Portable optical ablation system

Information

  • Patent Grant
  • 8398622
  • Patent Number
    8,398,622
  • Date Filed
    Monday, December 6, 2010
    13 years ago
  • Date Issued
    Tuesday, March 19, 2013
    11 years ago
Abstract
The present invention includes an apparatus and method of surgical ablative material removal “in-vivo” or from an outside surface with a short optical pulse that is amplified and compressed using either an optically-pumped-amplifier and air-path between gratings compressor combination or a SOA and chirped fiber compressor combination, wherein the generating, amplifying and compressing are done within a portable system.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates in general to the field of light amplification and, more particularly to the altering the emission of an ablation beam for safety or control.


2. Description of Related Art


Ablative material removal is especially useful for medical purposes, either in-vivo or on the outside surface (e.g., skin or tooth), as it is essentially non-thermal and generally painless. Ablative removal of material is generally done with a short optical pulse that is stretched, amplified and then compressed. A number of types of laser amplifiers have been used for the amplification, including fiber-amplifiers. Fiber amplifiers have a storage lifetime of about 100 to 300 microseconds. While some measurements have been made at higher repetition rates, these measurements have shown an approximately linear decrease in pulse energy, and for ablations purposes, fiber amplifiers have been operated with a time between pulses of equal to or greater than the storage lifetime, and, thus, are generally run a rep rate of less than 3-10 kHz.


Laser machining can remove ablatively material by disassociate the surface atoms and melting the material. Laser ablation is done efficiently with a beam of short pulses (generally a pulse-duration of three picoseconds or less). Techniques for generating these ultra-short pulses (USP) are described, e.g., in a book entitled “Femtosecond Laser Pulses” (C. Rulliere, editor), published 1998, Springer-Verlag Berlin Heidelberg N.Y. Generally large systems, such as Ti:Sapphire, are used for generating ultra-short pulses (USP).


USP phenomenon was first observed in the 1970's, when it was discovered that mode-locking a broad-spectrum laser could produce ultra-short pulses. The minimum pulse duration attainable is limited by the bandwidth of the gain medium, which is inversely proportional to this minimal or Fourier-transform-limited pulse duration. Mode-locked pulses are typically very short and will spread (i.e., undergo temporal dispersion) as they traverse any medium. Subsequent pulse-compression techniques are often used to obtain USP's. Pulse dispersion can occur within the laser cavity so that compression techniques are sometimes added intra-cavity. When high-power pulses are desired, they are intentionally lengthened before amplification to avoid internal component optical damage. This is referred to as “Chirped Pulse Amplification” (CPA). The pulse is subsequently compressed to obtain a high peak power (pulse-energy amplification and pulse-duration compression).


SUMMARY OF THE INVENTION

Ablative material removal with a short optical pulse is especially useful for medical purposes and can be done either in-vivo or on the body surface, as it is essentially non-thermal and generally painless. Previously, ablative systems include optical benches weighing perhaps 1,000 pounds and occupying about 300 cubic feet. One embodiment of the present invention includes a system that weighs 100 pounds or less and occupies 2.5 cubic feet or less.


One embodiment of the present invention includes an amplifier and a pulse-compressor, enabling the invention to be man-portable. As used herein, the term “man-portable” generally means capable of being moved reasonably easily by one person. In one embodiment, the man-portable system is a wheeled cart. In another embodiment, the man-portable system is a backpack.


One embodiment of the man-portable unit includes a handheld probe, vest/backpack and two or more satchels. Other embodiments include handheld probe, vest and backpack. The unit can be relatively inexpensive and can be used by surgeons, doctors, dentists, scientists and emergency personnel in the field. However, those skilled in the art will recognize other uses for the invention. One embodiment can be used to perform emergency cutting of a victim, removal of material, etching, marking and cauterizing of wounds. One embodiment allows the beam to cut through any obstacles. In one embodiment, the system can be used to gain access, open, cut into, or other wise free a person or object. One embodiment can be used to cut the top of a vehicle loose, I-beam, wood, metal, plastic, carbon fiber, cloth or fiberglass.


As illustrated in FIG. 1, in one embodiment, the man-portable system, e.g. system 100, is used in a hospital. One embodiment includes a handheld probe, a vest and movable cart and power supplied from a wall plug. Another embodiment includes wheels on the cart. Another embodiment includes a 120 volt or 240 Volt power supply. One embodiment, the handheld probe, e.g. handheld probe 115, includes a beam-scanners and optical delivery fibers. In one embodiment, the vest can include an optical compressor, e.g. compressor 110. In another embodiment, optical amplifiers, e.g. amplifier 105, are positioned on or in the cart. In one embodiment, the cart includes a control module, e.g. control module 125; a control panel, e.g. control panel 130; a pulse generator, e.g. pulse generator 135; a power supply, e.g. power 120; a video camera, e.g. video camera 140; a video monitor, e.g. video monitor 145; an air flush system, e.g. air flush system 150; a suction system, e.g. suction system 155; and a marker beam generator, e.g. marker beam generator 160.


The concentration of pulse energy on a small spot enables the use of semiconductor-optical amplifiers or moderate-power fiber-amplifiers, as well as higher power Cr:YAG amplifiers. One embodiment includes a short initial optical pulse allows compression into a short pulse with an efficient and physically small compressor. Another embodiment has multiple semiconductor amplifiers or fiber amplifiers. In one embodiment, the amplifiers are Cr:YAG amplifiers. In one embodiment, the amplifier has a short (e.g., 1 nanosecond or less) initial optical pulse that undergoes controlled amplification and is then compressed into a short (sub-picosecond) pulse, and the light pulse focused onto a small area, e.g., spot. In one embodiment, the area is between about 10 and about 50 microns in diameter. In one embodiment, the spot is scanned over an area to be ablated, wherein a controllable rate of ablation is achieved. One embodiment controls the amplifiers by controlling pulse power. One embodiment independently controls the ablation rate and pulse energy of multiple moderate-power amplifiers. In another embodiment, the amplifier is easily cooled. Thus, by the use of a combination of innovations, can now provide an efficient, reasonably priced, man-portable ablation system for medical and other purposes.


One embodiment includes a laser-amplifier and compressor that allow the system size is reduced, whereby the system to be man-portable. In one embodiment a semiconductor oscillator-driven pulse generator is used to generate a pulse between about ten picoseconds and about one nanosecond wavelength-swept-with-time. In one embodiment, the initial pulse is amplified by an optically-pumped amplifier. In one embodiment, the amplifier is an erbium-doped fiber amplifier or EDFA or a Cr:YAG amplifier. In one embodiment, the pulse is compressed by an air-path between gratings compressor or a Treacy grating air-grating compressor, wherein the compression creates a sub-picosecond ablation pulse. One embodiment has a semiconductor optical amplifier (SOA) and a chirped fiber compressor, wherein the pulse is between about one to twenty nanosecond. In one embodiment, a semiconductor generates the initial pulse and a SOA preamplifier to amplify the initial pulse before introduction into the amplifier.


Different embodiments can be used for different applications depending on the specific needs of that application. One embodiment uses an optically-pumped—amplifier and air-grating-compressor to reduce cost, but another embodiment uses a SOA and chirped-fiber-compressor to produce an efficient and small system.


Ablative material removal can be done either in-vivo or on the body surface. As some materials ablate much faster than others and material is most efficiently removed at pulse energy densities about three times the materials ablation threshold. In one embodiment, the ablation rate is controlled. In one embodiment, the pulse energy density is controlled to produce a pulse energy densities about three times the materials ablation threshold. In one embodiment, the surgical ablation has a threshold of less than one Joule per square centimeter, however other embodiments have an ablation threshold of up to about two Joules per square centimeter.


Again, as materials ablate at different thresholds, efficient operation requires control of the pulse energy density. One embodiment controls the pulse energy, thereby controlling the pulse energy density. One embodiment uses a fiber amplifier operating at high repetition rates. One embodiment controls the pulse energy by controlling the optical pumping power. Another embodiment controls the pulse energy by controlling the pulse repetition rate. In another embodiment, the system is fine tuned by controlling optical pumping power.


In one embodiment, the pulse energy is controlled by repetition rate and optically pumped amplifier operating temperature is controlled through controlling optical pumping power. In one embodiment, the pulse energy of semiconductor optical amplifiers (SOAs) is adjusted by changing the amplifier current. In one embodiment, the pulse energy applied to the body is between about 2.5 and about 3.6 times the ablation threshold of the body portion being ablated.


In one embodiment, the ablation rate is controlled independent of pulse energy. The use of two or more amplifiers in a train mode (pulses from one amplifier being delayed to arrive at the spot one or more nanoseconds after those from another amplifier) allows step-wise control of ablation rate independent of pulse energy density. Without this delay, the efficiency is significantly reduced. The use of train-mode amplifiers in either type of system provides faster ablation, while providing greater cooling surface area to minimize thermal problems. In one embodiment, two or more amplifiers are operated in a train mode. At lower desired ablation rates, one or more amplifiers can be shut down. In one embodiment, one or more amplifiers in train mode are shut down.


As illustrated in FIG. 2, one embodiment of the present invention includes a method of material removal using surgical ablative, either from an in-vivo surface or from an outside surface with a short optical pulse that is amplified and then compressed, comprising: Step 200, generating an initial wavelength-swept-with-time pulse in a pulse generator within a man-portable system; Step 210, amplifying the initial pulse and then Step 220, compressing the amplified pulse within the man-portable system, wherein the amplifying and compression are done with either an optically-pumped-amplifier and air-path between gratings compressor combination, or a SOA and chirped fiber compressor combination; and Step 230, applying the compressed optical pulse to the surface.


In one embodiment, the amplifying and compressing is done with an optically-pumped-amplifier and an air-path between gratings compressor combination, wherein the pulses are between about ten picoseconds and about one nanosecond. In another embodiment, the amplifying and compressing is done with a SOA/chirped-fiber-compressor combination, wherein the initial pulses between about one and about twenty nanoseconds.


Another embodiment includes a method of ablative material removal, from a surface or with a short optical pulse that is amplified and then compressed, comprising: generating an initial pulse in a pulse generator; amplifying the initial pulse and then compressing the amplified pulse within the man-portable system, wherein the amplifying is done with either an optically-pumped-amplifier or a SOA; compressing the amplified pulse to a duration of less than one picosecond; and applying the compressed optical pulse to the surface, wherein the generating, amplifying and compressing are done within a man-portable system. In one embodiment, two or more optically-pumped optical amplifiers or SOA optical amplifiers are used in a train mode and the compressed optical pulse is applied to the surface in a small area spot, wherein the spot area is between about ten and about 50 microns in diameter. In one embodiment, the pulse generator is semiconductor oscillator-driven.


In one embodiment, the amplifying and compressing is done with an optically-pumped-amplifier and air-path between gratings compressor combination, wherein the initial pulses are between about ten picoseconds and about one nanosecond. In one embodiment, the fiber amplifier is an erbium-doped or erbium/ytterbium fiber amplifier and the air-path between gratings compressor is a Treacy grating compressor. In one embodiment, two or more fiber amplifiers are used with one compressor. In another embodiment, the amplifier is an SOA and the compressor is a chirped optical fiber. In other embodiments, the pulse energy density and ablation rate are independently controlled. In other embodiments, the fiber amplifier and the amplifier temperature can be independently controlled.


High ablative pulse repetition rates are preferred and the total pulses per second (the total system repetition rate) from the one or more (train mode) optical amplifiers is preferably greater than 0.6 million. In one embodiment, the ablative pulse repetition rates are 0.6 million or more.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a system implementing one embodiment of the invention.



FIG. 2 is a flowchart illustrating the method used in one embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.


To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a,” “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.


Ablative material removal previously this has been done using systems with optical benches weighing perhaps 1,000 pounds and occupying about 300 cubic feet. Previous approaches have generally operated maximum-sized amplifiers at maximum-power and amplifying longer-and-longer pulses.


In one embodiment, the man-portable unit is used in a hospital and includes a handheld probe, a vest, a control-cart and receives power from a wall plug. In one embodiment, the handheld probe contains beam-scanners and optical delivery fibers. In one embodiment, the vest contains optical compressors and the optical amplifiers are positioned in the cart. In one embodiment, the cart contains the control module, the control panel, the pulse generator, the power supplies, a video camera, a video monitor, air flush system, a suction system and a marker beam generator.


In one embodiment, the optical-fiber-containing umbilical cables are used between components. In one embodiment, the umbilical includes a hollow ablation fiber for pulses compressed to sub-picosecond duration. One embodiment, the fiber is a hollow optical fiber, a video-camera fiber, an illumination fiber, a marker-beam fiber, an air flush tube, a suction tube and wiring for the scanners.


One embodiment is battery-powered and contains a probe, vest, backpack and one or more satchels. In one embodiment, the handheld probe contains beam-scanners and optical delivery fibers. One embodiment includes a vest containing optical compressors, optical amplifiers and control devices. In one embodiment, the control devices are control knobs, switches, buttons, dial or pad, positioned in or on the cart. In one embodiment, the backpack contains the control module, the pulse generator, the power supplies, a marker beam generator, and a battery pack. In one embodiment, the satchel contains a video camera, a video monitor, an illumination source, and additional batteries. One embodiment is operable without the satchel. Another embodiment includes the video camera in the backpack and a heads-up display providing a video monitor and a display of control settings.


In one embodiment, the handheld probe contains piezoelectrically-driven-mirror beam-scanners and optical delivery fibers. In one embodiment, the delivery fiber has a lens on the fiber-end near the probe tip and transmits a video image back to the video camera. In another embodiment, a fiber illuminates the ablation region. In another embodiment, a hollow optical fiber brings ablation pulses to the beam-scanner minors. In another embodiment, a fiber is used to bring a laser marker beam to the beam-scanner minors. In another embodiment, the marker beam is scanned. In one embodiment, the laser marker beam shows the entire scan area, however other embodiments turn the beam off and on by the specifications of area, color and distance from target. Another embodiment shows the area that would be ablated if the ablation beam were on. In other embodiments, the marker beam changes color to indicate whether the ablation beam is on or off. In another embodiment, the probe contains tubes for suction and/or gas flush.


One embodiment, the man-portable units includes a handheld probe, handheld probe, vest/backpack and one or more satchels. The unit can be relatively inexpensive and can be used by surgeons, doctors, dentists, scientists and emergency personnel in the field. However, those skilled in the art will recognize other uses for the invention. In one embodiment, the unit can be used to cut a victim and cauterize wounds. In another embodiment, the system uses microsecond long, thermally-inducing, pulses to cauterize a wound. One embodiment can be used to perform emergency cutting of a victim or an object, removal of material, etching, marking and cauterizing of wounds. One embodiment allows the beam to cut through any obstacles. In one embodiment, the system can be used to gain access, open, cut into, or otherwise free a person from an object. One embodiment can be used to cut the top of a vehicle, I-beam, wood, metal, plastic, carbon fiber, cloth or fiberglass.


One embodiment uses one or more optically-pumped amplifiers of moderate-power, with a short optical pulse that is amplified and then compressed into a short pulse with the light pulse focused onto a small area spot. One embodiment of the present invention rapidly scans the spot over an area to be ablated and controls the pulse power to maximize ablation efficiency.


One embodiment controls the ablation rate and controls the pulse energy density in the ablation spot. If the spot size is fixed or otherwise known, this can be achieved by controlling pulse energy; or if the pulse energy is known, by controlling spot size. In one embodiment using optically-pumped amplifiers, the pulse energy is controlled step-wise by controlling repetition rate and fine-tuned by controlling optical pumping power. In another embodiment, the pulse energy of a semiconductor optical amplifier (SOA) is adjusted by changing the current thru the amplifier.


Further, it is preferred that ablation rate be controllable independent of pulse energy. One embodiment allows step wise control of the ablation rate independent of pulse energy through using two or more amplifiers in parallel a train mode (pulses from one amplifier being delayed to arrive one or more nanoseconds after those from another amplifier). Other embodiments allow a lower ablation rates by shutting off one or more amplifiers (e.g., the optical pumping to the fiber amplifier shut off), whereby there will be fewer pulses per train. One embodiment uses 20 amplifiers producing a maximum of 20 pulses in a train; however, other embodiments use three or four amplifiers producing three or four pulses per train.


Generally, the optical amplifiers are pumped by laser diodes operating quasi-continually and are amplifying about 100,000 times per second for one nanosecond pulses. One embodiment uses optical amplifiers pumped by laser diodes. Another embodiment uses non-CW-pumping in operating amplifiers, whereby the amplifiers run in a staggered fashion, e.g., on for a first one second period and then turned off for one second period, and a first-period-dormant amplifier turned on during the second period, and so forth, to spread the heat load.


In some embodiments, the system is man-portable and includes a wheeled cart or a backpack. As used herein, the term “man-portable” means a system utilizing an optical amplifier that is either an optically-pumped-amplifier or a SOA with components that can be positioned by one man (e.g., as opposed to being mounted on a optical bench weighing hundreds of pounds), regardless of whether the system is designed to be easily moved or not. One embodiment includes an optically-pumped-amplifier with a compressor sized for a compression of between about ten picoseconds and about one nanosecond, or a SOA with a chirped-fiber-compressor, and which is designed to be reasonably easily moved.


One embodiment includes a method of ablative material removal, from a surface with a short optical pulse that is amplified and then compressed, including generating an initial pulse in a pulse generator within a man-portable system; amplifying the initial pulse and then compressing the amplified pulse within the man-portable system, wherein the amplifying and compression are done with either a fiber-amplifier and about ten picosecond and about one 1 nanosecond pulse-compressor combination, or a SOA and chirped fiber compressor combination; and applying the compressed optical pulse to the surface.


In one embodiment, the amplifying and compressing is accomplished with an optically-pumped-amplifier and air-path between gratings compressor combination. In one embodiment, the oscillator pulses are between about ten picoseconds and about one nanosecond. In another embodiment, the amplifying and compressing is done with a chirped fiber compressor combination. In one embodiment, the amplified pulses are between about one and about twenty nanoseconds in duration.


We have now found that certain laser-amplifier/compressor combinations enable practical and significant size reduction, which in turn enables the system to be man-portable. One embodiment includes a man-portable system capable of being moved reasonably easily by one person. In one embodiment, the system includes a wheeled cart or possibly even being carried in a backpack, whereby the system is moveable from room to room. One embodiment uses initial pulses of between about ten picoseconds and about one nanosecond, with the initial pulse amplified by an optically-pumped-amplifier and compressed by an air-path between gratings compressor, with the compression creating a sub-picosecond ablation pulse. In one embodiment, the amplifier is an erbium-doped fiber amplifier or EDFA amplifier. In one embodiment, the grating compressor is a Treacy grating compressor.


Another embodiment uses a semiconductor optical amplifier (SOA) and a with a chirped fiber compressor. One embodiment uses pulses of between about one and about twenty nanoseconds during amplification. One embodiment uses a semiconductor generated initial pulse and a SOA preamplifier to amplify the initial pulse before introduction into the fiber amplifier.


While the compressors in either type of system can be run with inputs from more than one amplifier, reflections from other parallel (as used herein, “parallel” includes train mode) amplifiers can cause a loss of efficiency, and thus should be minimized. The loss is especially important if the amplifiers are amplifying signals at the same time, as is the case with the SOAs. In one embodiment each of the parallel SOAs has its own compressor, wherein the amplified pulses are then put into a single fiber after the compressors, whereby reflections from the joining (e.g., in a star connector) are reduced greatly before getting back to the amplifier. In one embodiment one or more fiber amplifiers are used with a single compressor, whereby the nanosecond spacing of sub-nanosecond pulses minimizes amplifying of multiple signals at the same time.


Fiber amplifiers have a storage lifetime of about 100 to 300 microseconds and for ablations purposes; fiber amplifiers have generally heretofore been operated with a time between pulses of almost equal to or greater than the storage lifetime, and thus are generally run at a rate of less than 3-10 kHz. Fiber amplifiers are available with average power of 30 W or more. One embodiment uses a moderate-power 5 W average power fiber amplifiers producing pulses of about 500 microJoules or more to produce energy densities above the ablation threshold needed for non-thermal ablation, and increasing the energy in such a system, increases the ablation rate in either depth or allows larger areas of ablation or both.


In one embodiment an optically-pumped amplifier with a time between pulses of a fraction of the storage lifetime is used. In one embodiment, the optically-pumped amplifier with a time between pulses of about one-half or less of the storage lifetime. In one embodiment, a smaller spot is scanned to produce a larger effective ablation area. In one embodiment, the spot is about 50 microns or less in diameter. Other embodiments produce spots of about 60 or 75 microns or more. Spot sizes herein are given as circle diameter equivalents, a “50 micron” spot has the area of a 50 micron diameter circle, but the spot need not be round.


One embodiment uses parallel amplifiers to generate a train of pulses to increase the ablation rate by further increasing the effective repetition rate, whereby avoiding thermal problems. Another embodiment allows control of ablation rate by the use of a lesser number of operating fiber amplifiers. Another embodiment uses a SOA preamplifier to amplify the initial pulse before splitting to drive multiple parallel fiber amplifiers and another SOA before the introduction of the signal into each amplifier, whereby rapid shutting down of individual amplifiers can be achieved. Other embodiments operate with pulses at about three times the ablation threshold for greater ablation efficiency.


One embodiment uses about a 1 ns pulse with an optically-pumped amplifier and air optical-compressor to produce compression with approximately 40% losses. In one embodiment, the compressor is a Treacy grating compressor. At lower compressions, e.g., less than 1 nanosecond, the losses in a Treacy grating compressor are generally lower. If the other-than-compression losses are 10%, two nanoJoules are needed from the amplifier to get one nanoJoule on the target. One embodiment uses 1550 nm light. The use of greater than one nanosecond pulses in an air optical-compressor presents two problems; the difference in path length for the extremes of long and short wavelengths needs to be more three cm and, thus, the compressor is large and expensive, and the losses increase with a greater degree of compression.


Another embodiment uses a semiconductor optical amplifier (SOA) and a chirped fiber compressor is generally run with pulses of between about one and twenty nanosecond during amplification, and is operated at repetition rates with a time between pulses of more that the semiconductor storage lifetime. Another embodiment uses a SOA preamplifier to amplify the initial pulse before splitting to drive multiple SOAs. One embodiment scans a small ablation spot over a larger effective ablation area. In some embodiments with SOA Amplifiers a scanned spot that is smaller than the optically-pumped amplifier spot. One embodiment uses a semiconductor generated initial pulse.


Parallel amplifiers can be used to generate a train of pulses to increase the ablation rate by further increasing the effective repetition rate. Again, the pulse energy densities at operated at about three times the ablation threshold. One embodiment uses two or more amplifiers in parallel train mode, wherein pulses from one amplifier being delayed to arrive one or more nanoseconds after those from another amplifier. Other embodiments one or more amplifiers can be shut off producing fewer pulses per train. In one embodiment twenty amplifiers are used to produce a maximum of 20 pulses in a train, however, other embodiments use three or four amplifiers producing three or four pulses per train. In one embodiment, CW operation is used for operating amplifiers, wherein amplifiers might be run for e.g., one second and then turned off and a dormant amplifier turned on to spread the heat load.


In one embodiment controls the input optical signal power, optical pumping power of fiber amplifiers, timing of input pulses, length of input pulses, and timing between start of optical pumping and start of optical signals to control pulse power, and average degree of energy storage.


One embodiment includes an optical fiber having a maximum power of 4 MW, and thus, a 10-microJoule ablation pulse is amplified for a period as short as two picoseconds. Thus, a fiber amplifier with this type of fiber can operates with an about ten ps, about 10 microJoule pulse, at 500 kHz (or 50 microJoule with 100 kHz). However, in embodiments where heating is a problem, multiple fiber amplifiers can be operated in a rotating mode. One embodiment rotates the operation of ten fiber amplifiers such that only five were operating at any one time (e.g., each on for 1/10th of a second and off for 1/10th of a second).


One embodiment includes ten optically-pumped amplifiers with time spaced inputs e.g., by 1 ns, to give a train of one to 10 pulses. One embodiment uses 5 W amplifiers operating at 100 kHz (and e.g., 50 microJoules) and step between 100 kHz and 1 MHz. With 50% post-amplifier optical efficiency and about 50 microJoules, to get about six J/sq. cm on the target, the spot size would be about 20 microns.


One embodiment includes 20 amplifiers with time spaced inputs, e.g., by 1 ns, to giving a train of one to 20 pulses, 5 W amplifiers operating at 50 kHz (and e.g., 100 microJoules) this can step between 50 kHz and 1 MHz. With 50% post-amplifier optical efficiency and 100 microJoules, to get 6 J/sq. cm on the target, the spot size would be about 33 microns. The amplified pulse is between about 50 and about 100 picoseconds long. One embodiment includes 10 amplifiers at 50 kHz to step between 50 kHz and 500 kHz.


Generally, it is the pulse generator that controls the input repetition rate of the amplifiers to tune energy per pulse. Another embodiment includes 5 W amplifiers operating at 20 kHz (and e.g., 250 microJoules). With 10 amplifiers this can step between 20 kHz and 200 kHz. With 50% post-amplifier optical efficiency and 250 microJoules, to get 6 J/sq. cm on the target, the spot size would be about 50 microns. The amplified pulse is between 100 to 250 picoseconds long. Another embodiment includes 30 amplifiers that steps between 20 kHz and 600 kHz.


Although very-high power SOAs can be built, they are quite expensive and generally require large cooling systems. Therefore one embodiment uses a SOA with a lower power and a longer period of amplification, from about one and about twenty nanoseconds, and preferably between about five and about twenty nanoseconds. Air-grating compressors are impractically large at these time periods. Therefore one embodiment of the man-portable SOA amplifier systems uses chirped fiber gratings (such gratings are commercially available from 3M). Another embodiment uses fiber amplifiers and use chirped fiber gratings, whereby these fiber gratings can be shorter, with less compression than those used with our SOAs.


Another embodiment generates a sub-picosecond pulse and time stretching that pulse within semiconductor pulse generator to give the initial wavelength-swept-with-time pulse.


One embodiment uses light leakage from the delivery fiber to get feedback proportional to pulse power and/or energy for control purposes. One embodiment measures the spot size with a video camera or a linear scan. One embodiment uses an “in-vivo” type camera (see “Camera Containing Medical Tool,” U.S. Provisional Patent Application Ser. No. 60/472,071 filed May 20, 2003 which is incorporated by reference herein). One embodiment includes a handheld beam-emitting probe that provides its own illumination. Other embodiments include cameras using an optical fiber in a probe to convey an image back to a remote camera body. Another embodiment includes a vidicon-containing camera with a GRIN fiber lens. Still other embodiments use endoscope type cameras.


One embodiment scans a smaller ablation area by moving the beam without moving the probe. Another embodiment scans a large area by moving the beam over a first area, and then stepping the probe to second portion of the large area and then scanning the beam over the second area, and so on. One embodiment uses beam deflecting minors mounted on piezoelectric actuators to move the beam (see “Scanned Small Spot Ablation With A High-Rep-Rate,” U.S. Provisional Patent Application Ser. No. 60/471,972 filed May 20, 2003 which is incorporated by reference herein). One embodiment scans the actuators over a larger region but with the ablation beam only enabled to ablate portions with defined color and/or area. One embodiment allows evaluation after a prescribed time through preset combination of time and, area and/or color.


Information of such a system and other information on ablation systems are given in co-pending provisional applications listed in the following paragraphs (which are also at least partially co-owned by, or exclusively licensed to, the owners hereof) and are hereby incorporated by reference herein (provisional applications listed by docket No., title and United States Provisional Patent Application Serial Number):


Docket No. ABI-1 “Laser Machining,” U.S. Provisional Patent Application Ser. No. 60/471,922; ABI-4 “Camera Containing Medical Tool,” U.S. Provisional Patent Application Ser. No. 60/472,071; ABI-6 “Scanned Small Spot Ablation With A High-Rep-Rate,” U.S. Provisional Patent Application Ser. No. 60/471,972; and ABI-7 “Stretched Optical Pulse Amplification and Compression,” U.S. Provisional Patent Application Ser. No. 60/471,971; all filed May 20, 2003.


ABI-8 “Controlling Repetition Rate Of Fiber Amplifier,” U.S. Provisional Patent Application Ser. No. 60/494,102; ABI-9 “Controlling Pulse Energy Of A Fiber Amplifier By Controlling Pump Diode Current,” U.S. Provisional Patent Application Ser. No. 60/494,275; ABI-10 “Pulse Energy Adjustment For Changes In Ablation Spot Size,” U.S. Provisional Patent Application Ser. No. 60/494,274; ABI-11 “Ablative Material Removal With A Preset Removal Rate or Volume or Depth,” U.S. Provisional Patent Application Ser. No. 60/494,273; ABI-12 “Fiber Amplifier With A Time Between Pulses Of A Fraction Of The Storage Lifetime,” U.S. Provisional Patent Application Ser. No. 60/494,272; ABI-14 “Controlling Temperature Of A Fiber Amplifier By Controlling Pump Diode Current,” U.S. Provisional Patent Application Ser. No. 60/494,322; ABI-15 “Altering The Emission Of An Ablation Beam for Safety or Control,” U.S. Provisional Patent Application Ser. No. 60/494,267; ABI-16 “Enabling Or Blocking The Emission Of An Ablation Beam Based On Color Of Target Area,” U.S. Provisional Patent Application Ser. No. 60/494,172; ABI-17 “Remotely-Controlled Ablation of Surfaces,” U.S. Provisional Patent Application Ser. No. 60/494,276; and ABI-18 “Ablation Of A Custom Shaped Area,” U.S. Provisional Patent Application Ser. No. 60/494,180; were all filed Aug. 11, 2003. ABI-19 “High-Power-Optical-Amplifier Using A Number Of Spaced, Thin Slabs,” U.S. Provisional Patent Application Ser. No. 60/497,404 was filed Aug. 22, 2003.


ABI-20 “Spiral-Laser On-A-Disc,” U.S. Provisional Patent Application Ser. No. 60/502,879 and “Laser Beam Propagation in Air,” U.S. Provisional Patent Application Ser. No. 60/502,886 were both filed on Sep. 12, 2003. ABI-22 “Active Optical Compressor,” U.S. Provisional Patent Application Ser. No. 60/503,659 was filed Sep. 17, 2003.


ABI-24 “High Power SuperMode Laser Amplifier” U.S. Provisional Patent Application Ser. No. 60/505,968 was filed Sep. 25, 2003; ABI-25 “Semiconductor Manufacturing Using Optical Ablation,” U.S. Provisional Patent Application Ser. No. 60/508,136 was filed Oct. 2, 2003; ABI-26 “Composite Cutting With Optical Ablation Technique,” U.S. Provisional Patent Application Ser. No. 60/510,855 was filed Oct. 14, 2003; and ABI-27 “Material Composition Analysis Using Optical Ablation,” U.S. Provisional Patent Application Ser. No. 60/512,807 was filed Oct. 20, 2003.


ABI-28 “Quasi-Continuous Current in Optical Pulse Amplifier Systems,” U.S. Provisional Patent Application Ser. No. 60/529,425 and ABI-29 “Optical Pulse Stretching and Compressing,” U.S. Provisional Patent Application Ser. No. 60/529,443, were both filed Dec. 12, 2003.


ABI-30 “Start-up Timing for Optical Ablation System,” U.S. Provisional Patent Application Ser. No. 60/539,026; ABI-31 “High-Frequency Ring Oscillator,” U.S. Provisional Patent Application Ser. No. 60/539,024; and ABI-32 “Amplifying of High Energy Laser Pulses,” U.S. Provisional Patent Application Ser. No. 60/539,025 were all filed Jan. 23, 2004.


ABI-33 “Semiconductor-Type Processing for Solid-State Lasers,” U.S. Provisional Patent Application Ser. No. 60/543,086, was filed Feb. 9, 2004. ABI-34 “Pulse Streaming of Optically-Pumped Amplifiers,” U.S. Provisional Patent Application Ser. No. 60/546,065, was filed Feb. 18, 2004. ABI-35 “Pumping of Optically-Pumped Amplifiers,” U.S. Provisional Patent Application Ser. No. 60/548,216 was filed Feb. 26, 2004.


Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification, but only by the claims.

Claims
  • 1. A system comprising: a pulse generator;a man-portable amplifier and compressor combination to amplify the pulses and compress the pulses to generate amplified compressed pulses;a handheld probe to apply the amplified compressed pulses to an object in order to remove material therefrom; andan optical-fiber-containing umbilical cable to transport the pulses between components, the optical-fiber-containing umbilical cable including a feedback loop including a device to measure light leakage proportional to at least one of pulse power and energy to create a feedback loop.
  • 2. The system of claim 1, wherein the optical-fiber-containing umbilical cable transports the amplified compressed pulses from a compressor to a handheld probe.
  • 3. The system of claim 1, wherein the system removes surgical ablative material from a body with a short optical pulse that is amplified and then compressed.
  • 4. The system of claim 1, wherein the system generates an initial wavelength-swept-with-time pulse in a pulse generator.
  • 5. The system of claim 4, wherein the system amplifies the initial wavelength-swept-with-time pulse using an optical amplifier, to generate an amplified pulse.
  • 6. The system of claim 1, wherein the system generates a compressed optical pulse, wherein the amplification and compression are performed with either an optically-pumped-amplifier and air-path between gratings compressor combination, or a semiconductor optical amplifier and chirped fiber compressor combination.
  • 7. The system of claim 6, wherein the system applies the compressed optical pulse to a body, wherein the pulse generation, amplification, and compression are performed within a man-portable system.
  • 8. The system of claim 7, wherein the amplifier to amplify the initial wavelength-swept-with-time pulse includes more than one optical amplifier operated in a train mode to amplify the wavelength-swept-with-time pulse.
  • 9. The system of claim 7, wherein the compressor to compress the amplified pulse compresses pulses from more than one fiber-amplifier.
  • 10. The system of claim 7, wherein the amplifier to amplify the initial wavelength-swept-with-time pulse independently controls pulse energy density and ablation rate.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation application of U.S. patent application Ser. No. 11/894,867 filed Aug. 21, 2007now U.S. Pat. No. 7,963,958, and titled “Portable Optical Ablation System”, which is a continuation application of U.S. patent application Ser. No. 10/916,017 filed Aug. 11, 2004 now U.S. Pat. No. 7,361,171 and titled “Man-Portable Optical Ablation System” which is a continuation-in-part of patent application Serial No. PCT/US2004/015913 filed on May 19, 2004 and titled “Trains of Ablation Pulses from Multiple Optical Amplifiers” which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/471,971 filed on May 20, 2003 and titled “Stretched Optical Pulse Amplification and Compression,” U.S. Provisional Patent Application Ser. No. 60/471,922 filed on May 20, 2003 and titled “Laser Machining,” and U.S. Provisional Patent Application Ser. No. 60/503,578 filed on Sep. 17, 2003 and titled “Controlling Optically-Pumped Optical Pulse Amplifiers.” U.S. patent application Ser. No. 10/916,017 filed Aug. 11, 2004 and titled “Man-Portable Optical Ablation System” also claims the benefit of U.S. Provisional Patent Application Ser. No. 60/494,321 filed on Aug. 11, 2003 and titled “Man-Portable Optical Ablation System.” The disclosures of the aforementioned patent and patent applications are incorporated herein by reference.

US Referenced Citations (511)
Number Name Date Kind
2436662 Norgaard Feb 1948 A
3459960 Aaland et al. Aug 1969 A
3549256 Brienza et al. Dec 1970 A
3599019 Nannichi et al. Aug 1971 A
3602836 Young Aug 1971 A
3622907 Tomlinson et al. Nov 1971 A
3626318 Young Dec 1971 A
3628179 Cuff Dec 1971 A
3631362 Almasi et al. Dec 1971 A
3646469 Buczek et al. Feb 1972 A
3654624 Becker et al. Apr 1972 A
3696308 Duffy et al. Oct 1972 A
3735282 Gans May 1973 A
3806829 Duston et al. Apr 1974 A
3808549 Maurer Apr 1974 A
3851267 Tanner Nov 1974 A
3942127 Fluhr et al. Mar 1976 A
3963953 Thornton, Jr. Jun 1976 A
4061427 Fletcher et al. Dec 1977 A
4194813 Benjamin et al. Mar 1980 A
4289378 Remy et al. Sep 1981 A
4389617 Kurnit Jun 1983 A
4394623 Kurnit Jul 1983 A
4590598 O'Harra, II May 1986 A
4622095 Grobman et al. Nov 1986 A
4655547 Heritage et al. Apr 1987 A
4673795 Ortiz, Jr. Jun 1987 A
4718418 L'Esperance, Jr. Jan 1988 A
4722591 Haffner Feb 1988 A
4730113 Edwards et al. Mar 1988 A
4750809 Kafka et al. Jun 1988 A
4808000 Pasciak Feb 1989 A
4815079 Snitzer et al. Mar 1989 A
4824598 Stokowski Apr 1989 A
4827125 Goldstein May 1989 A
4829529 Kafka May 1989 A
4835670 Adams et al. May 1989 A
4847846 Sone et al. Jul 1989 A
4848340 Bille et al. Jul 1989 A
4849036 Powell et al. Jul 1989 A
4856011 Shimada et al. Aug 1989 A
4902127 Byer et al. Feb 1990 A
4907586 Bille et al. Mar 1990 A
4913520 Kafka Apr 1990 A
4915757 Rando Apr 1990 A
4928316 Heritage et al. May 1990 A
4947398 Yasuda et al. Aug 1990 A
4950268 Rink Aug 1990 A
4972423 Alfano et al. Nov 1990 A
4983034 Spillman, Jr. Jan 1991 A
4988348 Bille Jan 1991 A
4994059 Kosa et al. Feb 1991 A
5010555 Madey et al. Apr 1991 A
5014290 Moore et al. May 1991 A
5022042 Bradley Jun 1991 A
5031236 Hodgkinson et al. Jul 1991 A
5043991 Bradley Aug 1991 A
5053171 Portney et al. Oct 1991 A
5095487 Meyerhofer et al. Mar 1992 A
5098426 Sklar et al. Mar 1992 A
5122439 Miersch et al. Jun 1992 A
5132996 Moore et al. Jul 1992 A
5146088 Kingham et al. Sep 1992 A
5154707 Rink et al. Oct 1992 A
5159402 Ortiz, Jr. Oct 1992 A
5162643 Currie Nov 1992 A
5166818 Chase et al. Nov 1992 A
5187759 DiGiovanni et al. Feb 1993 A
5204867 Koschmann Apr 1993 A
5206455 Williams et al. Apr 1993 A
5217003 Wilk Jun 1993 A
5233182 Szabo et al. Aug 1993 A
5237576 DiGiovanni et al. Aug 1993 A
5255117 Cushman Oct 1993 A
5257273 Farries et al. Oct 1993 A
5265107 Delfyett, Jr. Nov 1993 A
5267077 Blonder Nov 1993 A
5278853 Shirai et al. Jan 1994 A
5291501 Hanna Mar 1994 A
5293186 Seden et al. Mar 1994 A
5301347 Kensky Apr 1994 A
5302835 Bendett et al. Apr 1994 A
5309453 Treacy May 1994 A
5313262 Leonard May 1994 A
5315431 Masuda et al. May 1994 A
5315436 Lowenhar et al. May 1994 A
5329398 Lai et al. Jul 1994 A
5331131 Opdyke Jul 1994 A
5355383 Lockard Oct 1994 A
5367143 White, Jr. Nov 1994 A
5400350 Galvanauskas Mar 1995 A
5409376 Murphy Apr 1995 A
5411918 Keible et al. May 1995 A
5414725 Fermann et al. May 1995 A
5418809 August, Jr. et al. May 1995 A
5428471 McDermott Jun 1995 A
5430572 DiGiovanni et al. Jul 1995 A
5440573 Fermann Aug 1995 A
5446813 Lee et al. Aug 1995 A
5450427 Fermann et al. Sep 1995 A
5479422 Fermann et al. Dec 1995 A
5489984 Hariharan et al. Feb 1996 A
5493579 Ressl et al. Feb 1996 A
5499134 Galvanauskas et al. Mar 1996 A
5517043 Ma et al. May 1996 A
5520679 Lin May 1996 A
5548098 Sugawara et al. Aug 1996 A
5572335 Stevens Nov 1996 A
5572358 Gabl et al. Nov 1996 A
5585642 Britton et al. Dec 1996 A
5585652 Kamasz et al. Dec 1996 A
5585913 Hariharan et al. Dec 1996 A
5590142 Shan Dec 1996 A
5592327 Gabl et al. Jan 1997 A
5596668 DiGiovanni et al. Jan 1997 A
5602673 Swan Feb 1997 A
5602677 Tournois Feb 1997 A
5615043 Plaessmann et al. Mar 1997 A
5617434 Tamura et al. Apr 1997 A
5624587 Otsuki et al. Apr 1997 A
5625544 Kowshik et al. Apr 1997 A
5627848 Fermann et al. May 1997 A
5631771 Swan May 1997 A
5633750 Nogiwa et al. May 1997 A
5633885 Galvanauskas et al. May 1997 A
5642447 Pan et al. Jun 1997 A
5644424 Backus et al. Jul 1997 A
5651018 Mehuys et al. Jul 1997 A
5656186 Mourou et al. Aug 1997 A
5657153 Endriz et al. Aug 1997 A
5661829 Zheng Aug 1997 A
5663731 Theodoras, II et al. Sep 1997 A
5665942 Williams et al. Sep 1997 A
5666722 Tamm et al. Sep 1997 A
5670067 Koide et al. Sep 1997 A
5677769 Bendett Oct 1997 A
5689361 Damen et al. Nov 1997 A
5689519 Fermann et al. Nov 1997 A
5694501 Alavie et al. Dec 1997 A
5696782 Harter et al. Dec 1997 A
5701319 Fermann Dec 1997 A
5703639 Farrier et al. Dec 1997 A
5708669 DiGiovanni et al. Jan 1998 A
5710424 Theodoras, II et al. Jan 1998 A
5720894 Neev et al. Feb 1998 A
5726855 Mourou et al. Mar 1998 A
5734762 Ho et al. Mar 1998 A
5736709 Neiheisel Apr 1998 A
5739933 Dembeck et al. Apr 1998 A
5770864 Dlugos Jun 1998 A
5771253 Chang-Hasnain et al. Jun 1998 A
5778016 Sucha et al. Jul 1998 A
5781289 Sabsabi et al. Jul 1998 A
5786117 Hoshi et al. Jul 1998 A
5788688 Bauer et al. Aug 1998 A
5790574 Rieger et al. Aug 1998 A
5815519 Aoshima et al. Sep 1998 A
5818630 Fermann et al. Oct 1998 A
5822097 Tournois Oct 1998 A
5844149 Akiyoshi et al. Dec 1998 A
5847825 Alexander Dec 1998 A
5847863 Galvanauskas et al. Dec 1998 A
5862287 Stock et al. Jan 1999 A
5862845 Chin et al. Jan 1999 A
5867304 Galvanauskas et al. Feb 1999 A
5875408 Bendett et al. Feb 1999 A
5880823 Lu Mar 1999 A
5880877 Fermann et al. Mar 1999 A
5898485 Nati, Jr. Apr 1999 A
5907157 Yoshioka et al. May 1999 A
5920668 Uehara et al. Jul 1999 A
5923686 Fermann et al. Jul 1999 A
5929430 Yao et al. Jul 1999 A
5933271 Waarts et al. Aug 1999 A
5936716 Pinsukanjana et al. Aug 1999 A
5999847 Elstrom Dec 1999 A
6014249 Fermann et al. Jan 2000 A
6016452 Kasevich Jan 2000 A
6020591 Harter et al. Feb 2000 A
6034975 Harter et al. Mar 2000 A
6041020 Caron et al. Mar 2000 A
6061373 Brockman et al. May 2000 A
6071276 Abela Jun 2000 A
6072811 Fermann et al. Jun 2000 A
6075588 Pinsukanjana et al. Jun 2000 A
6081369 Waarts et al. Jun 2000 A
6088153 Anthon et al. Jul 2000 A
6099522 Knopp et al. Aug 2000 A
6120857 Balooch et al. Sep 2000 A
6122097 Weston et al. Sep 2000 A
6130780 Joannopoulos et al. Oct 2000 A
6134003 Tearney et al. Oct 2000 A
6141140 Kim Oct 2000 A
6151338 Grubb et al. Nov 2000 A
6154310 Galvanauskas et al. Nov 2000 A
6156030 Neev Dec 2000 A
6161543 Cox et al. Dec 2000 A
6168590 Neev Jan 2001 B1
6172611 Hussain et al. Jan 2001 B1
6175437 Diels et al. Jan 2001 B1
6179421 Pang Jan 2001 B1
6181463 Galvanauskas et al. Jan 2001 B1
6190380 Abela Feb 2001 B1
6198568 Galvanauskas et al. Mar 2001 B1
6198766 Schuppe et al. Mar 2001 B1
6201914 Duguay et al. Mar 2001 B1
6208458 Galvanauskas et al. Mar 2001 B1
6246816 Moore et al. Jun 2001 B1
6249630 Stock et al. Jun 2001 B1
6252892 Jiang et al. Jun 2001 B1
6256328 Delfyett et al. Jul 2001 B1
6269108 Tabirian et al. Jul 2001 B1
6271650 Massie et al. Aug 2001 B1
6275250 Sanders et al. Aug 2001 B1
6275512 Fermann Aug 2001 B1
6281471 Smart Aug 2001 B1
6290910 Chalk Sep 2001 B1
6303903 Liu Oct 2001 B1
6314115 Delfyett et al. Nov 2001 B1
6325792 Swinger et al. Dec 2001 B1
6327074 Bass et al. Dec 2001 B1
6327282 Hammons et al. Dec 2001 B2
6330383 Cai et al. Dec 2001 B1
6334011 Galvanauskas et al. Dec 2001 B1
6334017 West Dec 2001 B1
6335821 Suzuki et al. Jan 2002 B1
6340806 Smart et al. Jan 2002 B1
RE37585 Mourou et al. Mar 2002 E
6355908 Tatah et al. Mar 2002 B1
6359681 Housand et al. Mar 2002 B1
6362454 Liu Mar 2002 B1
6365869 Swain et al. Apr 2002 B1
6366395 Drake et al. Apr 2002 B1
6370171 Horn et al. Apr 2002 B1
6370422 Richards-Kortum et al. Apr 2002 B1
6396317 Roller et al. May 2002 B1
6400871 Minden Jun 2002 B1
6404944 Wa et al. Jun 2002 B1
6407363 Dunsky et al. Jun 2002 B2
6418154 Kneip et al. Jul 2002 B1
6418256 Danziger et al. Jul 2002 B1
6421169 Bonnedal et al. Jul 2002 B1
6433303 Liu et al. Aug 2002 B1
6433305 Liu et al. Aug 2002 B1
6433760 Vaissie et al. Aug 2002 B1
6463314 Haruna Oct 2002 B1
6482199 Neev Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6486435 Beyer et al. Nov 2002 B1
6496099 Wang et al. Dec 2002 B2
6501590 Bass et al. Dec 2002 B2
6522460 Bonnedal et al. Feb 2003 B2
6522674 Niwano et al. Feb 2003 B1
6525873 Gerrish et al. Feb 2003 B2
6526085 Vogler et al. Feb 2003 B2
6526327 Kar et al. Feb 2003 B2
6529319 Youn et al. Mar 2003 B2
6541731 Mead et al. Apr 2003 B2
6547453 Stummer et al. Apr 2003 B1
6549547 Galvanauskas et al. Apr 2003 B2
6552301 Herman et al. Apr 2003 B2
6555781 Ngoi et al. Apr 2003 B2
6556733 Dy et al. Apr 2003 B2
6567431 Tabirian et al. May 2003 B2
6570704 Palese May 2003 B2
6573813 Joannopoulos et al. Jun 2003 B1
6574024 Liu Jun 2003 B1
6574250 Sun et al. Jun 2003 B2
6576917 Silfvast Jun 2003 B1
6580553 Kim et al. Jun 2003 B2
6587488 Meissner et al. Jul 2003 B1
6597497 Wang et al. Jul 2003 B2
6603903 Tong et al. Aug 2003 B1
6603911 Fink et al. Aug 2003 B2
6621040 Perry et al. Sep 2003 B1
6621045 Liu et al. Sep 2003 B1
6627421 Unger et al. Sep 2003 B1
6627844 Liu et al. Sep 2003 B2
6642477 Patel et al. Nov 2003 B1
6647031 Delfyett et al. Nov 2003 B2
6654161 Bass et al. Nov 2003 B2
6661816 Delfyett et al. Dec 2003 B2
6661820 Camilleri et al. Dec 2003 B1
6671298 Delfyett et al. Dec 2003 B1
6677552 Tulloch et al. Jan 2004 B1
6681079 Maroney Jan 2004 B1
6690686 Delfyett et al. Feb 2004 B2
6695835 Furuno et al. Feb 2004 B2
6696008 Brandinger Feb 2004 B2
6697402 Crawford Feb 2004 B2
6697408 Kennedy et al. Feb 2004 B2
6700094 Kuntze Mar 2004 B1
6700698 Scott Mar 2004 B1
6706036 Lai Mar 2004 B2
6706998 Cutler Mar 2004 B2
6710288 Liu et al. Mar 2004 B2
6710293 Liu et al. Mar 2004 B2
6711334 Szkopek et al. Mar 2004 B2
6716475 Fink et al. Apr 2004 B1
6720519 Liu et al. Apr 2004 B2
6723991 Sucha et al. Apr 2004 B1
6727458 Smart Apr 2004 B2
6728273 Perry Apr 2004 B2
6728439 Weisberg et al. Apr 2004 B2
6735229 Delfyett et al. May 2004 B1
6735368 Parker et al. May 2004 B2
6738144 Dogariu May 2004 B1
6738408 Abedin May 2004 B2
6744555 Galvanauskas et al. Jun 2004 B2
6747795 Lin et al. Jun 2004 B2
6749285 Liu et al. Jun 2004 B2
6760356 Erbert et al. Jul 2004 B2
6774869 Biocca et al. Aug 2004 B2
6782207 Efimov Aug 2004 B1
6785303 Holzwarth et al. Aug 2004 B1
6785445 Kuroda et al. Aug 2004 B2
6787733 Lubatschowski et al. Sep 2004 B2
6787734 Liu Sep 2004 B2
6788864 Ahmad et al. Sep 2004 B2
6791060 Dunsky et al. Sep 2004 B2
6791071 Woo et al. Sep 2004 B2
6795461 Blair et al. Sep 2004 B1
6801550 Snell et al. Oct 2004 B1
6801551 Delfyett et al. Oct 2004 B1
6801557 Liu Oct 2004 B2
6803539 Liu et al. Oct 2004 B2
6804574 Cheng et al. Oct 2004 B2
6807353 Fleming et al. Oct 2004 B1
6807375 Dogariu Oct 2004 B2
6815638 Liu Nov 2004 B2
6819694 Jiang et al. Nov 2004 B2
6819702 Sverdlov et al. Nov 2004 B2
6819837 Li et al. Nov 2004 B2
6822251 Arenberg et al. Nov 2004 B1
6824540 Lin Nov 2004 B1
6829517 Cheng et al. Dec 2004 B2
6834134 Brennan, III et al. Dec 2004 B2
6836703 Wang et al. Dec 2004 B2
6878900 Corkum et al. Apr 2005 B2
6882772 Lowery et al. Apr 2005 B1
6885683 Fermann et al. Apr 2005 B1
6887804 Sun et al. May 2005 B2
6897405 Cheng et al. May 2005 B2
6902561 Kurtz et al. Jun 2005 B2
6917631 Richardson et al. Jul 2005 B2
6928490 Bucholz et al. Aug 2005 B1
6937629 Perry et al. Aug 2005 B2
6943359 Vardeny et al. Sep 2005 B2
6956680 Morbieu et al. Oct 2005 B2
6994703 Wang et al. Feb 2006 B2
7002733 Dagenais et al. Feb 2006 B2
7006730 Doerr Feb 2006 B2
7022119 Hohla Apr 2006 B2
7031571 Mihailov et al. Apr 2006 B2
7068408 Sakai Jun 2006 B2
7072101 Kapteyn et al. Jul 2006 B2
7088756 Fermann et al. Aug 2006 B2
7095772 Delfyett et al. Aug 2006 B1
7097640 Wang et al. Aug 2006 B2
7099549 Scheuer et al. Aug 2006 B2
7116688 Sauter et al. Oct 2006 B2
7132289 Kobayashi et al. Nov 2006 B2
7143769 Stoltz et al. Dec 2006 B2
7171074 DiGiovanni et al. Jan 2007 B2
7217266 Anderson et al. May 2007 B2
7220255 Lai May 2007 B2
7233607 Richardson et al. Jun 2007 B2
7257302 Fermann et al. Aug 2007 B2
7289707 Chavez-Pirson et al. Oct 2007 B1
7321605 Albert Jan 2008 B2
7321713 Akiyama et al. Jan 2008 B2
7332234 Levinson et al. Feb 2008 B2
7349452 Brennan, III et al. Mar 2008 B2
7361171 Stoltz et al. Apr 2008 B2
7367969 Stoltz et al. May 2008 B2
7413565 Wang et al. Aug 2008 B2
7444049 Kim et al. Oct 2008 B1
7505196 Nati et al. Mar 2009 B2
7518788 Fermann et al. Apr 2009 B2
7584756 Zadoyan et al. Sep 2009 B2
7675674 Bullington et al. Mar 2010 B2
7728967 Ochiai et al. Jun 2010 B2
7773294 Brunet et al. Aug 2010 B2
7787175 Brennan, III et al. Aug 2010 B1
7822347 Brennan, III et al. Oct 2010 B1
7963958 Stoltz et al. Jun 2011 B2
20010009250 Herman et al. Jul 2001 A1
20010021294 Cai et al. Sep 2001 A1
20010046243 Schie Nov 2001 A1
20020003130 Sun et al. Jan 2002 A1
20020051606 Takushima et al. May 2002 A1
20020071454 Lin Jun 2002 A1
20020091325 Ostrovsky Jul 2002 A1
20020095142 Ming Jul 2002 A1
20020097468 Mecherle et al. Jul 2002 A1
20020097761 Sucha et al. Jul 2002 A1
20020118934 Danziger et al. Aug 2002 A1
20020153500 Fordahl et al. Oct 2002 A1
20020167581 Cordingley et al. Nov 2002 A1
20020167974 Kennedy et al. Nov 2002 A1
20020176676 Johnson et al. Nov 2002 A1
20020186915 Yu et al. Dec 2002 A1
20020191901 Jensen Dec 2002 A1
20030011782 Tanno Jan 2003 A1
20030031410 Schnitzer Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030053508 Dane et al. Mar 2003 A1
20030055413 Altshuler et al. Mar 2003 A1
20030060808 Wilk Mar 2003 A1
20030086647 Willner et al. May 2003 A1
20030095266 Detalle et al. May 2003 A1
20030123496 Broutin et al. Jul 2003 A1
20030142705 Hackel et al. Jul 2003 A1
20030156605 Richardson et al. Aug 2003 A1
20030161365 Perry et al. Aug 2003 A1
20030161378 Zhang et al. Aug 2003 A1
20030178396 Naumov et al. Sep 2003 A1
20030202547 Fermann et al. Oct 2003 A1
20030205561 Iso Nov 2003 A1
20030214714 Zheng Nov 2003 A1
20030223689 Koch et al. Dec 2003 A1
20030235381 Hunt Dec 2003 A1
20040000942 Kapteyn et al. Jan 2004 A1
20040037505 Morin Feb 2004 A1
20040042061 Islam et al. Mar 2004 A1
20040049552 Motoyama et al. Mar 2004 A1
20040101001 Bergmann et al. May 2004 A1
20040128081 Rabitz et al. Jul 2004 A1
20040134894 Gu et al. Jul 2004 A1
20040134896 Gu et al. Jul 2004 A1
20040160995 Sauter et al. Aug 2004 A1
20040226925 Gu et al. Nov 2004 A1
20040231682 Stoltz et al. Nov 2004 A1
20040233944 Dantus et al. Nov 2004 A1
20040263950 Fermann et al. Dec 2004 A1
20050008044 Fermann et al. Jan 2005 A1
20050018986 Argyros et al. Jan 2005 A1
20050035097 Stoltz Feb 2005 A1
20050036527 Khazaei et al. Feb 2005 A1
20050038487 Stoltz Feb 2005 A1
20050061779 Blumenfeld et al. Mar 2005 A1
20050065502 Stoltz Mar 2005 A1
20050067388 Sun et al. Mar 2005 A1
20050074974 Stoltz Apr 2005 A1
20050077275 Stoltz Apr 2005 A1
20050105865 Fermann et al. May 2005 A1
20050107773 Bergt et al. May 2005 A1
20050111073 Pan et al. May 2005 A1
20050111500 Harter et al. May 2005 A1
20050127049 Woeste et al. Jun 2005 A1
20050154380 DeBenedictis et al. Jul 2005 A1
20050163426 Fermann et al. Jul 2005 A1
20050167405 Stoltz et al. Aug 2005 A1
20050171516 Stoltz et al. Aug 2005 A1
20050171518 Stoltz et al. Aug 2005 A1
20050175280 Nicholson Aug 2005 A1
20050177143 Bullington et al. Aug 2005 A1
20050195726 Bullington et al. Sep 2005 A1
20050213630 Mielke et al. Sep 2005 A1
20050215985 Mielke et al. Sep 2005 A1
20050218122 Yamamoto et al. Oct 2005 A1
20050225846 Nati et al. Oct 2005 A1
20050226278 Gu et al. Oct 2005 A1
20050226286 Liu et al. Oct 2005 A1
20050226287 Shah et al. Oct 2005 A1
20050232560 Knight et al. Oct 2005 A1
20050238070 Imeshev et al. Oct 2005 A1
20050253482 Kapps et al. Nov 2005 A1
20050259944 Anderson et al. Nov 2005 A1
20050265407 Braun et al. Dec 2005 A1
20050271094 Miller et al. Dec 2005 A1
20050271340 Weisberg et al. Dec 2005 A1
20060016891 Giebel et al. Jan 2006 A1
20060030951 Davlin et al. Feb 2006 A1
20060050750 Barty Mar 2006 A1
20060056480 Mielke et al. Mar 2006 A1
20060064079 Stoltz et al. Mar 2006 A1
20060067604 Bull et al. Mar 2006 A1
20060084957 Delfyett et al. Apr 2006 A1
20060093012 Singh et al. May 2006 A1
20060093265 Jia et al. May 2006 A1
20060120418 Harter et al. Jun 2006 A1
20060126679 Brennan, III et al. Jun 2006 A1
20060131288 Sun et al. Jun 2006 A1
20060187974 Dantus Aug 2006 A1
20060209908 Pedersen et al. Sep 2006 A1
20060210275 Vaissie et al. Sep 2006 A1
20060221449 Glebov et al. Oct 2006 A1
20060250025 Kitagawa et al. Nov 2006 A1
20060268949 Gohle et al. Nov 2006 A1
20070025728 Nakazawa et al. Feb 2007 A1
20070047965 Liu et al. Mar 2007 A1
20070064304 Brennan, III Mar 2007 A1
20070098025 Hong et al. May 2007 A1
20070106416 Griffiths et al. May 2007 A1
20070121686 Vaissie et al. May 2007 A1
20070196048 Galvanauskas et al. Aug 2007 A1
20070229939 Brown et al. Oct 2007 A1
20070253455 Stadler et al. Nov 2007 A1
20070273960 Fermann et al. Nov 2007 A1
20080232407 Harter et al. Sep 2008 A1
20080240184 Cho et al. Oct 2008 A1
20090219610 Mourou et al. Sep 2009 A1
20090244695 Marcinkevicius et al. Oct 2009 A1
20090245302 Baird et al. Oct 2009 A1
20090257464 Dantus et al. Oct 2009 A1
20090273828 Waarts et al. Nov 2009 A1
20090297155 Weiner et al. Dec 2009 A1
20100040095 Mielke et al. Feb 2010 A1
20100118899 Peng et al. May 2010 A1
20100142034 Wise et al. Jun 2010 A1
Foreign Referenced Citations (16)
Number Date Country
214100 Mar 1987 EP
691563 Jan 1996 EP
1462831 Sep 2004 EP
8171103 Jul 1996 JP
11189472 Jul 1999 JP
2003181661 Jul 2003 JP
2003344883 Dec 2003 JP
2005174993 Jun 2005 JP
WO9428972 Dec 1994 WO
WO2004105100 Dec 2004 WO
WO2004114473 Dec 2004 WO
WO2005018060 Feb 2005 WO
WO2005018061 Feb 2005 WO
WO2005018062 Feb 2005 WO
WO2005018063 Feb 2005 WO
WO2007034317 Mar 2007 WO
Non-Patent Literature Citations (66)
Entry
Agostinelli, J. et al., “Optical Pulse Shaping with a Grating Pair,” Applied Optics, vol. 18, No. 14, pp. 2500-2504, Jul. 15, 1979.
Anastassiou et al., “Photonic Bandgap Fibers Exploiting Omnidirectional Reflectivity Enable Flexible Delivery of Infrared Lasers for Tissue Cutting,” Proceedings of the SPIE —the International Society for Optical Engineering, SPIE, US, vol. 5317, No. 1, Jan. 1, 2004, pp. 29-38, XP002425586 ISSN: 0277-786X.
Benoit, G. et al., “Dynamic All-optical Tuning of Transverse Resonant Cavity Modes in Photonic Bandgap Fibers, ”Optics Letters, vol. 30, No. 13, Jul. 1, 2005, pp. 1620-1622.
Chen, L. et al., “Ultrashort Optical Pulse Interaction with Fibre Gratings and Device Applications,” 1997, Canaga, located at http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29402.pfd.
Chen, X. et al., “Highly Birefringent Hollow-core Photonic Bandgap Fiber,” Optics Express, vol. 12, No. 16, Aug. 9, 2004, pp. 3888-3893.
Chen, Y. et al., “Dispersion-Managed Mode Locking”, Journal of the Optical Society of America B, Nov. 1999, pp. 1999-2004, vol. 16, No. 11, Optical Society of America.
Dasgupta, S. et al., “Design of Dispersion-Compensating Bragg Fiber with an Ultrahigh Figure of Merit,” Optics Letters, Aug. 1, 2005, vol. 30, No. 15, Optical Society of America.
De Matos et al., “Multi-kilowatt, Picosecond Pulses from an All-fiber Chirped Pulse Amplification System Using Air-core Photonic Bandgalp Fiber”, Lasers and Electro-optics, 2004, (CLEO), Conference on San Francisco, CA USA, May 20-21, 2004, Piscataway, NJ, USA, IEEE, vol. May 17, 2004, pp. 973-974, XP010745448 ISBN:978-1-55752-777-6.
De Matos, C.J.S. et al., “All-fiber Chirped Pulse Amplification using Highly-dispersive Air-core Photonic Bandgap Fiber,” Nov. 3, 2003, Optics Express, pp. 2832-2837, vol. 11, No. 22.
Delfyett, P. et al., “Ultrafast Semiconductor Laser-Diode-Seeded Cr:LiSAF Rengerative Amplifier System”, Applied Optics, May 20, 1997, pp. 3375-3380, vol. 36, No. 15, Octoical Society of America.
Eggleton, et al., “Electrically Tunable Power Efficient Dispersion Compensating Fiber Bragg Grating,” IEEE Photonics Technology Letters, vol. 11, No. 7, pp. 854-856, Jul. 1999.
Engeness et al., “Dispersion Tailoring and Compensation by Modal Interations in Omniguide Fibers,” Optics Express, May 19, 2003, pp. 1175-1196, vol. 11, No. 10.
Fink et al., “Guiding Optical Light in Air Using an All-Dielectric Structure,” Journal of Lightwave Technology, Nov. 1999, pp. 2039-2041, vol. 17, No. 11.
Folkenberg, J.R., et al., “Broadband Single-polarization Photonic Crystal Fiber,” Optics Letters, vol. 30, No. 12, Jun. 15, 2005, pp. 1446-1448.
Folkenberg, J.R., et al., “Polarization Maintaining Large Mode Area Photonic Crystal Fiber,” Optics Express vol. 12, No. 5, Mar. 8, 2004, pp. 956-960.
Futami, F., et al., “Wideband Fibre Dispersion Equalisation up to Fourth-order for Long-distance Sub-picosecond Optical Pulse Transmission,” Electronics Letters, vol. 35, No. 25, Dec. 9, 1999.
Galvanauskas, A. et al., “Chirped-pulse-amplification Circuits for Fiber Amplifiers, Based on Chirped-period Quasi-phase, matching gratings”, Optics Letters, Nov. 1, 1998, p. 1695-1697, vol. 23, No. 21, Optical Society of America.
Hartl et al., “In-line high energy Yb Fiber Laser Based Chirped Pulse Amplifier System”, Laser and Electro-Optics, 2004, (CLEO) Conference of San Francisco, CA USA May 20-21, 2004, Piscataway, NJ USA, IEEE, vol. 1, May 17, 2004, pp. 563-565, XP010745382, ISBN: 978-1-55752-7777-.
Hellstrom, E. et al., “Third-order Dispersion Compensation Using a Phase Modulator”, Journal of Lightwave Technology, vol. 21, No. 5, pp. 1188-1197, May 2003.
Heritage, J. P. et al., “Picosecond Pulse Shaping by Spectral Phase and Amplitude Manipulation,” Optics Letters, vol. 10, No. 12, pp. 609-611, Dec. 1985.
Heritage, J.P. et al., “Spectral Windowing of Frequency-Modulated Optical Pulses in a Grating Compressor,” Applied Physics Letters, vol. 47, No. 2, pp. 87-89, Jul. 15, 1985.
Hill, K. et al., “Fiber Bragg Grating Technology Fundamentals and Overview,” Journal of Lightwave Technology, Aug. 1997, vol. 15, No. 8, pp. 1263-1276.
Ibanescu et al., “Analysis of Mode Structure in Hollow Dielctric Waveguide Fibers,” Physical Review E 67, 2003, The American Physical Society.
Jiang, et al., “Fully Dispersion Compensated ˜500 fs Pulse Transmission Over 50 km Single Mode Fiber,” Optics Letters, vol. 30, No. 12, pp. 1449-1451, Jun. 15, 2005.
Jiang, et al., “Fully Dispersion Compensated ˜500 fs Pulse Transmission Over 50 km Single Mode Fiber,” Purdue University ECE Annual Research Summary, Jul. 1, 2004-Jun. 30, 2005.
Killey, et al., “Electronic Dispersion Compensation by Signal Predistortion Using Digital Processing and a Dual-Drive Mach-Zehnder Modulator,” IEEE Photonics Technology Letters, vol. 17, No. 3, pp. 714-716, Mar. 2005.
Kim, K. et al., “1.4kW High Peak Power Generation from an All Semiconductor Mode-locked Master Oscillator Power Amplifier System Based on eXtreme Chirped Pulse Amplification (X-CPA)”, Optics Express, Jun. 2, 2005, pp. 4600-4606, vol. 13, No. 12.
Koechner, “Solid State Laser Engineering”, Oct. 29, 1999, Section 5.5, pp. 270-277, 5th Edition, Springer.
Kwon, et al., “Tunable Dispersion Slope Compensator Using a Chirped Fiber Bragg Grating Tuned by a Fan-shaped Thin Metallic Heat Channel,” IEEE Photonics Technology Letters, vol. 18, No. 1, pp. 118-120, Jan. 1, 2006.
Kyungbum, Kim et al., “1.4kW High Peak Power Generation from an all Semiconductor Mode-locked Master Oscillator Power Amplifier System Based on eXtreme Chirped Pulse Amplification (X-CPA)”, Optics Express, Jun. 2, 2005, pp. 4600-4606, vol. 13, No. 12.
Levy et al., “Engineering Space-Variant Inhomogeneous Media for Polarization Control,” Optics Letters, Aug. 1, 2004, pp. 1718-1720, vol. 29, No. 15, Optical Society of America.
Liao, K. et al.., “Large-aperture Chirped Volume Bragg Grating Based Fiber CPA System,” Optics Express, Apr. 16, 2007, vol. 15, No. 8, pp. 4876-4882.
Lo, S. et al., “Semiconductor Hollow Optical Waveguides Formed by Omni-directional Reflectors”, Optics Express, vol. 12, No. 26, Dec. 27, 2004, pp. 6589-6593.
Malinowski A. et al., “Short Pulse High Power Fiber Laser Systems,” Proceedings of the 2005 Conference on Lasers and Electro-Optics (CLEO), Paper No. CThG3, pp. 1647-1649, May 26, 2005.
Mehier-Humbert, S. et al., “Physical Methods for Gene Transfer: Improving the Kinetics of Gene Delivery Into Cells,” Advanced Drug Delivery Reviews, vol. 57, pp. 733-753, 2005.
Mohammed, W. et al., “Selective Excitation of the TE01 Mode in Hollow-Glass Waveguide Using a Subwavelength Grating,” IEEE Photonics Technology Letters, Jul. 2005, vol. 17, No. 7, IEEE.
Nibbering, E.T.J., et al. “Spectral Determination of the Amplitude and the Phase of Intense Ultrashort Optical Pulses,” Journal Optical Society of America B, vol. 13, No. 2, pp. 317-329, Feb. 1996.
Nicholson, J. et al., “Propagation of Femotsecond Pulses in Large-mode-area, Higher-order-mode Fiber,” Optics Letters, vol. 31, No. 21, 2005, pp. 3191-3193.
Noda, J. et al., “Polarization-maintaining Fibers and Their Applications”, Journal of Lightwave Technology, vol. Lt-4, No. 8 Aug. 1986, pp. 1071-1089.
Palfrey et al., “Generation of 16-FSEC Frequency-tunable Pulses by Optical Pulse compression” Optics Letters, OSA, Optical Society of america, Washington, DC, USA, vol. 10, No. 11, Nov. 1, 1985, pp. 562-564, XP000710358 ISSN:0146-9592.
Pelusi, M. D. et al., “Electrooptic Phase Modulation of Stretched 250-fs Pulses for Suppression of Third-Order Fiber Disperson in Transmission,” IEEE Photonics Technology Letters, vol. 11, No. 11, pp. 1461-1463, Nov. 1999.
Pelusi, M. D. et al., “Phase Modulation of Stretched Optical Pulses for Suppression of Third-order Dispersion Effects in fibre Transmission,” Electronics Letters, vol. 34, No. 17, pp. 1675-1677, Aug. 20, 1998.
Price et al., “Advances in High Power, Short Pulse, Fiber Laser Systems and Technology”, Proceedings of SPIE—vol. 5709, Fiber Lasers II: Technology, Systems, and Applications, Apr. 2005, pp. 184-192.
Price et al., “Advances in High Power, Short Pulse, Fiber Laser Systems and Technology”, Photonics West 2005, San Jose, California, Jan. 2005, pp. 5709-3720.
Ramachandran, S., et al., “High-power Amplification in a 2040-μm2 Higher Order Mode,” SPIE Photonics West 2007, Post-deadline.
Resan et al., “Dispersion-Managed Semiconductor Mode-Locked Ring Laser”, Optics Letters, Aug. 1, 2003, pp. 1371-1373, vol. 28, No. 15, Optical Society of America.
Schreiber, T., et al., “Design and High Power Operation of a Stress-induced single Polarization Single-transverse Mode LMA Yb-doped Photonic Crystal Fiber,” Fiber Lasers III: Technology, Systems, and Applications, Andrew J.W. Brown, Johan Nilsson, Donald J. Harter, Andreas Tünnermann, eds., Proc. of SPIE, vol. 6102, pp. 61020C-1-61020C-9, 2006.
Schreiber, T., et al., “Stress-induced Single-polarization Single-transverse Mode Photonic Crystal Fiber with Low Nonlinearity,” Optics Express, vol. 13, No. 19, Sep. 19, 2005, pp. 7621-7630.
Siegman, “Unstable Optical Resonators”, Applied Optics, Feb. 1974, pp. 353-367, vol. 13, No. 2.
Limpert et al., “All Fiber Chiped-Pulse Amplification System Based on Compression in Air-Guiding Photonic Bandgap Fiber”, Optics Express, Dec. 1, 2003, vol. 11, No. 24, pp. 3332-3337.
Stock et al., “Chirped Pulse Amplification in an Erbium-doped Diber Oscillator/Erbium-doped Fiber Amplifier System”, Optics Communications, North-Holland Publishing Co., Amsterdam, NL, vol. 106, No. Apr. 5, 2006, Mar. 15, 1994, pp. 249-252, XP000429901, ISSN: 0030-4018.
Strickland et al., “Compression of Amplified Chirped Optical Pulses”, Optics Communications, North-Holland Publishing Co., Amersterdam, NL, vol. 56, No. 3, Dec. 1, 1985, pp. 219-221, XP024444933 ISSN: 0030-4018.
Temelkuran, B. et al., “Wavelength-scalable Hollow Optical Fibres with Large Photonic Bandgaps for CO2 Laser Transmission,” Nature, Dec. 12, 2002, pp. 650-653.
Thurston, R.N. et al., “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE Journal of Quantum Electronics, vol. EQ-22, No. 5, pp. 682-696, May 1986.
Weiner, A.M. et al., “Synthesis of Phase-coherent, Picosecond Optical Square Pulses,” Optics Letters, vol. 11, No. 3, pp. 153-155, Mar. 1986.
Weiner, A.M., “Femtosecond Optical Pulse Shaping and Processing,” Prog. Quant. Electr. 1995, vol. 19, pp. 161-237, 1995.
Weiner, A.M., “High-resolution femtosecond Pulse Shaping,” Journal of the Optical Society of America B. vol. 5, No. 8, pp. 1563-1572, Aug. 1988.
Wells, D.J., “Gene Therapy Progress and Prospects: electroporation and Other Physical Methods,” Gene Therapy, Nature Publishing Group, vol. 11, pp. 1363-1369, Aug. 5, 2004, (http://www.nature.com/gt).
White, W.E., et al., “Compensation of Higher-order Frequency-dependent Phase Terms in Chirped-pulse Amplification Systems,” Optics Letters, vol. 18, No. 16, pp. 1343-1345, Aug. 15, 1993.
Yamakawa et al., “1 Hz, 1 ps, terawatt Nd: glass laser”, Optics Communications, North-Holland Publishing Co. Amsterdam, NL, vol. 112, No. 1-2, Nov. 1, 1994, pp. 37-42, XP024424285.
Yan et al., Ultrashort Pulse Measurement Using Interferometric Autocorrelator Based on Two-photon-absorbtion Detector at 1.55μm Wavelength Region., 2005, Proceedings of SPIE vol. 5633, Advanced Materials and Devices for Sensing and Imaging II, pp. 424-429.
Yeh, et al. “Theory of Bragg Fiber”, Journal of the Optical Society America, Sep. 1978, pp. 1196, vol. 68, No. 9., pp. 1196-1201.
Yi, Y. et al., “Sharp Bending of On-Chip silicon Bragg Cladding Waveguide With Light Guiding on Low Index Core Materials”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, No. 6, Nov./Dec. 2006, pp. 1345-1348.
Yi, Y., et al., “On-chip Si-based Bragg Cladding Waveguide with High Index Contrast Bilayers”, Optics Express, vol. 12, No. 20, Oct. 4, 2004, pp. 4775-4780.
Yin, D. et al., “Integrated ARROW Waveguides with Hollow Cores”, Optics Express, vol. 12, No. 12, Jun. 14, 2004, pp. 2710-2715.
Zhou, S. et al., “Compensation of nonlinear Phase Shifts with Third-order Dispersion in Short-pulse Fiber Amplifiers,” Optics Express, vol. 13, No. 13, pp. 4869-2877, Jun. 27, 2005.
Related Publications (1)
Number Date Country
20110073584 A1 Mar 2011 US
Provisional Applications (4)
Number Date Country
60471971 May 2003 US
60471922 May 2003 US
60503578 Sep 2003 US
60494321 Aug 2003 US
Continuations (2)
Number Date Country
Parent 11894867 Aug 2007 US
Child 12961390 US
Parent 10916017 Aug 2004 US
Child 11894867 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US2004/015913 May 2004 US
Child 10916017 US