair 4, each radial spoke 15 may include one or more hinge joints 18 along its length, as shown in
Referring to
The casters 16 in base unit 14 are conventional types, either plastic or metal, comprising either a single wheel or a pair of wheels as desired. Herein, any reference to “caster” or “casters” is to be taken as meaning both single, paired and multi- wheel configurations.
The casters 16 are preferably attached to the respective distal ends of the radial spokes 15, as shown in
Although the support frame is shown with 5 radial spokes 15 (note one is obscured by the pedestal), it is to be appreciated that the support frame may include 3 or more radial spokes 15 as desired. A higher number of spokes 15 increases stability for the practitioner 3, but also increases the overall weight of the chair 4. Therefore, a balance must be made between stability and portability. In the present invention, 5 radial spokes 15 has been found to provide adequate stability, while enabling ease of transportation.
In preferred arrangements, the base unit 14 includes a releasable locking mechanism to prevent translation of the chair 4. This functionality is important as it allows the practitioner 3 to maintain a “braced” position by virtue of the locking mechanism, when the pregnant mother 2 is holding onto, or pushing against, the practitioner during delivery.
In the arrangement of
Alternatively, one or more of the spokes 15 may include a spring loaded pin (not shown), having a rubber bung-like tip, which passes through the body of the spoke 15 at a convenient location along its length. When the practitioner 3 desires to prevent translation of the chair 4, he/she presses down on the pin (e.g. by using the sole of his/her foot), so that the tip engages with the floor surface 5. The friction between the tip and the floor increases the chair's resistance to motion, thereby restricting the translation of the chair 4. The pin can be locked in position and then subsequently released when translation of the chair 4 is again desired.
It is to be appreciated that any suitable form of releasable locking mechanism may be used to prevent the chair 4 from moving. Moreover, the chair 4 may also include a swivel lock to prevent the seat 10 from rotating.
To increase portability of the chair 4, the base unit 14 may preferably be detachably connected to the height adjustment means 12. Hence, in some arrangements, each of the seat 10, height adjustment means 12 and base unit 14, may be separately detached from each other for storage and transportation.
In arrangements in which the base unit 14 is detachable, the base unit 14 is adapted to have a portion for receiving and attaching the height adjustment means 12. In the particularly preferred arrangement of
Referring to
The central hub 17 of the support frame is adapted to receive the height adjustment means 12, as described in relation to previous arrangements. The support frame of
In
In
The channel 21 is adapted to contain a plurality of spherical bearings 22, made from either hardened plastic or preferably metal, which partly extend outside of the channel 21. The circular arrangement of bearings engages with the floor surface 5 of the delivery environment 1 when the chair 4 is placed on the floor, and serves as a multi-directional and substantially frictionless translation mechanism.
The spherical bearings 22 typically have a diameter of about 1-3 cm, depending on the depth and width of the channel 21. The circular channel 21 may be located at any suitable radial distance from the centre of the base unit 14, provided adequate stability of the chair 4 is accomplished for the practitioner 3. In a preferred arrangement, the bearings 22 may be located substantially towards the outer periphery of the base unit 14.
It is to be appreciated that any suitable form of base unit 14 may be used in the chair 4 of the present invention, provided it is able to impart sufficient manoeuvrability and ease of cleaning.
The portable chair 4 of the present invention may be adapted to include additional features and modifications, including a foot or ankle rest coupled to either the height adjustment means 12 or the base unit 14, as illustrated in
To aid portability, the seat 10 may be moulded to include a handle on its underside or else include a hand slot in the region of the seating portion, enabling the practitioner 3 to easily pick up the chair 4 during and after use.
The chair 4 may also be adapted to include one or more conventional drive motors coupled to the height adjustment means 12 and connected to a cable or remote control device, which allow the practitioner 3 to adjust the height of the seat 10 automatically, or to set the chair 4 into an automatic or default stowed mode for storage and/or transportation.
The present invention also provides for a carrying device for the portable obstetrics chair as described in the foregoing arrangements. The carrying device preferably comprises a handle and a case having at least one compartment to receive the portable chair 4, the chair 4 either being in a stowed position, dismantled or fully assembled when in the compartment.
Referring to
To assist with ease of transportation, the front of the seat 10 may be shaped to include a recessed portion 24, which permits the practitioner s hand to firmly grasp the seat 10 for easy and convenient lifting of the chair 4.
Of course, the recessed portion 24 may be located on any suitable face of the seat 10, and as previously discussed, could alternatively be an integral handle or slot.
In the exemplary arrangement of
As illustrated in
In alternative arrangements, the hinges may themselves be individually lockable, by way of a pin, latch or ratchet etc. and therefore the locking plate 25 need not be used to lock the spokes 15 into position in these embodiments.
A possible modification to the exemplary chair arrangement of
In alternative arrangements, the seat 10 may be fitted directly to the central hub 17 and the height of the seat 10 may be adjusted directly by varying the angle of the deployed spokes 15, in this way, the height adjustment means would correspond to the hinges and locking plate 25, and therefore would form part of the base unit 14, with no separate pneumatic pedestal etc. being required in such embodiments.
However, in the exemplary arrangement as shown in
It is to be understood that in all arrangements in which the spokes 15 are deployed at varying angles with respect to the normal to the seat 10, the casters 16 are configured to lockably pivot, so that they can be set at an appropriate angle with respect to the floor surface 5, to thereby enable easy translation across the floor surface 5 and provide sufficient load bearing capabilities for the chair 4.
Referring to
Although the portable chair of the present invention is ideal for assisting a practitioner during delivery of a child, it will be recognised that one or more of the principles can extend to other applications, including agricultural, such as dairy farming, ground level mechanical work (e.g. car body repair) and veterinary purposes, and any other application were individuals need to be maintained in a seated posture close to the ground or floor surface.
Other embodiments are taken to be within the scope of the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
0505566.0 | Mar 2005 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB06/00982 | 3/20/2006 | WO | 00 | 3/12/2008 |