Portable percussive massage device

Information

  • Patent Grant
  • 11813221
  • Patent Number
    11,813,221
  • Date Filed
    Monday, June 6, 2022
    2 years ago
  • Date Issued
    Tuesday, November 14, 2023
    12 months ago
Abstract
A percussive massage device may include a housing having a housing interior. A motor may be positioned in the housing interior and may include a rotatable motor shaft having a motor axis. A battery may be positioned in the housing interior. A switch may be configured to activate the motor. A reciprocating shaft may operatively be connected to the rotatable motor shaft. The reciprocating shaft may include a distal end and is able to reciprocate in response to rotation of the rotatable motor shaft. A vent may extend through a vent opening in the housing to provide ventilation to the housing interior.
Description
FIELD OF THE INVENTION

The present disclosure relates generally to a percussive massage device, and more particularly to a portable percussive massage device.


BACKGROUND

Percussive massage devices have become increasingly popular in recent years. However, they often can be bulky and difficult to transport in a gym bag or the like. While smaller percussive massage devices are generally considered more portable and easier to transport, the reduced volume inside such smaller devices can often lead to inadequate ventilation between the various component parts arranged therein. As a result, some component parts, such as the motor and associated circuitry, are prone to overheat during use, which can lead to failure of the percussive massage device. Accordingly, there is a need to provide a compact percussive massage device having suitable ventilation to prevent overheating of the internal components.


SUMMARY

In one embodiment of the present disclosure, a percussive massage device may include a housing defining a housing interior. The device may also include a motor positioned in the housing interior, the motor including a rotatable motor shaft defining a motor axis. The device may further include a battery positioned in the housing interior. The device may also include a switch configured to activate the motor. The device may further include a reciprocating shaft operatively connected to the rotatable motor shaft, the reciprocating shaft including a distal end defining a reciprocation axis, and the reciprocating shaft configured to reciprocate in response to rotation of the motor shaft. The device may also include a vent extending through a vent opening in the housing, the vent configured to provide ventilation to the housing interior.


Some embodiments of the present disclosure may include one or more of the following features. The percussive massage device housing may include a first side portion and a second side portion, the motor may be positioned in the first side portion, and the battery may be positioned in the second side portion. A motor axis may be disposed between the switch and the vent, and the motor axis may be generally perpendicular to the reciprocation axis. The vent further may include a plurality of vent holes configured to allow airflow into and out of the housing interior. The vent holes may be circular-shaped, oval-shaped, rectangular-shaped, square-shaped, or another non-polygonal shaped. The vent may further include one or more flanges configured to engage the housing to securely fix the vent within the vent opening. The vent may have a convex shape. The percussive massage device may include a wireless communications device configured to communicate with a wireless control device. At least one of the motor or the reciprocating shaft further may include a force meter. The percussive massage device may include a counterweight operable to rotate about the motor axis upon rotation of the motor shaft. The visual indicator may be adjacent to the switch. The switch may be a button. The percussive massage device may include a stabilizer disposed between the vent and the motor, the stabilizer being co-axially aligned with the motor axis. The battery may define a battery axis, the battery axis being generally parallel to the reciprocation axis, where the motor axis is generally perpendicular to the reciprocation axis and the battery axis. The motor may be positioned on the first side of the middle member and the reciprocating shaft may be positioned on the second side of the middle member. The middle member may include a shaft opening defined therein, where the rotatable motor shaft extends from the first side of the middle member through the shaft opening and to the second side of the middle member. The bush assembly may include a bush, a bush holding structure, and a dampening bush cover positioned between the bush and the bush holding structure. An outer surface of the housing may include finger recesses configured to be grasped by a user.


In some embodiments, a method of massaging a body part may include grasping the percussive massage device with a hand of a user such that the reciprocation axis of the reciprocation shaft extends through a palm of the first hand, and massaging the body part with a massage attachment connected to the distal end of the reciprocating shaft. Grasping the percussive massage device may include placing a finger of the hand in a first finger recess of one side of the housing and a thumb of the hand of the user in a second finger recess of another side of the housing.


Implementations of any of the techniques described above may include a system, a method, a process, a device, and/or an apparatus. The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.


Further features and advantages of the disclosure, as well as the structure and operation of various embodiments of the disclosure, are described in detail below with reference to the accompanying drawings. It is noted that the disclosure is not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to persons skilled in the relevant art based on the teachings contained herein.





BRIEF DESCRIPTION OF THE DRAWINGS

In order that the present disclosure may be readily understood, aspects of the portable percussive massage device are illustrated by way of examples in the accompanying drawings, in which like parts are referred to with like reference numerals throughout.



FIG. 1 is a perspective view of a portable percussive massage device in accordance with an embodiment of the present disclosure.



FIG. 2 is a front elevational view of the percussive massage device with one housing half removed.



FIG. 3 is an exploded perspective view of the percussive massage device of FIG. 1.



FIG. 4 is an exploded perspective view of the percussive massage device from the opposite side of FIG. 3.



FIG. 5 is an exploded perspective view of the percussive massage device of FIG. 4 including an exploded view of a bush assembly.



FIG. 6 is a cross-sectional side elevation taken along line 6-6 of FIG. 1.



FIG. 7 is a side elevational view of the percussive massage device being grasped by a user.



FIG. 8 is a rear elevational view of the percussive massage device being grasped by a user.





DETAILED DESCRIPTION

The following description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. References to one or an embodiment in the present disclosure can be, but not necessarily are references to the same embodiment; and, such references mean at least one of the embodiments.


Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the-disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.


Without intent to further limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given below. Note that titles or subtitles may be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions, will control.


It will be appreciated that terms such as “front,” “back,” “top,” “bottom,” “side,” “short,” “long,” “up,” “down,” “aft,” “forward,” “inboard,” “outboard” and “below” used herein are merely for ease of description and refer to the orientation of the components as shown in the figures. It should be understood that any orientation of the components described herein is within the scope of the present disclosure.


Referring now to the drawings, which are for purposes of illustrating the present disclosure and not for purposes of limiting the same, FIGS. 1-8 show embodiments of portable percussive massage devices 10 in accordance with embodiments of the present disclosure.


As shown in FIGS. 1-2, in one embodiment, a percussive massage device 10 generally includes a housing 12 that forms a housing interior 14, a reciprocating shaft 16, and an attachment member 18 (secured on the distal end 16a of the reciprocating shaft 16) for securing a massage member or attachment thereto. In one embodiment, the device may include one of the attachment members 18 disclosed in U.S. Pat. No. 10,557,490 (the '490 patent), the entirety of which is incorporated herein by reference. The reciprocating shaft 16 may be configured to receive a plurality of different attachment members 18. The attachment member 18 may be used to attach a treatment member or massage attachment 19 (see FIG. 8). The male attachment member 18 shown in the drawings may be similar to the embodiment shown in FIGS. 11-13 in the '490 patent. However, the embodiments shown in any of FIGS. 1-10 in the '490 patent or other systems for connecting a massage attachment to a percussive massage device may be used in certain embodiments. For example, in another embodiment, the reciprocating shaft 16 may include a female attachment member that mates with a male attachment member on the massage attachment 19.


As shown in FIG. 2, the percussive massage device 10 may further include a battery or batteries 20 (or other power source, such as an AC plug), a motor 22 positioned in the housing 12, and a switch 24 for activating the motor. In one embodiment, the motor 22 may be a brushless direct current (BLDC) motor. The motor 22 may be configured to vary the speed (i.e., rate of rotational motion) that may be converted to reciprocal motion, as described below. In other embodiments, the motor may be, for example, a brushed DC motor, a brushed AC motor, or a brushless AC motor. It has been determined that for some embodiments of the present disclosure, the choice between a brushless or brushed motor, or direct current or alternating current, may depend on the application and intended size, battery power, and use case. The battery 20 may be positioned in a battery recess 20a, 20b formed in the housing 12 and may be electrically connected or communicated with a printed circuit board (PCB) 21 and an associated controller, which may control the operation of the percussive massage device 10. In one embodiment, a switch 24 may be a push button whose operation is controlled to turn the device on and off, change speeds, change modes, etc. In one embodiment, the push button may comprise the PANTONE 299-C color. In some implementations, the PCB 21 may be configured for wireless communication, such as via Bluetooth® wireless technology, with a corresponding wireless control device (not shown). Such a wireless control device may include a mobile device executing an application, a remote controller, or the like. According to some aspects, operation of the percussive massage device 10 may be controlled via the wireless control device. For instance, the wireless control device may be used to customize a speed of the motor, change modes, or turn the motor on/off, among other operations.


In some implementations, the percussive massage device 10 may also include a force meter or other type of measuring instrument configured to determine a massage parameter. The force meter may be included as part of the motor 22, reciprocating shaft 16, and/or push rod 36. Such a force meter, for example, may be operable to measure an amount of percussive force applied to a user. The percussive massage device 10 or wireless control device may then change a massage parameter, such as power applied by the motor 22, distance of travel of the reciprocating shaft 16, or speed, based on the measured percussive force. For example, if the measured percussive force is above a predetermined threshold, the percussive massage device 10 or wireless control device can lower the power applied by the motor 22 via closed loop feedback.


In one embodiment, the housing 12 may also include one or more visual indicators 23 operable to indicate a status of the percussive massage device as shown, for example, in FIGS. 1, 2, and 7. The visual indicators 23 may be adjacent to the switch 24. In one implementation, the visual indicators may include lights that show a status, such as on/off, or which speed or mode the device is set to. A long push of the switch 24 may turn the device on or off, and short pushes of the switch 24 may change speeds or modes. The switch may extend through an opening 24a in the housing 12. The PCB 21 and associated controller may communicate with the motor 22. A charging port 83 may also be provided in the housing for connecting a charging cable to charge the battery 20.


In some embodiments, as shown in FIGS. 2-5, the percussive massage device 10 may include a motor mount bracket 26 positioned in the housing interior 14. The motor mount bracket 26 may include a middle member 28 having first and second opposite sides 28a and 28b. The motor 22 may be positioned on the first side 28a and the reciprocating shaft 16 may be positioned on the second side 28b of the middle member 28. The middle member 28 may include a shaft opening 30 extending therethrough. The motor 22 may include a rotatable motor shaft 32 extending therefrom that extends from the first side 28a of the middle member 28, through the shaft opening 30 and to the second side 28b of the middle member 28. In some embodiments, the motor 22 may be secured to the motor mount bracket 26 via threaded fasteners. However, other attachments, such as welding, gluing, rivets, bolts and the like may also be included in some embodiments.


In one embodiment, the motor mount bracket 26 may include flanges 44 extending from the middle member 28. The flanges 44 may partially form a motor space 46 where at least a portion of the motor 22 may be housed. The middle member 28 may also include a plurality of feet 48 extending therefrom that may include tubular members 49 and securing openings 50 extending therethrough. Dampening rings 51 and dampening washers 52 may also be included. All dampening components herein may be made of rubber, silicone or the like and may be included to prevent plastic to plastic or plastic to metal contact, and/or to reduce noise and vibration.


In one embodiment, as shown in FIGS. 3-5, dampening rings 51 may be received in tubular members 49 on a first side of the feet 48, and dampening washers 52 may be positioned on the second side of the feet 48. Threaded fasteners 53 or the like may extend through the dampening rings 51, tubular members 49, securing openings 50, and dampening washers 52, and may be received in threaded female securing members 58 on the inner surface of the second housing half 12b to secure the motor mount bracket 26 within the housing interior 14. Securing posts 55 (see, e.g., FIG. 3) may be received in corresponding non-threaded female securing members 59 to align and secure the first housing half 12a with the second housing half 12b. The securing posts 55 may provide an interference fit with the female securing members 59 to secure the first housing half 12a to the second housing half 12b. In one embodiment, the securing posts 55 may be tapered from the top or free end thereof (or include tapered flanges) to provide the interference fit with the female securing members 59. A dampening member 57 may be positioned between the motor mount bracket 26 and the second housing half 12b to prevent direct contact of the motor mount bracket 26 against the second housing half 12b. According to some aspects, a pair of dampening members 57 may be positioned between the motor mount bracket 26 and the second housing half 12b to prevent direct contact of the motor mount bracket 26 against the second housing half 12b, wherein each of the pair of dampening members 57 is spaced apart above and below the motor 22.


In one embodiment, the rotation of the motor shaft 32 may be converted to reciprocating motion of the reciprocating shaft 16 via a linkage assembly (or push rod assembly) 34 that includes a push rod 36 that may be pivotably connected to the reciprocating shaft 16 (via pivot pin 37) and an offset member 38 that may include a counterweight 40. An offset shaft 42 extending from the offset member 38 may be operatively connected (e.g., pivotably connected) to the push rod 36. It will be appreciated that, in some embodiments, the axis of the offset shaft 42 is offset from the axis of rotation of the motor shaft 32. In one embodiment, the push rod 36 (or at least a majority thereof), offset member 38, and counterweight 40 may all be positioned on a first side of the housing interior 14 (i.e., on the same side of the housing interior as the motor).


In one embodiment, as shown in FIGS. 3-5, the reciprocating shaft 16 may extend through and reciprocate within a bush assembly 60 that may generally include a bush 62, a dampening bush cover 64, washer 73, and bush holding structure 66. The bush 62 may be received in the central opening 64a of the dampening bush cover 64, which may be received in the central opening 66a of the bush holding structure 66. The reciprocating shaft 16 may extend through the central opening 62a of bush 62. Dampening screw guides 70 and dampening member 72 (which may have a curved shape) may help damp the reciprocation of the reciprocating shaft 16 through the bush assembly 60. To connect the bush assembly 60 to the housing 12, threaded fasteners may be extended through openings in the dampening screw guides 70, through openings in wings 68 extending from the bush holding structure 66, and into female securing members 71 (see FIG. 4). Dampening member 72 may be positioned between the bush assembly 60 and the second housing half 12b. Securing protrusions 74 extending from the dampening member 72 may extend into securing openings 76 formed in the second housing half 12b.


In one embodiment, as shown in FIGS. 2 and 6, the reciprocating shaft 16 may define a longitudinal reciprocation axis A1. The housing 12 may define a housing axis A2 as illustrated in FIGS. 2 and 6. In one embodiment, the reciprocation axis A1 and the housing axis A2 may be co-axial. As shown in FIG. 2, the housing 12 may include a first side portion 25 and a second side portion 27 that cooperate to form the housing interior 14 and are disposed on opposite sides of the reciprocation axis A1. In one embodiment, the motor 22 may be positioned in the first side portion 25 and the battery 20 may be positioned in the second side portion 27. In some embodiments, the motor 22 and entire drive train 32, 34, 36, 38, prior to the reciprocating shaft 16 (with respect to the drive train), may be positioned in the first side portion 25 (i.e., on the first side of the reciprocation axis A1) and the battery 20, PCB 21 and associated electronic components (other than all wires) and the switch 24 may all be located in the second side portion 27 (i.e., on the second side of the reciprocation axis A1). In the illustrative embodiment shown in FIG. 2, the motor shaft 32 may define a motor axis A3. In one embodiment, the motor axis A3 may be generally perpendicular to the reciprocation axis A1 and may extend through the battery 20. The motor axis A3 may also be co-axial with the switch 24. In one embodiment, the battery may be oriented with a battery axis running along its longest dimension being generally parallel to the reciprocation axis A1.


In one embodiment, as shown in FIGS. 2-5, the first side portion 25 of the housing 12 may also include a vent 33 having a plurality of vent holes operable to provide ventilation to the housing interior 14 and the various components contained therein. The vent holes may be one of circular-shaped, oval-shaped, rectangular-shaped, or square-shaped, among other shapes and any combination of shapes. The vent 33 may have a convex or domed shape, a circular shape, an oval shape, a square shape, or a rectangular shape, among other shapes. The vent 33 may extend through a correspondingly shaped vent opening 33a in the housing 12. According to some aspects, the vent 33 may include one of more flanges spaced apart along an outer periphery of the vent, wherein each flange is configured to engage a corresponding recess formed in a respective portion of the housing 12 forming the opening 33a. As such, the one or more flanges of the vent 33 may be configured to engage the housing 12 to securely fix the vent 33 within the vent opening 33a.


During use of the percussive massage device 10, operation of the motor 22 generates heat which may accumulate within the housing interior 14. Overheating of the motor 22 could cause it to fail. For instance, the buildup of excessive motor heat may cause rapid deterioration of the motor windings and the associated insulation. According to some embodiments, it is therefore desirable to prevent such overheating of the motor from occurring.


In one implementation, the vent 33 may be located near the motor 22 in order to provide sufficient airflow into and out of the housing 12 for dissipating heat generated by the motor 22. More particularly, the vent 33 may facilitate heat dissipation from the motor 22 by allowing cool air into the housing and hot air out of the housing. The vent 33 and the vent opening 33a may be co-axially aligned with the motor axis A3 in order to ensure even heat dissipation along an outer surface of the motor 22. The vent 33 may prevent the motor 22 from overheating during use. The vent may also prevent the buildup of heat generated by the motor 22 during use from being distributed amongst the various components arranged within the housing interior 14. Additionally, the vent may prevent the housing 12 itself from getting too hot due to the buildup of heat generated by the motor 22. The user therefore may be able to grasp the housing during use for long periods of time without feeling heat-induced pain or discomfort.


A stabilizer 35 may also be located in the first side portion 25 of the housing 12. More particularly, the stabilizer may be disposed between the vent 33 and the motor 22. According to one implementation, the stabilizer 35 may have a shape generally corresponding to a shape of the motor 22. For instance, the stabilizer 35 may be generally cylindrical and co-axially aligned with the motor axis A3. The stabilizer may include a pair of anchor wings 39 configured to fixedly secure the stabilizer to the housing 12 via respective fasteners, such as screws or bolts. In some aspects, the stabilizer 35 may include an exhaust fan operable to assist with expelling hot air through the vent 33 from within the housing interior 14. In some embodiments, the stabilizer 35 may include a cooling fan configured to cool down the motor 22.


In use, a user may grasp the percussive massage device 10 by placing their hand, and, in particular, their palm against the top 12d of the housing 12 (illustratively shown in FIGS. 7 and 8) at a position wherein the reciprocation axis A1 extends through their palm. This may allow the user to provide a push force in line with the reciprocation axis A1. The user may then use the percussive massage device 10 to massage one or more body parts with the removably attached massage attachment 19, and to change attachments as desired. The percussive massage device 10 may be gripped differently if desired. It will be appreciated that the percussive massage device 10 can be paired with different massage attachments.


In one embodiment, the percussive massage device 10 may be shaped to ergonomically fit into a user's palm, as shown, for example, in FIGS. 7 and 8. In one embodiment, the outer surface 12c of the housing 12 may taper (front, back, left side and right side) from the top toward the opening 84 through which the reciprocating shaft 16 extends. In another embodiment, the reciprocating shaft 16 may be completely retained within the housing 12 and does not extend through opening 84. In such an embodiment, the reciprocating shaft 16 may include a female attachment member on the distal end thereof and the massage attachment 19 may include a male attachment member that extends through opening 84 and mates with the female attachment member of the reciprocating shaft 16.


In one embodiment, the housing 12 may include finger recesses 82 on opposite sides where a user may place their fingers on one side and thumb on the other side, as shown, for example, in FIGS. 7 and 8. In one embodiment, the percussive massage device 10 and housing 12 may generally be symmetrical both left and right (as shown in FIGS. 2 and 8) and front and back (as shown in FIGS. 6 and 7).


The percussive massage device 10 may be configured to be more compact than other comparable massage devices. It has been determined that specific sizes, dimensions, and relative sizes and dimensions of the percussive massage device 10 and/or its components may advantageously provide a device 10 that best balances portability and ergonomic for the user with the inclusion of functional components such as, for example, suitable ventilation components to prevent overheating of the internal components. Specifically, the size of the housing 12, as well as the size and the arrangement of the various components located within the housing interior 14, may allow the percussive massage device 10 to be, for example, at least twenty percent smaller than other known percussive massage devices while still including functional components such as, for example, suitable ventilation components. In some embodiments, the housing 12 of the percussive massage device 10 may have maximum width A, a housing height B, maximum depth D, and minimum depth E as shown, for example, in FIGS. 7 and 8. Maximum width A may be measured approximately parallel to motor axis A3 from vent 33 to switch 24 or where the housing 12 extends outwardly away from either the vent 33 and/or switch 24. Housing height B may be measured approximately parallel to housing axis A2 from the top 12d of the housing 12 to the opening 84 at the base of the housing 12. Maximum depth D may be measured approximately perpendicular to the housing axis A2 near the top 12d of the housing 12 where the housing has largest dimension. Minimum depth E may be measured approximately perpendicular to the housing axis A2 near the opening 84 of the housing 12 where the housing has smallest dimension.


In some embodiments, maximum width A may be, for example, approximately 125 mm. In some embodiments, maximum width A may be between about 115 mm to about 135 mm. In some embodiments, maximum width A may be between about 120 mm to about 130 mm. In some embodiments, housing height B may be, for example, approximately 100 mm. In some embodiments, housing height B may be between about 85 mm to about 108 mm. In some embodiments, housing height B may be between about 95 mm to about 105 mm. In some embodiments, maximum depth D may be, for example, approximately 49 mm. In some embodiments, maximum depth D may be between about 40 mm to about 53 mm. In some embodiments, maximum depth D may be between about 45 mm to about 50 mm. In some embodiments, minimum depth E may be, for example, approximately 34 mm. In some embodiments, minimum depth E may be between about 30 mm to about 38 mm. In some embodiments, minimum depth E may be between about 32 mm to about 36 mm.


As shown for example in FIG. 6, the percussive massage device 10 may have an assembly height C that may be measured approximately parallel to housing axis A2 from the top 12d of the housing 12 to the base 17 of the attachment member 18 as shown, for example, in FIG. 6. The assembly height C may vary depending on the position of the reciprocating shaft 16 between a retracted position and an extended position related to how far reciprocating shaft 16 extends through the opening 84. Reciprocating shaft 16 may have length F and diameter H. The top 15 of attachment member 18 may be spaced apart by a distance G from the opening 84 at the base of the housing 12.


In the retracted position, assembly height C may be, for example, approximately 126 mm. In some embodiments of the retracted position, assembly height C may be between about 120 mm and about 131 mm. In some embodiments of the retracted position, assembly height C may be between about 123 mm and about 128 mm. In the extended position, assembly height C may be, for example, approximately 138 mm. In some embodiments of the extended position, assembly height C may be between about 132 mm and about 145 mm. In some embodiments of the extended position, assembly height C may be between about 135 mm and about 141 mm.


In the retracted position, distance G may be, for example, approximately 5 mm. In some embodiments of the retracted position, distance G may be between about 2 mm and about 10 mm. In some embodiments of the retracted position, distance G may be between about 4 mm and about 8 mm. In the extended position, distance G may be, for example, approximately 17 mm. In some embodiments of the extended position, distance G may be between about 12 mm and about 25 mm. In some embodiments of the extended position, distance G may be between about 15 mm and about 20 mm.


Diameter H of reciprocating shaft 16 may be, for example, approximately 9 mm. In some embodiments, reciprocating shaft 16 may have diameter H between about 5 mm and 13 mm. In some embodiments, reciprocating shaft 16 may have diameter H between about 7 mm and 11 mm. Length F of reciprocating shaft 16 may be, for example, approximately 65 mm. In some embodiments, reciprocating shaft 16 may have length F between about 58 mm and 72 mm. In some embodiments, reciprocating shaft 16 may have length F between about 61 mm and 69 mm.


In some embodiments, the assembly height C of the percussive massage device 10 is greater than maximum width A of the housing 12. In some embodiments, the assembly height C of the percussive massage device 10 is greater than the housing height B of the housing 12. In some embodiments, the maximum width A of the housing 12 is greater than the housing height B of the housing 12. In some embodiments, the assembly height C of the percussive massage device 10 is greater than the maximum width A and the housing height B of the housing 12, and the maximum width A is greater than the housing height B of the housing 12. In some embodiment, the maximum depth D of the housing 12 is greater than the minimum depth E of the housing 12.


The small size of the percussive massage device 10 enables the device 10 to also have a low weight. This advantageously allows device 10 to be more portable and easy to maneuver by a user. In some embodiments, the percussive massage device 10 may weigh, for example, approximately 440 grams. In some embodiments, the percussive massage device 10 may weigh, for example, less than 450 grams. In some embodiments, the percussive massage device 10 may weigh between about 300 grams and about 600 grams. In some embodiments, the percussive massage device 10 may weigh between about 400 grams and about 500 grams.


In some implementations, for example, the percussive massage device may include a brushless motor capable of producing the desired torque in a relatively small space. The percussive massage device 10 may be small enough to fit in a jacket pocket, a clothing pocket, a purse, a gym bag, or the like. Furthermore, the percussive massage device 10 may be compactly sized and shaped to ergonomically fit into the palm of a user's hand when held. As such, the user may be able to place a generally linear force from their palm through the housing 12 and to the massage attachment member 18. The generally symmetrical nature of the percussive massage device 10 and the weight distribution of the component parts help make the device easy to manipulate during use.


As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above-detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of and examples for the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. Further, any specific numbers or dimensions noted herein are only examples: alternative implementations may employ differing values, measurements, dimensions or ranges.


The teachings of the disclosure provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments. Any measurements described or used herein are merely exemplary and not a limitation on the present disclosure. Other measurements can be used. Further, any specific materials noted herein are only examples: alternative implementations may employ differing materials.


These and other changes can be made to the disclosure in light of the above description. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.


Accordingly, although exemplary embodiments of the disclosure have been shown and described, it is to be understood that all the terms used herein are descriptive rather than limiting, and that many changes, modifications, and substitutions may be made by one having ordinary skill in the art without departing from the spirit and scope of the disclosure.

Claims
  • 1. A percussive massage device comprising: a housing defining a housing interior and a vent opening;a motor disposed in the housing interior, the motor comprising a rotatable motor shaft, the rotatable motor shaft defining a motor axis;a battery disposed in the housing interior;a switch configured to activate the motor;a reciprocating shaft operatively connected to the rotatable motor shaft, the reciprocating shaft defining a reciprocation axis, and the reciprocating shaft being configured to reciprocate in response to rotation of the rotatable motor shaft;a vent extending through the vent opening of the housing, the vent being configured to ventilate the housing interior; andan exhaust fan disposed between the vent and motor and configured to expel air from the housing interior and through the vent,wherein the vent comprises one or more flanges extending outwardly away from the vent and configured to engage the housing to couple the vent to the vent opening.
  • 2. The percussive massage device of claim 1: the housing comprising a first side portion and a second side portion,wherein the motor is disposed in the first side portion, andwherein the battery is disposed in the second side portion.
  • 3. The percussive massage device of claim 1, wherein an axis is defined between the switch and the vent, and the axis is generally perpendicular to the reciprocation axis, and wherein the switch is spaced apart from the vent along the axis.
  • 4. The percussive massage device of claim 1, wherein the vent comprises a plurality of vent holes configured to allow airflow into and out of the housing interior.
  • 5. The percussive massage device of claim 4, wherein the vent holes comprise at least one of circular-shaped, oval-shaped, rectangular-shaped, or square-shaped holes.
  • 6. The percussive massage device of claim 1, wherein the vent comprises a convex shape, wherein the vent is configured to be flush with the housing at the vent opening.
  • 7. The percussive massage device of claim 1, further comprising a wireless communications device configured to communicate with a wireless control device.
  • 8. The percussive massage device of claim 1, wherein at least one of the motor or the reciprocating shaft further comprises a force meter.
  • 9. The percussive massage device of claim 1, further comprising a counterweight configured to rotate about the motor axis upon rotation of the rotatable motor shaft.
  • 10. The percussive massage device of claim 1, further comprising a visual indicator configured to indicate a status of the percussive massage device, wherein the visual indicator is adjacent to the switch.
  • 11. The percussive massage device of claim 1, further comprising a stabilizer coupled with the exhaust fan and disposed between the vent and the motor, the stabilizer and the exhaust fan being co-axially aligned with the motor axis.
  • 12. The percussive massage device of claim 1, wherein the battery defines a battery axis, the battery axis being generally parallel to the reciprocation axis, and wherein the motor axis is generally perpendicular to the reciprocation axis and the battery axis.
  • 13. The percussive massage device of claim 1, further comprising a motor mount bracket that comprises a middle member having first and second opposite sides, wherein the motor is positioned on the first side of the middle member and the reciprocating shaft is positioned on the second side of the middle member.
  • 14. The percussive massage device of claim 13, wherein the middle member comprises a shaft opening extending therethrough, wherein the rotatable motor shaft extends from the first side of the middle member through the shaft opening and to the second side of the middle member.
  • 15. The percussive massage device of claim 1, further comprising a bush assembly through which the reciprocating shaft reciprocates, wherein the bush assembly comprises a bush, a bush holding structure, and a dampening bush cover positioned between the bush and the bush holding structure.
  • 16. The percussive massage device of claim 1, wherein an outer surface of the housing comprises at least one finger recess configured to be grasped by a user.
  • 17. A method for a user to massage a body part using a percussive massage device, the method comprising: the user providing the percussive massage device, the percussive massage device comprising: a housing comprising a top surface and defining a housing interior and a vent opening;a motor disposed in the housing interior, the motor comprising a rotatable motor shaft, the rotatable motor shaft defining a motor axis;a battery disposed in the housing interior;a switch configured to activate the motor;a reciprocating shaft operatively connected to the rotatable motor shaft, the reciprocating shaft defining a reciprocation axis, and the reciprocating shaft being configured to reciprocate in response to rotation of the rotatable motor shaft;a massage attachment connected to a distal end of the reciprocating shaft; anda vent extending through the vent opening of the housing, the vent being configured to ventilate the housing interior;the user activating the percussive massage device such that the massage attachment reciprocates along the reciprocation axis;the user grasping the percussive massage device with their palm placed on the top surface such that the reciprocation axis of the reciprocation shaft extends through the palm of the user's hand; andthe user massaging the body part with the massage attachment,wherein the vent comprises one or more flanges extending radially outward away from the vent and configured to engage the housing to couple the vent to the vent opening.
  • 18. The method of claim 17, wherein grasping the percussive massage device includes placing at least one finger of the hand of the user in a first finger recess of a first side of the housing and a thumb of the hand of the user in a second finger recess of a second side of the housing.
  • 19. A percussive massage device comprising: a housing that defines a housing interior, a depth, a width and a height,a battery that defines a battery axis,a motor positioned in the housing, wherein the motor includes a rotatable motor shaft that defines a motor axis,a counterweight that rotates about the motor axis,a switch for activating the motor,a reciprocating shaft operatively connected to the motor, the reciprocating shaft defining a reciprocating axis, and the reciprocating shaft being configured to reciprocate in response to activation of the motor,a vent coupled to the housing and extending through a vent opening of the housing, the vent being configured to ventilate the housing interior, andan exhaust fan disposed between the vent and the motor and configured to expel air from the housing interior and through the vent,wherein the vent and the exhaust fan are co-axial with the motor axis.
  • 20. The percussive massage device of claim 19 wherein the width is greater than the height, and the height is greater than the depth.
  • 21. The percussive massage device of claim 19, wherein the height is approximately 80 percent of the width.
  • 22. The percussive massage device of claim 21, wherein the depth is approximately 50 percent of the height.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 17/515,008, filed Oct. 29, 2021, which is a continuation of U.S. patent application Ser. No. 17/190,955, filed Mar. 3, 2021, now U.S. Pat. No. 11,160,723. U.S. patent application Ser. No. 17/515,008 is also a continuation of U.S. patent application Ser. No. 16/824,328, filed Mar. 19, 2020, now U.S. Pat. No. 10,945,915, which is a continuation-in-part of U.S. patent application Ser. No. 29/708,815, filed Oct. 9, 2019, now U.S. Pat. No. D951,470. U.S. patent application Ser. No. 16/824,328 also claims priority to U.S. Provisional Patent Application No. 62/899,098, filed Sep. 11, 2019, and U.S. Provisional Patent Application No. 62/844,424, filed May 7, 2019. All of the applications listed above are hereby incorporated by reference in their entireties herein.

US Referenced Citations (509)
Number Name Date Kind
657765 Gibbs Sep 1900 A
675772 Ferguson Jun 1901 A
1545027 Ashlock Jul 1925 A
1594636 Smith Aug 1926 A
1657765 Pasque Jan 1928 A
1784301 Mekler Dec 1930 A
D91454 Decker Feb 1934 S
D93943 Harry Nov 1934 S
2179594 Johnson Nov 1939 A
D118980 Gilbert Feb 1940 S
D129045 Glenn Aug 1941 S
2391671 Berg Dec 1945 A
D143678 Snyder et al. Jan 1946 S
2475861 Alfred Jul 1949 A
D161484 Curtis Jan 1951 S
D163324 Charles May 1951 S
D180923 Nicholas Sep 1957 S
D181742 Alfred Dec 1957 S
2931632 De et al. Apr 1960 A
2987334 Wendling Jun 1961 A
3053559 Norval Sep 1962 A
3077837 Sidney et al. Feb 1963 A
D195145 Robert Apr 1963 S
D197142 James Dec 1963 S
3172675 Gonzalez Mar 1965 A
D207505 She Apr 1967 S
3452226 Hettich Jun 1969 A
3545301 Richter Dec 1970 A
3626934 Andis Dec 1971 A
3699952 Waters et al. Oct 1972 A
3705579 Morini et al. Dec 1972 A
D230522 Rothman Feb 1974 S
D237454 James Nov 1975 S
D237455 Buford Nov 1975 S
3942251 Griffies et al. Mar 1976 A
3968789 Simoncini Jul 1976 A
4031763 Eisenberg Jun 1977 A
4046142 Whitney Sep 1977 A
4088128 Mabuchi May 1978 A
4150668 Johnston Apr 1979 A
4158246 Meadows et al. Jun 1979 A
4173217 Johnston Nov 1979 A
4203431 Abura May 1980 A
D265985 House, II Aug 1982 S
4506159 Reuter et al. Mar 1985 A
4513737 Mabuchi Apr 1985 A
4533796 Engelmore Aug 1985 A
4549535 Wing Oct 1985 A
4565189 Mabuchi Jan 1986 A
4566442 Mabuchi et al. Jan 1986 A
4596406 Van Vleet et al. Jun 1986 A
D287814 Hiraishi et al. Jan 1987 S
4691693 Sato Sep 1987 A
4692958 McMakin Sep 1987 A
D292368 Mikiya Oct 1987 S
4730605 Noble et al. Mar 1988 A
D300132 Culbertson et al. Mar 1989 S
4815224 Miller Mar 1989 A
4841955 Evans et al. Jun 1989 A
D303373 Ching, Jr. Sep 1989 S
D310005 Precht Aug 1990 S
D314320 Brosius et al. Feb 1991 S
4989613 Finkenberg Feb 1991 A
4991298 Matre Feb 1991 A
5014681 Heeman et al. May 1991 A
D320379 Culbertson Oct 1991 S
D321338 Sakamoto et al. Nov 1991 S
5085207 Fiore Feb 1992 A
5088474 Mabuchi et al. Feb 1992 A
5092317 Zelikovski Mar 1992 A
5103809 DeLuca et al. Apr 1992 A
5123139 Leppert et al. Jun 1992 A
D329166 Doggett Sep 1992 S
D329291 Wollman Sep 1992 S
D329292 Wollman Sep 1992 S
D331467 Wollman Dec 1992 S
D334012 Chen Mar 1993 S
5201149 Eisenblatter Apr 1993 A
5207697 Carusillo et al. May 1993 A
5212887 Farmerie May 1993 A
D338802 Maass Aug 1993 S
D345077 Maass Mar 1994 S
D345727 Flowers et al. Apr 1994 S
D345888 Joss et al. Apr 1994 S
D349029 Matsunaga et al. Jul 1994 S
5417644 Lee May 1995 A
D363352 Huen Oct 1995 S
D367712 Young Mar 1996 S
5501657 Feero Mar 1996 A
D374934 Lie Oct 1996 S
5569168 Hartwig Oct 1996 A
5573500 Katsunuma et al. Nov 1996 A
5656017 Keller et al. Aug 1997 A
5656018 Tseng Aug 1997 A
D383366 Heck Sep 1997 S
D383435 Svetlik Sep 1997 S
D384639 Kawakami et al. Oct 1997 S
D387728 Kawakami et al. Dec 1997 S
D388175 Lie Dec 1997 S
D397991 Kawakami et al. Sep 1998 S
D400161 Nagele et al. Oct 1998 S
D400758 Hippen et al. Nov 1998 S
5860669 Wass et al. Jan 1999 A
D408543 Back Apr 1999 S
5910197 Chaconas Jun 1999 A
5925002 Wollman Jul 1999 A
D412485 Kato et al. Aug 1999 S
5935089 Shimizu Aug 1999 A
5951501 Griner Sep 1999 A
D417648 Clowers et al. Dec 1999 S
6003052 Yamagata Dec 1999 A
6006631 Miner et al. Dec 1999 A
D425014 Willkens et al. May 2000 S
D430774 Naft et al. Sep 2000 S
D430938 Lee Sep 2000 S
D432077 Zurwelle et al. Oct 2000 S
D433300 Buck Nov 2000 S
6146383 Studer et al. Nov 2000 A
6165145 Noble Dec 2000 A
D439984 Thach Apr 2001 S
D440136 Buck Apr 2001 S
6227959 Beaudry May 2001 B1
6228042 Dungan May 2001 B1
6228120 Leonard et al. May 2001 B1
6245031 Pearson Jun 2001 B1
6290660 Epps et al. Sep 2001 B1
D448852 Engelen Oct 2001 S
6401289 Herbert Jun 2002 B1
6406445 Ben-Nun Jun 2002 B1
6432072 Harris et al. Aug 2002 B1
6537236 Tucek et al. Mar 2003 B2
6539328 Cremonese et al. Mar 2003 B1
D474445 Matsuoka et al. May 2003 S
6558338 Wasserman May 2003 B1
6568089 Popik et al. May 2003 B1
D475595 Hatch et al. Jun 2003 S
D475679 Cooper et al. Jun 2003 S
D476746 Harris et al. Jul 2003 S
6599250 Webb et al. Jul 2003 B2
6599260 Tucek et al. Jul 2003 B2
D478385 Dirks et al. Aug 2003 S
D481279 Buck Oct 2003 S
6663657 Miller Dec 2003 B1
6682496 Pivaroff Jan 2004 B1
6715781 Smith Apr 2004 B1
6723050 Dow et al. Apr 2004 B2
6723060 Miller Apr 2004 B2
6758826 Luettgen et al. Jul 2004 B2
6805700 Miller Oct 2004 B2
6823762 Hu Nov 2004 B2
6846295 Ben-Nun Jan 2005 B1
D504111 Ozawa et al. Apr 2005 S
D510317 Sun Oct 2005 S
6994575 Clark et al. Feb 2006 B1
7041072 Calvert May 2006 B2
D530270 Ozawa et al. Oct 2006 S
7128721 Ferber et al. Oct 2006 B2
D531733 Burout, III et al. Nov 2006 S
7169169 Tucek et al. Jan 2007 B2
7223250 Brattesani et al. May 2007 B2
D544102 Pivaroff Jun 2007 S
D544436 Kawahara et al. Jun 2007 S
D547264 Kondo Jul 2007 S
D553252 Masuda Oct 2007 S
D553562 Okada et al. Oct 2007 S
7384405 Rhoades Jun 2008 B2
D575224 Taniguchi et al. Aug 2008 S
7431706 Louis Oct 2008 B2
D579868 Harrison Nov 2008 S
D580353 Harrison et al. Nov 2008 S
7470081 Miyahara et al. Dec 2008 B2
D587977 Waldron Mar 2009 S
7497639 Lebot et al. Mar 2009 B2
7503923 Miller Mar 2009 B2
D593204 Manke et al. May 2009 S
7549966 Fujii et al. Jun 2009 B2
D597482 Kondo et al. Aug 2009 S
D604235 Tarter Nov 2009 S
D605586 Tong Dec 2009 S
D606192 Summerer et al. Dec 2009 S
7731672 Chiang Jun 2010 B2
7740249 Gao Jun 2010 B1
D622660 Taniguchi et al. Aug 2010 S
7857729 Sullivan et al. Dec 2010 B2
D631315 Xue et al. Jan 2011 S
7877880 Royle Feb 2011 B2
7927259 Rix Apr 2011 B1
7927294 Kamimura et al. Apr 2011 B2
7963717 Seger Jun 2011 B2
7996996 Hirabayashi Aug 2011 B2
D649657 Petersen et al. Nov 2011 S
D658759 Marescaux et al. May 2012 S
D659644 Gretz May 2012 S
D666303 Ding et al. Aug 2012 S
8313450 Ben-Nun Nov 2012 B2
8342187 Kalman et al. Jan 2013 B2
D682195 Aglassinger May 2013 S
8435194 Dverin et al. May 2013 B2
8479616 Tsai Jul 2013 B2
8622943 Ben-Nun Jan 2014 B2
8646348 Hung Feb 2014 B2
D703337 Fuhr et al. Apr 2014 S
D703480 Lownds Apr 2014 S
8695461 Moss et al. Apr 2014 B2
D706433 Fuhr et al. Jun 2014 S
D708742 Dallemagne et al. Jul 2014 S
8770882 Ersoy Jul 2014 B2
8777881 Tsai Jul 2014 B2
8864143 Lin Oct 2014 B2
D722016 Beukema Feb 2015 S
8945104 Boone, III et al. Feb 2015 B2
8951216 Yoo et al. Feb 2015 B2
D726495 Ryan Apr 2015 S
9017273 Burbank et al. Apr 2015 B2
D734863 Hennessey Jul 2015 S
D735348 Hennessey Jul 2015 S
9107486 Brewer et al. Aug 2015 B2
9132058 Imboden et al. Sep 2015 B2
9138257 Revivo Sep 2015 B2
D740222 Tang Oct 2015 S
9272837 Linzell Mar 2016 B2
D756180 Chen May 2016 S
D759237 Heath et al. Jun 2016 S
D759238 Heath et al. Jun 2016 S
9364385 Yang Jun 2016 B2
D763442 Price et al. Aug 2016 S
9416805 Cascolan et al. Aug 2016 B2
D776612 Chen et al. Jan 2017 S
D778439 Håkansson et al. Feb 2017 S
9597256 Paul Mar 2017 B1
9744600 Yang et al. Aug 2017 B2
9872813 Giraud et al. Jan 2018 B2
9889066 Danby et al. Feb 2018 B2
D817732 Rettler May 2018 S
D817869 Lee et al. May 2018 S
D819221 Lei May 2018 S
9981366 Todd et al. May 2018 B2
D823478 Park Jul 2018 S
10034813 Silver Jul 2018 B1
D826418 Lad Aug 2018 S
D837395 Gan Jan 2019 S
D838378 Cao Jan 2019 S
D840547 Harle et al. Feb 2019 S
10201470 Griner Feb 2019 B2
D842489 Spewock et al. Mar 2019 S
D842491 Fleming et al. Mar 2019 S
D843656 Zhang et al. Mar 2019 S
D844896 Levi et al. Apr 2019 S
D847362 Tang Apr 2019 S
D847364 Lee et al. Apr 2019 S
10252051 Nichols Apr 2019 B2
10276844 Wackwitz et al. Apr 2019 B2
D847990 Kimball May 2019 S
10314762 Marton Jun 2019 B1
10335345 Choe Jul 2019 B2
10357425 Wersland et al. Jul 2019 B2
D855822 Marton et al. Aug 2019 S
D858432 Altenburger Sep 2019 S
D862382 Altenburger Oct 2019 S
D866790 Lee et al. Nov 2019 S
D867279 Altenburger Nov 2019 S
10557490 Wersland et al. Feb 2020 B2
D877351 Wersland et al. Mar 2020 S
D880419 Hernandez et al. Apr 2020 S
D880714 Wersland et al. Apr 2020 S
D880715 Wersland et al. Apr 2020 S
D880716 Wersland et al. Apr 2020 S
D884205 Zhuang May 2020 S
10702448 Wersland et al. Jul 2020 B2
D893738 Zhuang Aug 2020 S
10758027 Skidmore et al. Sep 2020 B2
10857064 Wersland et al. Dec 2020 B2
10918565 Wersland et al. Feb 2021 B2
10945915 Wersland et al. Mar 2021 B2
10959908 Lee et al. Mar 2021 B2
10959911 Wersland et al. Mar 2021 B2
D919560 Taniguchi et al. May 2021 S
10993874 Marton et al. May 2021 B1
11160723 Wersland et al. Nov 2021 B2
20010016697 Gorsen Aug 2001 A1
20010027280 Huang Oct 2001 A1
20020082532 Tucek et al. Jun 2002 A1
20020115947 Young Aug 2002 A1
20020177795 Frye Nov 2002 A1
20020183668 Huang Dec 2002 A1
20020188233 Denyes Dec 2002 A1
20030009116 Luettgen et al. Jan 2003 A1
20030014079 Tucek Jan 2003 A1
20030028134 Lev et al. Feb 2003 A1
20030094356 Waldron May 2003 A1
20030144615 Lin Jul 2003 A1
20030195443 Miller Oct 2003 A1
20040176710 Kennedy et al. Sep 2004 A1
20050075591 Hafemann Apr 2005 A1
20050109137 Hartmann May 2005 A1
20050113870 Miller May 2005 A1
20050126018 Haas Jun 2005 A1
20050131461 Tucek et al. Jun 2005 A1
20050203445 Tsai Sep 2005 A1
20050235988 Hansen et al. Oct 2005 A1
20050252011 Neumeier Nov 2005 A1
20060025710 Schulz et al. Feb 2006 A1
20060047315 Colloca et al. Mar 2006 A1
20060074455 Strandberg Apr 2006 A1
20060116614 Jones et al. Jun 2006 A1
20060118841 Eliason et al. Jun 2006 A1
20060123941 Wadge Jun 2006 A1
20060192527 Kageler et al. Aug 2006 A1
20060211961 Meyer et al. Sep 2006 A1
20060272664 O'Dwyer Dec 2006 A1
20070129220 Bardha Jun 2007 A1
20070144310 Pozgay et al. Jun 2007 A1
20070150004 Colloca et al. Jun 2007 A1
20070173886 Rousso et al. Jul 2007 A1
20070179414 Imboden et al. Aug 2007 A1
20070270727 Khorassani Zadeh Nov 2007 A1
20070282228 Einav et al. Dec 2007 A1
20080077061 Dehli Mar 2008 A1
20080097260 Tsukada et al. Apr 2008 A1
20080103419 Adamson May 2008 A1
20080146980 Rousso et al. Jun 2008 A1
20080167588 Chen Jul 2008 A1
20080169715 Mills et al. Jul 2008 A1
20080177207 Liao Jul 2008 A1
20080185888 Beall et al. Aug 2008 A1
20080200849 Hollington et al. Aug 2008 A1
20080243041 Brenner et al. Oct 2008 A1
20080306417 Imboden et al. Dec 2008 A1
20080312568 Chen Dec 2008 A1
20080314610 Meixner Dec 2008 A1
20090112134 Avni Apr 2009 A1
20090188119 Oberheim Jul 2009 A1
20090270777 Wu et al. Oct 2009 A1
20090309313 Knorr et al. Dec 2009 A1
20090326540 Estes Dec 2009 A1
20100100119 Herndon Apr 2010 A1
20100137907 Tsai Jun 2010 A1
20100145242 Tsai Jun 2010 A1
20100160841 Wu Jun 2010 A1
20100162579 Naughton et al. Jul 2010 A1
20100176919 Myers et al. Jul 2010 A1
20100210194 Thomaschewski et al. Aug 2010 A1
20100274162 Evans Oct 2010 A1
20100286569 Nagano Nov 2010 A1
20100298863 Hindinger et al. Nov 2010 A1
20110037431 Mackle Feb 2011 A1
20110055720 Potter et al. Mar 2011 A1
20110118637 Lev et al. May 2011 A1
20110201979 Voss et al. Aug 2011 A1
20110224580 Leathers et al. Sep 2011 A1
20110314677 Meier et al. Dec 2011 A1
20120059294 Schubert et al. Mar 2012 A1
20120065556 Smith et al. Mar 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120124758 Sabisch et al. May 2012 A1
20120161706 Zhou Jun 2012 A1
20120197357 Dewey et al. Aug 2012 A1
20120232445 Lev et al. Sep 2012 A1
20120238922 Stemple et al. Sep 2012 A1
20120253245 Stanbridge Oct 2012 A1
20130014968 Kehoe et al. Jan 2013 A1
20130030506 Bartolone et al. Jan 2013 A1
20130046212 Nichols Feb 2013 A1
20130052871 Eklind Feb 2013 A1
20130085421 Gillespie et al. Apr 2013 A1
20130116503 Mertens et al. May 2013 A1
20130133210 Weir et al. May 2013 A1
20130138023 Lerro May 2013 A1
20130218058 Ceoldo et al. Aug 2013 A1
20130237751 Alexander Sep 2013 A1
20130241470 Kim Sep 2013 A1
20130261516 Cilea et al. Oct 2013 A1
20130261517 Rodgers Oct 2013 A1
20130271067 Yu et al. Oct 2013 A1
20130281897 Hoffmann et al. Oct 2013 A1
20130304642 Campos Nov 2013 A1
20140024982 Doyle Jan 2014 A1
20140031866 Fuhr et al. Jan 2014 A1
20140097793 Wurtz et al. Apr 2014 A1
20140101872 Utsch et al. Apr 2014 A1
20140163443 Young et al. Jun 2014 A1
20140180331 Turner Jun 2014 A1
20140190023 Vitantonio et al. Jul 2014 A1
20140194900 Sedic Jul 2014 A1
20140200495 Jones Jul 2014 A1
20140207032 Dematio et al. Jul 2014 A1
20140209594 Besner Jul 2014 A1
20140221887 Wu Aug 2014 A1
20140288473 Matsushita Sep 2014 A1
20140305747 Kumar et al. Oct 2014 A1
20140310900 Curry et al. Oct 2014 A1
20140316313 Mayer et al. Oct 2014 A1
20150005682 Danby et al. Jan 2015 A1
20150042254 Kato Feb 2015 A1
20150082562 Kamada Mar 2015 A1
20150098184 Tsai et al. Apr 2015 A1
20150119771 Roberts Apr 2015 A1
20150133833 Bradley et al. May 2015 A1
20150145297 Lee May 2015 A1
20150148592 Kanbar et al. May 2015 A1
20150157528 Le et al. Jun 2015 A1
20150176674 Khan et al. Jun 2015 A1
20150216719 Debenedictis et al. Aug 2015 A1
20150257964 Ajiki Sep 2015 A1
20150305969 Giraud et al. Oct 2015 A1
20150328081 Goldenberg et al. Nov 2015 A1
20150375315 Ukai et al. Dec 2015 A1
20160000642 Zipper Jan 2016 A1
20160017905 Cascolan et al. Jan 2016 A1
20160030279 Driscoll et al. Feb 2016 A1
20160045661 Gray et al. Feb 2016 A1
20160112841 Holland Apr 2016 A1
20160113840 Crunick et al. Apr 2016 A1
20160113841 Godfrey et al. Apr 2016 A1
20160127129 Chee et al. May 2016 A1
20160129186 Douglas et al. May 2016 A1
20160136037 Cai May 2016 A1
20160136040 Li May 2016 A1
20160166464 Douglas et al. Jun 2016 A1
20160170996 Frank et al. Jun 2016 A1
20160192814 Kang et al. Jul 2016 A1
20160206502 Køltzow Jul 2016 A1
20160243359 Sharma Aug 2016 A1
20160263732 Lourenco et al. Sep 2016 A1
20160269486 Gupta et al. Sep 2016 A1
20160310353 Barasch Oct 2016 A1
20160311091 Wang Oct 2016 A1
20160324717 Burton Nov 2016 A1
20160338901 Cohen Nov 2016 A1
20160346163 Konik et al. Dec 2016 A1
20160367425 Wersland Dec 2016 A1
20170027798 Wersland Feb 2017 A1
20170042754 Fowers et al. Feb 2017 A1
20170049278 Thomassen Feb 2017 A1
20170069191 Erkkila Mar 2017 A1
20170119623 Attarian May 2017 A1
20170128320 Chen May 2017 A1
20170156974 Griner Jun 2017 A1
20170156975 Mills Jun 2017 A1
20170189227 Brunson et al. Jul 2017 A1
20170216136 Gordon Aug 2017 A1
20170233063 Zhao et al. Aug 2017 A1
20170246074 Wu Aug 2017 A1
20170304144 Tucker Oct 2017 A1
20170304145 Pepe Oct 2017 A1
20170312161 Johnson et al. Nov 2017 A1
20170360641 Nakata et al. Dec 2017 A1
20180008512 Goldstein Jan 2018 A1
20180050440 Chen Feb 2018 A1
20180078449 Callow Mar 2018 A1
20180133101 Inada May 2018 A1
20180140100 Cribbs May 2018 A1
20180140502 Shahoian et al. May 2018 A1
20180141188 Lai May 2018 A1
20180154141 Ahn Jun 2018 A1
20180185234 Ishiguro et al. Jul 2018 A1
20180200141 Wersland et al. Jul 2018 A1
20180236572 Ukai Aug 2018 A1
20180243158 Loghmani et al. Aug 2018 A1
20180263845 Wersland et al. Sep 2018 A1
20180279843 Paul et al. Oct 2018 A1
20180288160 Paul et al. Oct 2018 A1
20180296433 Danby et al. Oct 2018 A1
20180315499 Appelbaum et al. Nov 2018 A1
20180315504 Inada et al. Nov 2018 A1
20190000709 Sone et al. Jan 2019 A1
20190038229 Perraut et al. Feb 2019 A1
20190066833 Wicki Feb 2019 A1
20190110945 Kawagoe et al. Apr 2019 A1
20190175434 Zhang Jun 2019 A1
20190209424 Wersland et al. Jul 2019 A1
20190216677 Paul Jul 2019 A1
20190232478 Zawisza et al. Aug 2019 A1
20190254921 Marton et al. Aug 2019 A1
20190254922 Marton et al. Aug 2019 A1
20190314239 Ci Oct 2019 A1
20190337140 Shanklin Nov 2019 A1
20190350793 Wersland et al. Nov 2019 A1
20190381271 Jo Dec 2019 A1
20200000237 Wu Jan 2020 A1
20200009010 Park et al. Jan 2020 A1
20200016027 Kim et al. Jan 2020 A1
20200035237 Kim et al. Jan 2020 A1
20200069510 Wersland et al. Mar 2020 A1
20200085675 Lee Mar 2020 A1
20200090175 Davis et al. Mar 2020 A1
20200179210 Barragan Gomez Jun 2020 A1
20200179215 Lerner Jun 2020 A1
20200230012 Fuhr Jul 2020 A1
20200241683 Le et al. Jul 2020 A1
20200261306 Pepe Aug 2020 A1
20200261307 Wersland et al. Aug 2020 A1
20200268594 Pepe Aug 2020 A1
20200294423 Blain et al. Sep 2020 A1
20200352821 Wersland Nov 2020 A1
20200390644 Yang Dec 2020 A1
20200397651 Park et al. Dec 2020 A1
20200405570 Kodama Dec 2020 A1
20210000683 Cheng Jan 2021 A1
20210022955 Wersland et al. Jan 2021 A1
20210059898 Wersland et al. Mar 2021 A1
20210085555 Davis et al. Mar 2021 A1
20210128402 Dai et al. May 2021 A1
20210330539 Faussett Oct 2021 A1
20220000781 Leneweit et al. Jan 2022 A9
20220007810 Paspatis et al. Jan 2022 A1
20220054350 Merino et al. Feb 2022 A1
20220087433 Mao et al. Mar 2022 A1
20220241135 Wang Aug 2022 A1
Foreign Referenced Citations (101)
Number Date Country
510048 Jan 2012 AT
2019204770 Oct 2019 AU
86101310 Sep 1986 CN
1432452 Jul 2003 CN
2788807 Jun 2006 CN
201239336 May 2009 CN
201239338 May 2009 CN
201333160 Oct 2009 CN
201524220 Jul 2010 CN
101888050 Nov 2010 CN
201743890 Feb 2011 CN
201847899 Jun 2011 CN
301664182 Sep 2011 CN
202161539 Mar 2012 CN
202637439 Jan 2013 CN
103648320 Mar 2014 CN
203598194 May 2014 CN
104352341 Feb 2015 CN
303250929 Jun 2015 CN
205163583 Apr 2016 CN
104352341 Jul 2016 CN
205459750 Aug 2016 CN
205494357 Aug 2016 CN
205598186 Sep 2016 CN
106074129 Nov 2016 CN
106236528 Dec 2016 CN
206081000 Apr 2017 CN
106859949 Jun 2017 CN
304561844 Mar 2018 CN
207286298 May 2018 CN
207855923 Sep 2018 CN
109259995 Jan 2019 CN
208405314 Jan 2019 CN
208448086 Feb 2019 CN
109528473 Mar 2019 CN
209154392 Jul 2019 CN
110868983 Mar 2020 CN
106618998 Aug 2020 CN
111616938 Sep 2020 CN
111973419 Nov 2020 CN
113143721 Jul 2021 CN
113509366 Oct 2021 CN
303250924 May 2023 CN
3633888 Apr 1988 DE
19905199 Jul 2000 DE
102015102112 Aug 2015 DE
202015005257 Oct 2016 DE
0436719 May 1994 EP
1728494 Dec 2006 EP
2080500 Jul 2009 EP
2328255 Jun 2011 EP
1728494 Jan 2013 EP
2066081 Jul 1981 GB
2262236 Jun 1993 GB
S5230553 Mar 1977 JP
S5428491 Mar 1979 JP
H0219157 Jan 1990 JP
H03218763 Sep 1991 JP
H048128 Feb 1992 JP
H0447440 Feb 1992 JP
H0447440 Apr 1992 JP
H0751393 Feb 1995 JP
3077837 Jun 2001 JP
2002282322 Oct 2002 JP
2003077837 Mar 2003 JP
2005204777 Aug 2005 JP
2006034941 Feb 2006 JP
2006212228 Aug 2006 JP
2008510588 Apr 2008 JP
2008289616 Dec 2008 JP
2010534110 Nov 2010 JP
5129032 Jan 2013 JP
2013119018 Jun 2013 JP
2015035844 Feb 2015 JP
2015104422 Jun 2015 JP
2018518347 Jul 2018 JP
200313149 May 2003 KR
200435552 Jan 2007 KR
100752432 Aug 2007 KR
20090119424 Nov 2009 KR
101123926 Apr 2012 KR
101162978 Jul 2012 KR
101406275 Jun 2014 KR
20170106550 Sep 2017 KR
20170108550 Sep 2017 KR
20180031683 Mar 2018 KR
20200051098 May 2020 KR
2170567 Jul 2001 RU
I359657 Mar 2012 TW
201440753 Nov 2014 TW
WO-0119316 Mar 2001 WO
WO-2009014727 Jan 2009 WO
WO-2009102279 Aug 2009 WO
WO-2011159317 Dec 2011 WO
WO-2013114084 Aug 2013 WO
WO-2013145346 Oct 2013 WO
WO-2014118596 Aug 2014 WO
WO-2015038005 Mar 2015 WO
WO-2018012105 Jan 2018 WO
WO-2019186225 Oct 2019 WO
WO-2021050861 Mar 2021 WO
Non-Patent Literature Citations (73)
Entry
English Machine Translation of DE 19905199 A1 provided by Espacenet (Year: 2000).
Amazon: “Oivo Xbox One Controller Charger Dual Charging Station Updated Strap, Remote Charger Dock-2 Rechargeable Battery Packs Included,” OIVO, Sep. 6, 2018, Especially annotated figures, Retrieved from Entire Document, 11 Pages.
Amazon: “PowerA Joy Con & Pro Controller Charging Dock Nintendo Switch,” PowerA, Oct. 31, 2017, Especially annotated figures, Retrieved from Entire Document, 10 Pages.
Amazon: “Theragun G3PRO Percussive Therapy Device, White, Handheld Deep Muscle, Treatment Massager & Muscle Stimulator for Pain Relief, Recovery, Enhance Performance & Energize The Body,” Feb. 13, 2019, Shown on pp. 1, 2 Pages Retrieved from URL: https://www.amazon.com/dp/B07MJ2MCT3/ref=nav_timeline_asin ?_ encoding=UTF8&psc=1.
Anthony Katz, “The RAPTOR: Helps Patients and Saves Your Most Valuable Tool . . . Your Hands,” DC Aligned:MeyerDC, Dec. 9, 2015, available at: http://news.meyerdc.com/community/vendor-spotlight/the-raptor-helps-patients-saves-your-most-valuable-tool-your-hands/ (last visited Feb. 15, 2023); 5 pages.
Bardwell D., “Wahl's Massage Products—Meant for Life's Big Pains,” DougBardwell.com, Apr. 6, 2016, 7 Pages, [Retrieved On Jun. 3, 2021] Retrieved from URL: https://dougbardwell.com/db/2016/04/06/wahls-massage-products-meant-for-lifes-big-pains/.
Collins D., “External Rotor Motor Basics: Design and Applications,” Jun. 6, 2018, 03 Pages.
Collins D., “FAQ: What are Hall Effect Sensors and What Is Theirs Role In Dc Motors?,” Jan. 11, 2017, 03 Pages.
Defendant's Initial Invalidity Contentions, Therabody, Inc. v. Tzurni Electronics LLC et al., Case No. SDNY-1-21-cv-07803 (PGG)(RWL), dated Aug. 17, 2022; 16 pages.
Description of Therabody GI Device, available at: tlttps://www.therabody.corn/us/en-us/faqittleragun-devices/faq-devices-1.html?fdid=faq&csortb1=sortOrder&csortd1=1 (last visited Feb. 15, 2023).
Digi-Key's North American Editors: “How to Power and Control Brushless DC Motors,” Dec. 7, 2016, 09 Pages.
Examination Report For Australian Patent Application No. 2016284030, dated May 7, 2018, 3 Pages.
Extended European Search Report for European Application No. 16815104.1, dated Jan. 23, 2019, 08 Pages.
Extended European Search Report for European Application No. 18832213.5, dated Jul. 21, 2021, 11 Pages.
Extended European Search Report for European Application No. 18832923.9, dated Apr. 23, 2021, 7 Pages.
Extended European Search Report for European Application No. 20720323.3, dated Sep. 9, 2021, 10 Pages.
Extended European Search Report for European Application No. 20802710.2, dated May 10, 2022, 9 Pages.
Extended European Search Report for European Application No. 20802804.3, dated Apr. 28, 2022, 8 Pages.
Extended European Search Report for European Application No. 21178300.6, dated Oct. 19, 2021, 9 Pages.
Extended European Search Report for European Application No. 21178311.3, dated Sep. 23, 2021, 5 Pages.
Holly Riddle, “Theragun vs. Hyperice vs, Hydragun: Massage Gun Showdown [Buyer's Guide],” CliatterSource: Health & Wellness, Mar. 9, 2021, available at: https://www.chattersource.com/article/massage-gun/ (last visited Feb. 17, 2023); 14 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2016/038326, dated Jan. 4, 2018, 8 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2018/022426, dated Sep. 26, 2019, 9 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2018/039599, dated Jan. 23, 2020, 8 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2018/040795, dated Jan. 23, 2020, 7 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2019/067624, dated Jul. 8, 2021, 11 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/017645, dated Aug. 26, 2021, 11 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/031339, dated Nov. 18, 2021,11 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/031936, dated Nov. 18, 2021, 14 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/050385, dated Mar. 24, 2022, 12 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/050399, dated Jan. 13, 2022, 6 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/054773, dated Apr. 21, 2022, 8 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/054842, dated Apr. 21, 2022, 7 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/063426, dated Jun. 16, 2022, 06 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2021/022500, dated Oct. 6, 2022, 6 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2021/029900, dated Nov. 10, 2022, 9 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2021/029903, dated Nov. 10, 2022, 7 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/038326, dated Sep. 1, 2016, 9 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/022426, dated May 31, 2018, 10 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/039599, dated Sep. 24, 2018, 9 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2018/040795, dated Sep. 24, 2018, 8 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2019/067624, dated Feb. 3, 2020, 13 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/017645, dated May 20, 2020, 13 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/031339, dated Jun. 10, 2020, 12 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/031347, dated Aug. 3, 2020, 9 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/031936, dated Sep. 11, 2020, 17 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/050385, dated Dec. 3, 2020, 13 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/050399, dated Feb. 4, 2021, 11 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/054773, dated Jan. 12, 2021, 9 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/054842, dated Jan. 11, 2021, 8 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/063426, dated Feb. 26, 2021, 09 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/022500, dated Apr. 20, 2021, 7 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/029900, dated Oct. 6, 2021, 12 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/029903, dated Jul. 28, 2021, 8 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2022/028309, dated Sep. 8, 2022, 10 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2022/076238, dated Jan. 23, 2023, 12 Pages.
Machine translation from Espacenet of written description and claims for CN106074129A, 9 pages (2016).
Machine translation from Espacenet of written description and claims for CN111616938A, 5 pages (2020).
Machine translation from Espacenet of written description and claims for CN111973419A, 7 pages (2020).
Massage Expert: “Nursal Deep Percussion Massager Review—6 Interchangeable Nodes,” Jan. 4, 2021, 6 Pages, [Retrieved on Jun. 3, 2021] Retrieved from URL: https://www.massagexpert.net/nursal-deep-percussion-massager-review/.
McFarland M., “Segway Was Supposed to Change the World, Two Decades Later, It Just Might,” CNN Wire Service, Oct. 30, 2018, 7 Pages.
Notice of Reasons for Rejection for Japanese Patent Application No. 2018-517683, dated Oct. 2, 2018, 10 Pages.
Office Action For Canadian Application No. 2,990,178, dated Oct. 15, 2018, 4 Pages.
Partial Supplementary European Search Report for European Application No. 18832213.5, dated Apr. 20, 2021, 12 Pages.
Rachel [no family name indicated], “Jigsaw Massager,” Instructables, Apr. 18, 2010, 6 Pages, Retrieved from URL: https://web.archive.org/web/20100418041422/ http://www.instructables.com/id/Jigsaw-Massager/.
ROCKWELL: “Trans4mer Operating Manual for Multi-purpose saw,” Model RK2516/RK2516K, 2011, 32 Pages.
Supplementary European Search Report for European Application No. 19904459.5, dated Apr. 15, 2021, 04 Pages.
TESTBERICHTE.DE: “Naipo Handheld Percussion Massager with Heating (MGPC 5000),” amazon.de, 7 Pages, [Retrieved on Jun. 3, 2021] Retrieved from URL: https://www.testberichte.de/p/naipo-tests/handheld-percussion-massager-with-heating-mgpc-5000-testbericht.html, See also a YouTube Review of this Device dated May 21, 2018 at https://www.youtube.com/watch?v=bi_QCJA3D9k.
Visual Description of Hyper Ice, Inc. Raptor Device, “Osteopatia Haidy Ortale- Raptor Massage,” available at: https://www.youtube.com/watch?v=plyW8FBowVs (last visited Feb. 15, 2023); 1 page.
Visual Description of Hyper Ice, Inc. Raptor Device, “RAPTOR Solutions 1.3 Prone,” available at: https://www.youtube.com/watch?v=6i1tRqdwPU8&t=156s (last visited Feb. 15, 2023); 1 page.
WORX: “Safety and Operating Manual Original Instructions,” for 12V Li-lon Multipurpose saw, WX540, WX540.3, WX540.9, Trans4mer, 2013, 16 Pages.
WORX Trans4mer “Safety and Operating Manual Original Instructions” for 12V Li-lon Multipurpose saw, WX540, NX540.3, WX540.9, 16 pages (2013).
YOUTUBE: “Unboxing: Joy-Con & Pro Controller Charging Dock for Nintendo Switch,” Crusherbad64, Especially demonstration 8:30-8:55, (This reference is Being Used to Show Greater Details of Product not Clearly Disclosed in 'PowerA'), Feb. 26, 2018, Retrieved from entire document, 1 Page.
Related Publications (1)
Number Date Country
20220296463 A1 Sep 2022 US
Provisional Applications (2)
Number Date Country
62899098 Sep 2019 US
62844424 May 2019 US
Continuations (2)
Number Date Country
Parent 17190955 Mar 2021 US
Child 17515008 US
Parent 16824328 Mar 2020 US
Child 17190955 US
Continuation in Parts (2)
Number Date Country
Parent 17515008 Oct 2021 US
Child 17833412 US
Parent 29708815 Oct 2019 US
Child 16824328 US